Linear Momentum
and Collisions

Consider what happens when two cars collide as in the opening photograph for this

chapter. Both cars change their motion from having a very large velocity to being at rest
because of the collision. Because each car experiences a large change in velocity over a very
short time interval, the average force on it is very large. By Newton's third law, each of the
cars experiences a force of the same magnitude. By Newton's second law, the results of
those forces on the motion of the car depends on the mass of the car.

One of the main objectives of this chapter is to enable you to understand and analyze
such events in a simple way. First, we introduce the concept of momentum, which is useful
for describing objects in motion. The momentum of an object is related to both its mass
and its velocity. The concept of momentum leads us to a second conservation law, that
of conservation of momentum. In turn, we identify new momentum versions of analysis
models for isolated and nonisolated system. These models are especially useful for treating
problems that involve collisions between objects and for analyzing rocket propulsion.

This chapter also introduces the concept of the center of mass of a system of particles.
We find that the motion of a system of particles can be described by the motion of one
particle located at the center of mass that represents the entire system.

CH Linear Momentum

In Chapter 8, we studied situations that are difficult to analyze with Newton’s laws.
We were able to solve problems involving these situations by identifying a system and
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The concept of momentum allows
the analysis of car collisions even
without detailed knowledge of the
forces involved. Such analysis can
determine the relative velocity

of the cars before the collision,
and in addition aid engineers in
designing safer vehicles. (The
English translation of the German
text on the side of the trailer in
the background is: "Pit stop for
your vehicle.") (AP Photos/Keystone/
Regina Kuehne)
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Figure 9.1 Two particles inter-
act with each other. According to
Il}]ewton’s Lhird law, we must have
Fi,=—-Fy.

Definition of linear P
momentum of a particle

Chapter 9 Linear Momentum and Collisions

applying a conservation principle, conservation of energy. Let us consider another
situation and see if we can solve it with the models we have developed so far:

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg arrow
horizontally at 85 m/s. With what velocity does the archer move across the ice
after firing the arrow?

From Newton’s third law, we know that the force that the bow exerts on the arrow
is paired with a force in the opposite direction on the bow (and the archer). This
force causes the archer to slide backward on the ice with the speed requested in the
problem. We cannot determine this speed using motion models such as the particle
under constant acceleration because we don’t have any information about the accel-
eration of the archer. We cannot use force models such as the particle under a net
force because we don’t know anything about forces in this situation. Energy models
are of no help because we know nothing about the work done in pulling the bow-
string back or the elastic potential energy in the system related to the taut bowstring.

Despite our inability to solve the archer problem using models learned so far,
this problem is very simple to solve if we introduce a new quantity that describes
motion, linear momentum. To generate this new quantity, consider an isolated system
of two particles (Fig. 9.1) with masses m; and m, moving with velocities ¥, and ¥, at
an instant of time. Because the system is isolated, the only force on one particle is
that from the other particle. If a force from particle 1 (for example, a gravitational
force) acts on particle 2, there must be a second force—equal in magnitude but
opposite in direction—that particle 2 exerts on particle 1. That_i)s, the forces on the
particles form a Newton’s third law action-reaction pair, and F,, = — F,;. We can
express this condition as

— —
Fyp + Fiy =0
From a system point of view, this equation says that if we add up the forces on the
particles in an isolated system, the sum is zero.
Let us further analyze this situation by incorporating Newton’s second law. At
the instant shown in Figure 9.1, the interacting particles in the system have accel-

erations corresponding to the forces on them. Therefore, replacing the force on
each particle with ma for the particle gives

ma; + meay =0
Now we replace each acceleration with its definition from Equation 4.5:
av, dv,

+ my
dt dt

my

If the masses m; and m, are constant, we can bring them inside the derivative oper-
ation, which gives

dimv,) | d(myV,) -0
dt dt
d - -
E(mlvl + myvy) = 0 (9.1)

Notice that the derivative of the sum m,V, + myV, with respect to time is zero.
Consequently, this sum must be constant. We learn from this discussion that the
quantity mv for a particle is important in that the sum of these quantities for an
isolated system of particles is conserved. We call this quantity linear momentum:

The linear momentum of a particle or an object that can be modeled as a
particle of mass m moving with a velocity V is defined to be the product of the
mass and velocity of the particle:

P =mv (9.2)



9.1 Linear Momentum

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along Vv, it has dimensions
ML/T, and its SI unit is kg - m/s.

If a particle is moving in an arbitrary direction, p has three components, and
Equation 9.2 is equivalent to the component equations

P = mu, py = my, p. = mu,

As you can see from its definition, the concept of momentum! provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball is much greater than that of a tennis ball
moving at the same speed. Newton called the product mv quantity of motion; this
term is perhaps a more graphic description than our present-day word momentum,
which comes from the Latin word for movement.

