HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION FACULTY FOR HIGH QUALITY TRAINING **GROUP OF PHYSICS SUBJECTS**

FINAL EXAM 1st SEMESTER – ACADEMIC YEAR 2020-2021 **Subject: Principles of Physics 2** Course Number: PHYS130502E Test number: 01 (2 pages).

Duration: 90 minutes.

D. 6

Note:

- + Students are allowed to use one hand-written A4 paper sheet as a memory aid.
- + Proctors are NOT allowed to explain anything related to contents of the test.

+ The permeability of free space is $\mu_0 = 4\pi \times 10^{-7}$ T.m/A. The Coulomb constant is $k = 9.00 \times 10^9$ N.m²/C². The speed of electromagnetic wave is $C=3\times10^8$ m/s.

- Question 1: (0.5 marks) Hospital personnel must wear special conducting shoes while working around oxygen in an operating room. What might happen if the personnel wore shoes with rubber soles?
 - A. She could be charged by the friction with the floor while walking.
 - **B.** The charge on her body could discharge with a spark possibly causing an explosive burning situation.
 - **C.** All of A and B.
 - **D.** None of A or B.

B. 2

deflects to the right.

A.0

Question 2: (0.5 marks) A cubical gaussian surface surrounds a segment of a long, straight, charged filament that passes perpendicularly through two opposite faces (Figure 1). No other charges are nearby. Through how many of the cube's faces is the electric flux zero?

C. 4

D. If the magnitude of charge of the particle is small, its orbit is large.

Question 4: (0.5 marks) An electromagnetic wave with a peak magnetic field magnitude of 1.50×10^{-7} T has an associated peak electric field of what magnitude?

A. $5.00 imes 10^{-16}$ N/C	B. $2.00 imes 10^{16}$ N/C
C. 2.20×10^4 N/C	D. 45.0 N/C

Question 5: (1.0 mark) A spectral line occur at angles of 23.8° in the second-order spectrum of a grating spectrometer. If the grating has 3 660 slits/cm, what is the wavelength of the light?

- **Question 6**: (1.0 mark) Eddy currents can produce significant drag, called magnetic damping, on the motion involved. Consider the apparatus shown in Figure 3, which swings a metal pendulum bob between the poles of a strong magnet. Significant drag acts on the bob as it enters and leaves the field, quickly damping the motion. Define the direction of the eddy currents in the bob at positions (1) and (2). Explain your answer.
- **Question 7**: (2.0 marks) Three charged particles are at the corners of an equilateral triangle as shown in Figure 4.
 - a) Determine the direction and the magnitude of the electric field at the position of the 7.00- μ C charge due to the 4.00- μ C and -2.00- μ C charges.
 - b) Calculate the potential energy of this charge system.

Figure 4.

- **Question 8**: (2.0 marks) Three long, straight, parallel wires each carry a current of I = 2.50 A. Figure 5 is an end view of the wires, with each current coming out of the page. Taking a = 2.00 cm.
 - a) Determine the magnitude and direction of the magnetic field at point A.
 - b) Find the force that the current (2) acts on a unit length of the wire carrying the current (1).

(1) \bullet I $A \bullet - a - B \bullet - a - \bullet C - - a - \bullet I$ (2) \bullet I Figure 5.

- **Question 9**: (2.0 marks) An oil film (n = 1.45) floating on water ($n_w = 1.33$) is illuminated by white light at normal incidence. The film is 280 nm thick.
- a) Find the wavelength of the light in the visible spectrum most strongly reflected.
- b) Find the wavelength of the light in the visible spectrum that produces destructive interference in the reflected light.

