## KEYS AND SCORES For Questions in Final Exam of Physics 1 Edited by: Dao Vinh Ai and Tran Chien Thang

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                             | Mark |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1        | (a) Increases. When the ice melts, it moves away from the axis of rotation and the distance increases. Moment of inertia of the Earth therefore increases ( $I \sim r^2$ ).                                                                                                                                                                                                                        | 0.5  |
|          | (b) Increase. The Earth is an isolated system, so its angular momentum is conserved when the distribution of its mass changes. When its moment of inertia increases, its angular speed decreases ( $L = I\omega = const$ ), so its period increases. However, most of the mass of Earth would not move, so the effect would be small: we would not have more hours in a day, but more nanoseconds. | 0.5  |
| 2        | Centripetal acceleration is given by: $a_c = R\omega^2$ .                                                                                                                                                                                                                                                                                                                                          | 0.5  |
|          | Note that $R = 29.0$ ft = 8.845 m, and $a_c = 20g = 196$ m/s <sup>2</sup> .                                                                                                                                                                                                                                                                                                                        |      |
|          | The angular speed is: $\omega = \sqrt{\frac{a_c}{R}}$ .                                                                                                                                                                                                                                                                                                                                            | 0.5  |
|          | The rotation rate is given by: $f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{a_c}{R}}$ .                                                                                                                                                                                                                                                                                     | 0.5  |
|          | Finally: $f = 0.750 \text{ rev/s}$ .                                                                                                                                                                                                                                                                                                                                                               | 0.5  |
| 3        | $\overrightarrow{\mathbf{F}}$ (a) The freebody diagram of the suitcase                                                                                                                                                                                                                                                                                                                             | 0.75 |
|          | $y$ (b) Newton $2^{nd}$ law for the suitcase:                                                                                                                                                                                                                                                                                                                                                      |      |
|          | $x \qquad \vec{n} \qquad \sum \vec{F} = \vec{F}_g + \vec{n} + \vec{f} + \vec{F} = 0$                                                                                                                                                                                                                                                                                                               | 0.25 |
|          | $\vec{f}$ (the suitcase is moving at constant velocity, therefore its acceleration is zero)                                                                                                                                                                                                                                                                                                        |      |
|          | On the x-axis: $-f + F \cos \theta = 0$                                                                                                                                                                                                                                                                                                                                                            |      |
|          | $\vec{\mathbf{F}}_g \implies \cos\theta = \frac{f}{F} = 0.571$                                                                                                                                                                                                                                                                                                                                     | 0.5  |
|          | $\Rightarrow \theta = 55.2^{o} = 0.963  rad$                                                                                                                                                                                                                                                                                                                                                       |      |
|          | (c) On the y-axis: $-F_g + n + F \sin \theta = 0$                                                                                                                                                                                                                                                                                                                                                  |      |
|          | $\implies n = mg - F\sin\theta = 167 N$                                                                                                                                                                                                                                                                                                                                                            | 0.5  |
| 4        | (a) Consider the system (car & Earth). This system is isolated (energy), and there is no non-                                                                                                                                                                                                                                                                                                      |      |
|          | conservative force acting in the system. Therefore, its mechanical energy is conserved.                                                                                                                                                                                                                                                                                                            | 0.25 |
|          | The initial configuration: at the top of the hill<br>The final configuration: at the bottom of the hill                                                                                                                                                                                                                                                                                            | 0.23 |
|          | Choose +y upward and $y = 0$ at the bottom of the hill                                                                                                                                                                                                                                                                                                                                             |      |
|          | One has:<br>$U_{a,i} = may_i = mah (= 1.68 kI);$ $K_i = 0;$                                                                                                                                                                                                                                                                                                                                        |      |
|          | $U_{r,\epsilon} = 0; \qquad K_{\epsilon} = \frac{1}{mv_{\epsilon}^2};$                                                                                                                                                                                                                                                                                                                             |      |
|          | Conservation of mechanical energy: $n_f = 2^{m v_f}$                                                                                                                                                                                                                                                                                                                                               | 0.5  |
|          | $\Delta E_{mech} = \Delta U_g + \Delta K = (U_{g,f} - U_{g,i}) + (K_f - K_i) = 0$                                                                                                                                                                                                                                                                                                                  |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                    |      |