We have seen another quantity, kinetic energy, that is a combination of mass
and speed. It would be a legitimate question to ask why we need another quan-
tity, momentum, based on mass and velocity. There are clear differences between
kinetic energy and momentum. First, kinetic energy is a scalar, whereas momen-
tum is a vector. Consider a system of two equal-mass particles heading toward each
other along a line with equal speeds. There is kinetic energy associated with this
system because members of the system are moving. Because of the vector nature
of momentum, however, the momentum of this system is zero. A second major
difference is that kinetic energy can transform to other types of energy, such as
potential energy or internal energy. There is only one type of linear momentum,
so we see no such transformations when using a momentum approach to a prob-
lem. These differences are sufficient to make models based on momentum sepa-
rate from those based on energy, providing an independent tool to use in solving
problems.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle. We start with Newton’s second
law and substitute the definition of acceleration:

N

dt
In Newton’s second law, the mass m is assumed to be constant. Therefore, we can
bring m inside the derivative operation to give us

— —
Ef _ d(mv) _ di (9.3)

dit dit
This equation shows that the time rate of change of the linear momentum of a
particle is equal to the net force acting on the particle. In Chapter 5, we identified
force as that which causes a change in the motion of an object (Section 5.2). In
Newton’s second law (Eq. 5.2), we used acceleration @ to represent the change in
motion. We see now in Equation 9.3 that we can use the derivative of momentum p

with respect to time to represent the change in motion.

This alternative form of Newton’s second law is the form in which Newton pre-
sented the law, and it is actually more general than the form introduced in Chapter
5. In addition to situations in which the velocity vector varies with time, we can use
Equation 9.3 to study phenomena in which the mass changes. For example, the
mass of a rocket changes as fuel is burned and ejected from the rocket. We cannot
use > F = ma to analyze rocket propulsion; we must use a momentum approach,
as we will show in Section 9.9.

In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter 11, we shall use
the term angular momentum for a different quantity when dealing with rotational motion.

< Newton's second law
for a particle
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250 Chapter 9 Linear Momentum and Collisions

Pitfall Prevention 9.1

Momentum of an Isolated System
Is Conserved Although the
momentum of an isolated system is
conserved, the momentum of one
particlewithin an isolated system is
not necessarily conserved because
other particles in the system may
be interacting with it. Avoid apply-
ing conservation of momentum to
a single particle.

The momentum version of the P
isolated system model

uick Quiz 9.1 Two objects have equal kinetic energies. How do the magnitudes
of their momenta compare? (a) p; < p, (b) p; = ps (c) p; > ps (d) not enough
information to tell

uick Quiz 9.2 Your physical education teacher throws a baseball to you at a cer-
tain speed and you catch it. The teacher is next going to throw you a medicine
ball whose mass is ten times the mass of the baseball. You are given the follow-
ing choices: You can have the medicine ball thrown with (a) the same speed

as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank

s these choices from easiest to hardest to catch.

Analysis Model: 1solated System (Momentum)

Using the definition of momentum, Equation 9.1 can be written

d
a(f’)l + f;z) =0

Because the time derivative of the total momentum p,,, = p; + P is zero, we con-
clude that the tota/ momentum of the isolated system of the two particles in Figure
9.1 must remain constant:

P = constant (9.4)

or, equivalently, over some time interval,

AP =0 (9.5)

Equation 9.5 can be written as
— > -
Pt P2 = Pyt Py

where B; and Py, are the initial values and p,, and Py, are the final values of the
momenta for the two particles for the time interval during which the particles
interact. This equation in component form demonstrates that the total momenta in
the x, y, and z directions are all independently conserved:

Prie T Poix = Prje T Pogi Priy T Poiy = iy T Py Prie T Poie = D1 T Do (9.6)

Equation 9.5 is the mathematical statement of a new analysis model, the isolated
system (momentum). It can be extended to any number of particles in an isolated
system as we show in Section 9.7. We studied the energy version of the isolated sys-
tem model in Chapter 8 (AL, = 0) and now we have a momentum version. In
general, Equation 9.5 can be stated in words as follows:

Whenever two or more particles in an isolated system interact, the total
momentum of the system does not change.