ELO of the subject (knowledge)	Test contents	
ELO 1.1]: Understanding various concepts, and laws related to electric and Questions: 1, 2, 3, 4, 4		
magnetic fields, and the theorem of electromagnetic field.		
[ELO 2.1]: Applying the knowledge of electric and magnetic fields to explain	Questions: 1, 2, 3, 4, 6, 7, 8	
phenomena and to solve the related problems.		
[ELO 3.1]: Understanding various concepts, and laws related to ray optics and	Question: 5.0	
wave optics	Question: 5, 9	
[ELO 3.2]: Applying the knowledge of ray and wave optics to explain	Question: 5.0	
phenomena and to solve the related problems.	Question. 5, 9	

Date: January 11th, 2021 Head of Group of Physics Subjects (Sign and write full name)

The End

SOLUTIONS, KEYS AND SCORES For Questions in Final Exam of Principles of Physics 2 Edited by: Phan Gia Anh Vu Date of Exam: July 20th 2020

Question Answer score 1 C. All of A and B. 0.5 2 B.2 0.5 3 A. If the particles are negatively charged, the beam deflects to the right. C. The heavier particles will have larger radius r is. 0.5 4 D. 45.0 N/C 0.5 5 $d \sin \theta_{wight} = m\lambda$ 0.5 $\lambda = \frac{d \sin \theta_{wight}}{m}$ 0.5 $d = \frac{1 \times 10^{-2}}{3660}$ 0.5 6 0.5 7 a) The electric field at the position of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charge is the superposition of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charge. respectively. $\vec{E}_1 = \frac{9 \times 10^6 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ $2.00 \ \mu$ C -4.00 μ C 0.5 $\vec{E}_1 = \frac{9 \times 10^6 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ $2.00 \ \mu$ C -4.00 μ C 0.5 $\vec{E}_1 = \frac{9 \times 10^6 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ $Figure 1$ \vec{E}_2 0.5 $\vec{E}_1 = \frac{9 \times 10^6 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ $Figure 1$ \vec{E}_2 0.5 $\vec{E}_1 = \frac{9 \times 10^6 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i} - 21.8 \times 10^6 \hat{j}$ $Figure 1$ \vec{E}_2 0.5 0.5	0	Date of Exam: July 20 ²⁰ 2020	C
1C. All of A and B.0.52B. 20.53A. If the particles are negatively charged, the beam deflects to the right. C. The heavier particles will have larger radius r is.0.54D. 45.0 N/C0.55 $d \sin \theta_{inght} = m\lambda$ 0.5 $\lambda = \frac{d \sin \theta_{inght}}{m}$ 0.5 $d = \frac{1 \times 10^{-2}}{3660}$ 0.560.57a) The electric field at the position of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charge is the superposition of the 	Question	Answer	Score
2 B. 2 0.5 3 A. If the particles are negatively charged, the beam deflects to the right. C. The heavier particles will have larger radius r is. 0.5 4 D. 45.0 N/C 0.5 5 $d \sin \theta_{bright} = m\lambda$ 0.5 $\lambda = \frac{d \sin \theta_{bright}}{m}$ 0.5 $d = \frac{1 \times 10^{-2}}{3660}$ 0.5 6 0.5 7 a) The electric field at the position of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00 μ C and 7.00 μ C charge is the superposition of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00 μ C and 7.00 μ C charges. respectively. $\vec{E}_1 = \frac{9 \times 10^8 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ 0.5 $\vec{E}_1 = \frac{9 \times 10^8 \times (7 \times 10^{-6})}{0.5^2} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ 2.00μ C -4.00 μ C $\vec{E}_1 = \frac{9 \times 10^8 \times (7 \times 10^{-6})}{0.5^2} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ 2.00μ C -4.00 μ C $\vec{E}_1 = \frac{9 \times 10^8 \times (7 \times 10^{-6})}{0.5^2} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ 2.00μ C -4.00 μ C $\vec{E}_1 = \frac{9 \times 10^8 \times (7 \times 10^{-6})}{0.5^2} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ 2.00μ C -4.00 μ C $\vec{E}_1 = \frac{9 \times 10^8 \times (7 \times 10^{-6})}{0.5^7} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ 2.00μ C -4.00 μ C 0.5 $\vec{E}_1 = \frac{9 \times 10^8 \times (7 \times 10^{-6})}{0.5^7} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ 2.00μ C -4.00 μ C	1	C. All of A and B.	0.5