This statement tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the type of forces acting on
the particles of the system. Furthermore, we have not specified whether the forces
are conservative or nonconservative. We have also not indicated whether or not
the forces are constant. The only requirement is that the forces must be internal to
the system. This single requirement should give you a hint about the power of this
new model.
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UGBSV OGN  [solated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a System
system boundary. If there are no external forces on the system, the system  boundary
is isolated. In that case, the total momentum of the system, which is the

o Momentum
vector sum of the momenta of all members of the system, is conserved:

P =0 (9.5)

Examples: If no external forces act on the

system, the total momentum of

® a cue ball strikes another ball on a pool table O —
y i 5

® aspacecraft fires its rockets and moves faster through space

® molecules in a gas at a specific temperature move about and strike
each other (Chapter 21)

® an incoming particle strikes a nucleus, creating a new nucleus and a different outgoing particle (Chapter 44)

® an electron and a positron annihilate to form two outgoing photons (Chapter 46)

Example 9.1 The Archer

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg archer
stands at rest on frictionless ice and fires a 0.030-kg arrow horizontally at 85 m/s (Fig.
9.2). With what velocity does the archer move across the ice after firing the arrow?

SOLUTION

Conceptualize You may have conceptualized this problem already when it was
introduced at the beginning of Section 9.1. Imagine the arrow being fired one way
and the archer recoiling in the opposite direction.

Categorize As discussed in Section 9.1, we cannot solve this problem with models
based on motion, force, or energy. Nonetheless, we can solve this problem very eas-
ily with an approach involving momentum.
Let us take the system to consist of the archer (including the bow) and the arrow.
The system is not isolated because the gravitational force and the normal force from ) :
. . . archer fires an arrow horizontally
the ice act on the system. These forces, however, are vertical and perpendicular to . . .

) 3 ! B : to the right. Because he is standing
the motion of the system. There are no external forces in the horizontal direction, on frictionless ice, he will begin to
and we can apply the isolated system (momentum) model in terms of momentum com-  slide to the left across the ice.
ponents in this direction.

Figure 9.2 (Example 9.1) An

Analyze The total horizontal momentum of the system before the arrow is fired is zero because nothing in the sys-
tem is moving. Therefore, the total horizontal momentum of the system after the arrow is fired must also be zero. We
choose the direction of firing of the arrow as the positive x direction. Identifying the archer as particle 1 and the arrow
as particle 2, we have m; = 60 kg, my, = 0.030 kg, and 72f = 85im/s.

Using the isolated system (momentum) model, AP=0 — P,—P,=0 — P, =P, > mVy+ myvy=0
begin with Equation 9.5:

Solve this equation for ¥, , and substitute

N my (0.030 kg
= i -]
numerical values:

= —— Vo, = —
v my e 60 kg

)(85i m/s) = —0.042im/s

Finalize The negative sign for v, indicates that the archer is moving to the left in Figure 9.2 after the arrow is fired, in
the direction opposite the direction of motion of the arrow, in accordance with Newton’s third law. Because the archer
continued
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b 9.1

is much more massive than the arrow, his acceleration and consequent velocity are much smaller than the acceleration
and velocity of the arrow. Notice that this problem sounds very simple, but we could not solve it with models based on
motion, force, or energy. Our new momentum model, however, shows us that it not only sounds simple, it is simple!

WSS What if the arrow were fired in a direction
that makes an angle 6 with the horizontal? How will that
change the recoil velocity of the archer?

Answer The recoil velocity should decrease in magni-
tude because only a component of the velocity of the
arrow is in the x direction. Conservation of momentum
in the x direction gives

myvy;+ mgvy, cos 0 =0

leading to
My
vy = = E Vg €OS 0

For 6 = 0, cos 8 = 1 and the final velocity of the archer
reduces to the value when the arrow is fired horizontally.
For nonzero values of 6, the cosine function is less than 1
and the recoil velocity is less than the value calculated for
0=0.1f0 = 90° then cos 8 = 0 and vy = 0, so there is no

recoil velocity. In this case, the archer is simply pushed
[ ] downward harder against the ice as the arrow is fired.

Can We Really Ignore the Kinetic Energy of the Earth?

In Section 7.6, we claimed that we can ignore the kinetic energy of the Earth when considering the energy of a system
consisting of the Earth and a dropped ball. Verify this claim.

SOLUTION

Conceptualize Imagine dropping a ball at the surface of the Earth. From your point of view, the ball falls while the
Earth remains stationary. By Newton’s third law, however, the Earth experiences an upward force and therefore an
upward acceleration while the ball falls. In the calculation below, we will show that this motion is extremely small and
can be ignored.

Categorize We identify the system as the ball and the Earth. We assume there are no forces on the system from outer
space, so the system is isolated. Let’s use the momentum version of the isolated system model.

Analyze We begin by setting up a ratio of the kinetic energy of the Earth to that of the ball. We identify v, and v, as the
speeds of the Earth and the ball, respectively, after the ball has fallen through some distance.

I} 9 9

Ky  gmpup mp\( vg\*
@ z=—F=_—)—
b MUy, My /) \ Vp

Use the definition of kinetic energy to set up this ratio:

Apply the isolated system (momentum) model, recogniz- AP=0 — p= by > 0= myu, + myoy
ing that the initial momentum of the system is zero:
: : (29 my
Solve the equation for the ratio of speeds: —= ——
Yy Mg
: : ; ; ; K m m\?>  m
Substitute this expression for v, /v, in Equation (1): =8 == ) =
K, my, mg mp
. . KF my 1 kg —95
Substitute order-of-magnitude numbers for the masses: g w0 e 1)

Finalize The kinetic energy of the Earth is a very small fraction of the kinetic energy of the ball, so we are justified in
ignoring it in the kinetic energy of the system.

Analysis Model: Nonisolated System (Momentum)

According to Equation 9.3, the momentum of a particle changes if a net force acts
on the particle. The same can be said about a net force applied to a system as we
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will show explicitly in Section 9.7: the momentum of a system changes if a net force
from the environment acts on the system. This may sound similar to our discus-
sion of energy in Chapter 8: the energy of a system changes if energy crosses the
boundary of the system to or from the environment. In this section, we consider a
nonisolaled system. For energy considerations, a system is nonisolated if energy trans-
fers across the boundary of the system by any of the means listed in Section 8.1. For
momentum considerations, a system is nonisolated if a net force acts on the system
for a time interval. In this case, we can imagine momentum being transferred to
the system from the environment by means of the net force. Knowing the change in
momentum caused by a force is useful in solving some types of problems. To build
a better understanding of this important concept, let us assume a net force > ¥
acts on a particle and this force may vary with time. According to Newton’s second
law, in the form expressed in Equation 9.3, >F = dl_)’/dt, we can write

=>Fa (9.7)

We can integrate? this expression to find the change in the momentum of a par-
ticle when the force acts over some time interval. If the momentum of the particle
changes from P, at time ; to B, at time 4, integrating Equation 9.7 gives

AB =B,— 8. = ’ Fd 9.8
P=p, P =| 2Fd (9.8)
G

To evaluate the integral, we need to know how the net force varies with time. The
quantity on the right side of this equation is a vector called the impulse of the net
force 2 F acting on a particle over the time interval A¢ = =1

[

= f SFa (9.9)

From its definition, we see that impulse T is a vector quantity having a magni-
tude equal to the area under the force—time curve as described in Figure 9.3a. It is
assumed the force varies in time in the general manner shown in the figure and is
nonzero in the time interval At = {; — t;. The direction of the impulse vector is the
same as the direction of the change in momentum. Impulse has the dimensions of
momentum, that is, ML/T. Impulse is not a property of a particle; rather, it is a mea-
sure of the degree to which an external force changes the particle’s momentum.

Because the net force imparting an impulse to a particle can generally vary in
time, it is convenient to define a time-averaged net force:

(D F )y = if/E F d (9.10)

The time-averaged net force

The impulse imparted to the gives the same impulse to a
particle by the force is the particle as does the time-
area under the curve. varying force in (a).

F iF

CFg [

?Here we are integrating force with respect to time. Compare this strategy with our efforts in Chapter 7, where we
integrated force with respect to position to find the work done by the force.

4 Impulse of a force

Figure 9.3 (a) A net force act-
ing on a particle may vary in time.
(b) The value of the constant
force (2 F),,, (horizontal dashed
line) is chosen so that the area

(= F)ag At of the rectangle is the
same as the area under the curve
in (a).
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Impulse-momentum theorem b
for a particle

© David Woods/CORBIS

Air bags in automobiles have
saved countless lives in accidents.
The air bag increases the time
interval during which the pas-
senger is brought to rest, thereby
decreasing the force on (and
resultant injury to) the passenger.

where Az = 1, — 4. (This equation is an application of the mean value theorem of
calculus.) Therefore, we can express Equation 9.9 as

T =(3 F), Al (9.11)

This time-averaged force, shown in Figure 9.3b, can be interpreted as the constant
force that would give to the particle in the time interval Az the same impulse that
the time-varying force gives over this same interval.

In principle, if 2 F is known as a function of time, the impulse can be calcu-
lated from Equation 9.9. The calculation becomes espec1ally simple if the force
acting on the particle is constant. In this case, (X F e = = F, where 3 F is the
constant net force, and Equation 9.11 becomes

=SF A (9.12)

Combining Equations 9.8 and 9.9 gives us an important statement known as the
impulse-momentum theorem:

avg

The change in the momentum of a particle is equal to the impulse of the net
force acting on the particle:
Ap=1 (9.13)

This statement is equivalent to Newton’s second law. When we say that an impulse is
given to a particle, we mean that momentum is transferred from an external agent
to that particle. Equation 9.13 is identical in form to the conservation of energy
equation, Equation 8.1, and its full expansion, Equation 8.2. Equation 9.13 is the
most general statement of the principle of conservation of momentum and is called
the conservation of momentum equation. In the case of a momentum approach,
isolated systems tend to appear in problems more often than nonisolated systems,
so, in practice, the conservation of momentum equation is often identified as the
special case of Equation 9.5.