3A. If the particles are negatively charged, the beam deflects to the right. C. The heavier particles will have larger radius r is.0.54 D. 45.0 N/C0.55 $d \sin \theta_{bright} = m\lambda$ 0.5 $\lambda = \frac{d \sin \theta_{bright}}{m}$ 0.5 $d = \frac{1 \times 10^{-2}}{3660}$ 0.560.57a) The electric field at the position of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charge is the superposition of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charges. respectively. $\vec{E}_1 = \frac{9 \times 10^9 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ 0.52.00 μ C 	2	B. 2	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	A. If the particles are negatively charged, the beam deflects to the right. C. The heavier particles will have larger radius r is.	0.5
$ \begin{array}{c c} 5 \\ d \sin \theta_{bright} = m\lambda \\ \lambda = \frac{d \sin \theta_{bright}}{m} \\ d = \frac{1 \times 10^{-2}}{3660} \end{array} \\ 0.5 $	4	D. 45.0 N/C	0.5
$ \begin{array}{c c} \lambda = \frac{1}{2} \frac{1}{10^{-2}} \frac{1}{3660} \\ 0.5 \\ \hline \\ 0.5 \\ \hline$	5	$d\sin\theta_{bright} = m\lambda$ $d\sin\theta_{bright} = m\lambda$	0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\lambda = \frac{d \sin^2 b \log h}{m}$ $d = \frac{1 \times 10^{-2}}{3660}$	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6		0.5
7 a) The electric field at the position of the -4.00- μ C charge is the superposition of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charges. respectively. $\vec{E}_1 = \frac{9 \times 10^9 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ $\vec{E}_1 = \frac{9 \times 10^9 \times (7 \times 10^{-6})}{0.5^2} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ $= 12.6 \times 10^4 (\hat{i} - \hat{j}\sqrt{3})$ Thus: $\vec{E} = \vec{E}_1 + \vec{E}_2 = 19.8 \times 10^4 \hat{i} - 21.8 \times 10^4 \hat{j}$ The magnitude of \vec{E} is: 29.4×10 ⁴ N.m ² /C ² b) The electric force exerting on the -4.00- μ C charge is: $\vec{F} = q\vec{E} = -4 \times 10^{-6} (19.8 \times 10^4 \hat{i} - 21.8 \times 10^4 \hat{j}) = (-79.2 \times 10^{-2} \hat{i} + 87.2 \times 10^{-2} \hat{j})$ N The magnitude of \vec{F} is: 1.18 N			0.5
$\vec{F} = q\vec{E} = -4 \times 10^{-6} (19.8 \times 10^4 \hat{i} - 21.8 \times 10^4 \hat{j}) = (-79.2 \times 10^{-2} \hat{i} + 87.2 \times 10^{-2} \hat{j}) N$ The magnitude of \vec{F} is: 1.18 N	7	a) The electric field at the position of the -4.00- μ C charge is the superposition of the electric fields \vec{E}_1 and \vec{E}_2 created by 2.00- μ C and 7.00- μ C charges. respectively. $\vec{E}_1 = \frac{9 \times 10^9 \times (2 \times 10^{-6})}{0.5^2} \hat{i} = 7.2 \times 10^4 \hat{i}$ $\vec{E}_1 = \frac{9 \times 10^9 \times (7 \times 10^{-6})}{0.5^2} (\hat{i} \cos 60^\circ - \hat{j} \sin 60^\circ)$ $= 12.6 \times 10^4 (\hat{i} - \hat{j}\sqrt{3})$ Thus: $\vec{E} = \vec{E}_1 + \vec{E}_2 = 19.8 \times 10^4 \hat{i} - 21.8 \times 10^4 \hat{j}$ The magnitude of \vec{E} is: 29.4×10 ⁴ N.m ² /C ² b) The electric force exerting on the -4.00- μ C charge is:	0.5 0.5 0.5 0.5
		$\vec{F} = q\vec{E} = -4 \times 10^{-6} (19.8 \times 10^4 \hat{i} - 21.8 \times 10^4 \hat{j}) = (-79.2 \times 10^{-2} \hat{i} + 87.2 \times 10^{-2} \hat{j}) \text{N}$ The magnitude of \vec{F} is: 1.18 N	0.5