The left side of Equation 9.13 represents the change in the momentum of the
system, which in this case is a single particle. The right side is a measure of how
much momentum crosses the boundary of the system due to the net force being
applied to the system. Equation 9.13 is the mathematical statement of a new analy-
sis model, the nonisolated system (momentum) model. Although this equation is
similar in form to Equation 8.1, there are several differences in its application to
problems. First, Equation 9.13 is a vector equation, whereas Equation 8.1 is a scalar
equation. Therefore, directions are important for Equation 9.13. Second, there is
only one type of momentum and therefore only one way to store momentum in
a system. In contrast, as we see from Equation 8.2, there are three ways to store
energy in a system: kinetic, potential, and internal. Third, there is only one way
to transfer momentum into a system: by the application of a force on the system
over a time interval. Equation 8.2 shows six ways we have identified as transferring
energy into a system. Therefore, there is no expansion of Equation 9.13 analogous
to Equation 8.2.

In many physical situations, we shall use what is called the impulse approxima-
tion, in which we assume one of the forces exerted on a particle acts for a short
time but is much greater than any other force present. In this case, the net force
> F in Equation 9.9 is replaced with a single force F to find the impulse on the
particle. This approximation is especially useful in treating collisions in which the
duration of the collision is very short. When this approximation is made, the single
force is referred to as an impulsive force. For example, when a baseball is struck with
a bat, the time of the collision is about 0.01 s and the average force that the bat
exerts on the ball in this time is typically several thousand newtons. Because this
contact force is much greater than the magnitude of the gravitational force, the
impulse approximation justifies our ignoring the gravitational forces exerted on
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the ball and bat during the collision. When we use this approximation, it is impor-
tant to remember that p; and p, represent the momenta immediaiely before and
after the collision, respectively. Therefore, in any situation in which it is proper to
use the impulse approximation, the particle moves very little during the collision.

ick Quiz 9.3 Two objects are at rest on a frictionless surface. Object 1 has a
greater mass than object 2. (i) When a constant force is applied to object 1, it

accelerates through a distance d in a straight line. The force is removed from
object 1 and is applied to object 2. At the moment when object 2 has accelerated
through the same distance d, which statements are true? (a) p; < p, (b) p; = P
(©) p1>py (d) K} < K, (e) K| = K, (f) K| > K, (ii) When a force is applied to
object 1, it accelerates for a time interval Az. The force is removed from object 1
and is applied to object 2. From the same list of choices, which statements are

true after object 2 has accelerated for the same time interval A

ick Quiz 9.4 Rank an automobile dashboard, seat belt, and air bag, each used
alone in separate collisions from the same speed, in terms of (a) the impulse and

o (b) the average force each delivers to a front-seat passenger, from greatest to least.

GBI OLEE  Nonisolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 4
boundary. If external forces are applied on the system, the system is nonisolated. Tmpulse
In that case, the change in the total momentum of the system is equal to the
impulse on the system, a statement known as the impulse-momentum theorem: bSﬁZ?ry \/
—
Al_f — ] (9.13) Momentum
Examples:
® a baseball is struck by a bat ,
® aspool sitting on a table is pulled by a string (Example 10.14 in Chapter 10) The change in the total
® a gas molecule strikes the wall of the container holding the gas (Chapter 21) momentum of the system
® photons strike an absorbing surface and exert pressure on the surface 18 ‘jq“l"i‘l to th}’: t‘ft’j‘l
(Chapter 34) Impulse on the system.
Example 9.3 How Good Are the Bumpers?
Before

In a particular crash test, a car of mass 1 500 kg col-
lides with a wall as shown in Figure 9.4. The initial
and final velocities of the car are Vv, = —15.0§m/s
and 7/- = 2.60i m/s, respectively. If the collision lasts
0.150 s, find the impulse caused by the collision and
the average net force exerted on the car.

SOLUTION

Conceptualize The collision time is short, so we can
imagine the car being brought to rest very rapidly
and then moving back in the opposite direction with
a reduced speed.

Categorize Let us assume the net force exerted on
the car by the wall and friction from the ground is
large compared with other forces on the car (such as

Hyundai Motors/HO/Landov

3

Figure 9.4 (Example 9.3) (a) This car’s momentum changes as a
result of its collision with the wall. (b) In a crash test, much of the
car’s initial kinetic energy is transformed into energy associated
with the damage to the car.

continued
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air resistance). Furthermore, the gravitational force and the normal force exerted by the road on the car are perpen-
dicular to the motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as
one in which we can apply the impulse approximation in the horizontal direction. We also see that the car’s momentum
changes due to an impulse from the environment. Therefore, we can apply the nonisolated system (momentum) model.