8	a) The magnetic field at P is the superposition of the magnetic fields \vec{B}_1 and \vec{B}_2	
	(shown in the figure 2) created by I_1 and I_2 currents. respectively.	
	The total magnetic field at P is $\vec{B} = \vec{B}_1 + \vec{B}_2$. Because \vec{B}_1 and \vec{B}_2 have the same	
	direction. \vec{B} has the same direction with them. $\vec{R}' = 0$	
	The magnitude of the fields: \vec{R}'	
	$B_{1} = \frac{\mu_{0}I_{1}}{2\pi d/2} = \frac{2 \times 10^{-7} \times 2}{0.15} = 26.7 \times 10^{-7} \text{ T}$	0.5
	$B_2 = \frac{\mu_0 I_2}{2\pi d/2} = \frac{2 \times 10^{-7} \times 4}{0.15} = 53.3 \times 10^{-7} \text{ T}$ $I_1 \times -\frac{P}{P} = I_2$	
	$B = B_1 + B_2 = 80.0 \times 10^{-7} \text{ T}$ $\vec{B} \neq \vec{B}_2$	0.5
	b) The magnetic field at Q is the superposition of the Figure 2.	
	magnetic fields \vec{B}'_1 and \vec{B}'_2 (shown in the figure 2) created by	
	I_1 and I_2 currents. respectively.	
	$\vec{B}_{1}' = \frac{\mu_{0}I_{1}\cos 45^{\circ}}{2\pi\sqrt{2}d} \left(\hat{i} - \hat{j}\right) = \frac{2 \times 10^{-7}}{0.3} \left(\hat{i} - \hat{j}\right) = 6.67 \times 10^{-7} \left(\hat{i} - \hat{j}\right) \text{T}$	0.5
	$\vec{B}_{2}' = \frac{\mu_{0}I_{2}}{2\pi d} \left(-\hat{i}\right) = \frac{2 \times 10^{-7} \times 4}{0.3} \left(\hat{i} - \hat{j}\right) = 26.7 \times 10^{-7} \left(-\hat{i}\right) \mathrm{T}$	
	$\vec{B}' = \vec{B}'_1 + \vec{B}'_2 = (-20.0\hat{i} - 6.67\hat{j}) \times 10^{-7} \text{ T}$. The magnitude of \vec{B}'_1 is $21 \times 10^{-7} \text{ T}$	0.5
9	a. For constructive and destructive interference. we require:	0.5
	$2nt = m \times \lambda_{green}, n = 1.25$ $2nt = (m' + 0.5) \times \lambda$	0.5
	λ_{areen} m' + 0.5 520 5 2.5	
	$\frac{\partial}{\partial_{purple}} = \frac{\partial}{m} = \frac{\partial}{416} = \frac{\partial}{4} = \frac{\partial}{2} \rightarrow m = m' = 2;$	0.5
	t = $\frac{m \times \lambda_{green}}{2n}$ = $\frac{2 \times 520 nm}{2 \times 1.25}$ = 416 nm	0.5
	$2nt = m'_{1}$ $2nt = 2x + 1.25 \times 416 nm$	
	$2nt = m \lambda_{ultraviolet} \rightarrow m = \frac{1}{\lambda_{ultraviolet}} = \frac{1}{260 nm} = 4$ This ultraviolet light has constructive interference on the surface of the coated film.	0.5