Analyze
Use Equation 9.13 to find the impulse T =Ap = P, PBi=mv,— mv,=m(V,— V)
on the car: — (1500 kg)[2.60im/s — (—=15.0im/s)] = 2.64 X 101 kg - m/s
N .
I 264 X 10%ikg -m/s a
Use Equation 9.11 to evaluate the aver- > F Voo = o = 8 = 1.76 X 10°i N
T At 0.150 s

age net force exerted on the car:

Finalize The net force found above is a combination of the normal force on the car from the wall and any friction
force between the tires and the ground as the front of the car crumples. If the brakes are not operating while the crash
occurs and the crumpling metal does not interfere with the free rotation of the tires, this friction force could be rela-
tively small due to the freely rotating wheels. Notice that the signs of the velocities in this example indicate the reversal
of directions. What would the mathematics be describing if both the initial and final velocities had the same sign?

WLPSEIES  What if the car did not rebound from the wall? Suppose the final velocity of the car is zero and the time
interval of the collision remains at 0.150 s. Would that represent a larger or a smaller net force on the car?

Answer In the original situation in which the car rebounds, the net force on the car does two things during the time

interval: (1) it stops the car, and (2) it causes the car to move away from the wall at 2.60 m/s after the collision. If the car

does not rebound, the net force is only doing the first of these steps—stopping the car—which requires a smaller force.
Mathematically, in the case of the car that does not rebound, the impulse is

T =Ap= B/~ P =0 — (1500kg)(—15.0im/s) = 2.25 X 10*i kg -m/s

The average net force exerted on the car is

N
- 1 225X1041kg m/s .
F).= = 1.50 X 10°1N

(X F )y =4, = 0.150 s !

which is indeed smaller than the previously calculated value, as was argued conceptually.

Collisions in One Dimension

In this section, we use the isolated system (momentum) model to describe what
happens when two particles collide. The term collision represents an event during

= = which two particles come close to each other and interact by means of forces. The
* 2 interaction forces are assumed to be much greater than any external forces present,
" mg so we can use the impulse approximation.

A collision may involve physical contact between two macroscopic objects as
described in Figure 9.5a, but the notion of what is meant by a collision must be
generalized because “physical contact” on a submicroscopic scale is ill-defined and

7 hence meaningless. To understand this concept, consider a collision on an atomic
Y - Y T scale (Fig. 9.5b) such as the collision of a proton with an alpha particle (the nucleus
b of a helium atom). Because the particles are both positively charged, they repel
PP At each other due to the strong electrostatic force between them at close separations

el 4He and never come into “physical contact.”

When two particles of masses m; and my collide as shown in Figure 9.5, the

impulsive forces may vary in time in complicated ways, such as that shown in Figure

A . 9.3. Regardless of the complexity of the time behavior of the impulsive force, how-
Figure 9.5 (a) The collision ) .. . .

between two objects as the result of  CVED this force is internal to the system of two particles. Therefore, the two particles

direct contact. (b) The “collision” form an isolated system and the momentum of the system must be conserved in any

between two charged particles. collision.
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In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being
either elastic or inelastic depending on whether or not kinetic energy is conserved.

An elastic collision between two objects is one in which the total kinetic energy
(as well as total momentum) of the system is the same before and after the collision.
Collisions between certain objects in the macroscopic world, such as billiard balls,
are only approximately elastic because some deformation and loss of kinetic energy
take place. For example, you can hear a billiard ball collision, so you know that
some of the energy is being transferred away from the system by sound. An elastic
collision must be perfectly silent! Truly elastic collisions occur between atomic and
subatomic particles. These collisions are described by the isolated system model for
both energy and momentum. Furthermore, there must be no transformation of
kinetic energy into other types of energy within the system.

An inelastic collision is one in which the total kinetic energy of the system is not
the same before and after the collision (even though the momentum of the system
is conserved). Inelastic collisions are of two types. When the objects stick together
after they collide, as happens when a meteorite collides with the Earth, the collision
is called perfectly inelastic. When the colliding objects do not stick together but
some kinetic energy is transformed or transferred away, as in the case of a rubber
ball colliding with a hard surface, the collision is called inelastic (with no modify-
ing adverb). When the rubber ball collides with the hard surface, some of the ball’s
kinetic energy is transformed when the ball is deformed while it is in contact with
the surface. Inelastic collisions are described by the momentum version of the iso-
lated system model. The system could be isolated for energy, with kinetic energy
transformed to potential or internal energy. If the system is nonisolated, there could
be energy leaving the system by some means. In this latter case, there could also
be some transformation of energy within the system. In either of these cases, the
kinetic energy of the system changes.

In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic
and elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m, and m, moving with initial velocities ¥, and Vy,
along the same straight line as shown in Figure 9.6. The two particles collide head-
on, stick together, and then move with some common velocity T"f after the collision.
Because the momentum of an isolated system is conserved in any collision, we can
say that the total momentum before the collision equals the total momentum of the
composite system after the collision:

AP=0 — P, =B, > mVy+ mgvVy = (m + my)V, (9.14)
Solving for the final velocity gives
MV MeVe;
v, = 1Vii 2V (9.15)

my + my

Elastic Collisions

Consider two particles of masses m, and my, moving with initial velocities ¥, and Vy,
along the same straight line as shown in Figure 9.7 on page 258. The two particles
collide head-on and then leave the collision site with different velocities, ¥, ; and
72/. In an elastic collision, both the momentum and kinetic energy of the system
are conserved. Therefore, considering velocities along the horizontal direction in
Figure 9.7, we have

Di=pp = muy Tt omgy; = myvy T mgty, (9.16)

— 1 2 1 2 1 2 1 2
K=K, — gmu;~ + gmevy,” = gmv " + gmavy, (917)
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Pitfall Prevention 9.2

Inelastic Collisions Generally,
inelastic collisions are hard to
analyze without additional infor-
mation. Lack of this information
appears in the mathematical
representation as having more
unknowns than equations.

Before the collision, the
particles move separately.

o - —
Vii Voi -

my 1i

o

After the collision, the
particles move together.

' —
=
vy

my + my

Figure 9.6 Schematic repre-
sentation of a perfectly inelastic
head-on collision between two
particles.
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Before the collision, the
particles move separately.

— —
Vi Voi 3
— e

my oy

After the collision, the
particles continue to move
separately with new velocities.

v, v
1/ 2

Figure 9.7 Schematic represen-
tation of an elastic head-on colli-
sion between two particles.

Pitfall Prevention 9.3

Not a General Equation Equation
9.20 can only be used in a very spe-
cific situation, a one-dimensional,
elastic collision between two
objects. The general concept is
conservation of momentum (and
conservation of kinetic energy if
the collision is elastic) for an iso-
lated system.

Elastic collision: particle 2 p-
initially at rest

Because all velocities in Figure 9.7 are either to the left or the right, they can be
represented by the corresponding speeds along with algebraic signs indicating
direction. We shall indicate v as positive if a particle moves to the right and nega-
tive if it moves to the left.

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.16 and 9.17 can be solved simultaneously to find them. An
alternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.17—often simplifies this process. To see how, let us cancel the
factor § in Equation 9.17 and rewrite it by gathering terms with subscript 1 on the
left and 2 on the right:

my (vy2 — 7’1f2) = m2(1/2f2 — y2)

Factoring both sides of this equation gives

my(vy; — 7’1/') (), + 7’1f) = mQ(va— ;) (Vg + 0y;) (9.18)

Next, let us separate the terms containing m, and ni, in Equation 9.16 in a simi-
lar way to obtain

my(vy; = 0yy) = Mmy(vgp = Vo) (9.19)
To obtain our final result, we divide Equation 9.18 by Equation 9.19 and obtain
vy, + vy = v2f+ Uy;

Now rearrange terms once again so as to have initial quantities on the left and final
quantities on the right:
U); = Vg; = = (V)= Uy)) (9.20)

This equation, in combination with Equation 9.16, can be used to solve problems
dealing with elastic collisions. This pair of equations (Eqgs. 9.16 and 9.20) is easier
to handle than the pair of Equations 9.16 and 9.17 because there are no quadratic
terms like there are in Equation 9.17. According to Equation 9.20, the relative veloc-
ity of the two particles before the collision, v, — v,,, equals the negative of their
relative velocity after the collision, —(vlf — f).

Suppose the masses and initial velocities of both particles are known. Equations
9.16 and 9.20 can be solved for the final velocities in terms of the initial velocities
because there are two equations and two unknowns:

m; — my 2m
o () (2, o2
my + my my + my

le My — My
Vo =\ Jvut |\ v (9.22)
my + My my + my

It is important to use the appropriate signs for v;;and v,;in Equations 9.21 and 9.22.
Let us consider some special cases. If m; = my, Equations 9.21 and 9.22 show that
Uy = vy; and vy, = vy;, which means that the particles exchange velocities if they
have equal masses. That is approximately what one observes in head-on billiard ball
collisions: the cue ball stops and the struck ball moves away from the collision with
the same velocity the cue ball had.
If particle 2 is initially at rest, then v,; = 0, and Equations 9.21 and 9.22 become

m1 - mQ
=|— vy 9.23
vlf <m1 + m2>vlz ( )
2m,
UVop = | — vy, 9.24
2f <m1 4 m2> 1i ( )

If m; is much greater than m, and vy, = 0, we see from Equations 9.23 and 9.24 that
vy, = vy;and vy, = 2v),. That is, when a very heavy particle collides head-on with a
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very light one that is initially at rest, the heavy particle continues its motion unal-
tered after the collision and the light particle rebounds with a speed equal to about
twice the initial speed of the heavy particle. An example of such a collision is that
of a moving heavy atom, such as uranium, striking a light atom, such as hydrogen.

If my is much greater than m, and particle 2 is initially at rest, then v,,~ —v,;and
vy, 0. That is, when a very light particle collides head-on with a very heavy particle
that is initially at rest, the light particle has its velocity reversed and the heavy one
remains approximately at rest. For example, imagine what happens when you throw
a table tennis ball at a bowling ball as in Quick Quiz 9.6 below.

Juick Quiz 9.5 In a perfectly inelastic one-dimensional collision between two

: moving objects, what condition alone is necessary so that the {inal kinetic

- energy of the system is zero after the collision? (a) The objects must have initial
- momenta with the same magnitude but opposite directions. (b) The objects

. must have the same mass. (c) The objects must have the same initial velocity.

. (d) The objects must have the same initial speed, with velocity vectors in oppo-
site directions.

Juick Quiz 9.6 A table-tennis ball is thrown at a stationary bowling ball. The

. table-tennis ball makes a one-dimensional elastic collision and bounces back

- along the same line. Compared with the bowling ball after the collision, does

- the table-tennis ball have (a) a larger magnitude of momentum and more

- kinetic energy, (b) a smaller magnitude of momentum and more kinetic energy,
. (c) alarger magnitude of momentum and less kinetic energy, (d) a smaller

© magnitude of momentum and less kinetic energy, or (e) the same magnitude of
s momentum and the same kinetic energy?

HGUWISIBNTTTEIEIE WA One-Dimensional Collisions

You should use the following approach when solving collision problems in one

dimension:

1. Conceptualize. Imagine the collision occurring in your mind. Draw simple dia-
grams of the particles before and after the collision and include appropriate velocity
vectors. At first, you may have to guess at the directions of the final velocity vectors.

2. Categorize. Is the system of particles isolated? If so, use the isolated system
(momentum) model. Further categorize the collision as elastic, inelastic, or perfectly
inelastic.

3. Analyze. Set up the appropriate mathematical representation for the problem.
If the collision is perfectly inelastic, use Equation 9.15. If the collision is elastic, use
Equations 9.16 and 9.20. If the collision is inelastic, use Equation 9.16. To find the
final velocities in this case, you will need some additional information.

4. Finalize. Once you have determined your result, check to see if your answers are
consistent with the mental and pictorial representations and that your results are

realistic.

The Executive Stress Reliever

259

An ingenious device that illustrates conservation of momentum and kinetic energy is shown in Figure 9.8 on page 260.
It consists of five identical hard balls supported by strings of equal lengths. When ball 1 is pulled out and released,
after the almost-elastic collision between it and ball 2, ball 1 stops and ball 5 moves out as shown in Figure 9.8b. If balls
1 and 2 are pulled out and released, they stop after the collision and balls 4 and 5 swing out, and so forth. Is it ever
possible that when ball 1 is released, it stops after the collision and balls 4 and 5 will swing out on the opposite side and

travel with half the speed of ball 1 as in Figure 9.8c?

conlinued
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b 9.4

SOLUTION

Conceptualize With the help of Figure
9.8¢, imagine one ball coming in from
the left and two balls exiting the colli-
sion on the right. That is the phenom-
enon we want to test to see if it could
ever happen.

This can happen

QI§~~ @
— —
v
(b

—
v

Categorize Because of the very short
time interval between the arrival of the
ball from the left and the departure
of the ball(s) from the right, we can use
the impulse approximation to ignore

This cannot happen

© Cengage Learning/Charles D. Winters

3] ® 3000 6o &

the gravitational forces on the balls and — >
model the five balls as an isolated system v v/2

in terms of both momentum and energy. a

Beca'use the bal.ls‘ are hard, we can cat- Figure 9.8 (Example 9.4) (a) An executive stress reliever. (b) If one ball swings
egorize the collisions between them as down, we see one ball swing out at the other end. (c) Is it possible for one ball to swing
elastic for purposes of calculation. down and two balls to leave the other end with half the speed of the first ball? In (b)
............................................ and (c), the velocity vectors shown represent those of the balls immediately before and
Analyze Let’s consider the situation immediately after the collision.

shown in Figure 9.8c. The momentum
of the system before the collision is mv, where m is the mass of ball 1 and v is its speed immediately before the collision.
After the collision, we imagine that ball 1 stops and balls 4 and 5 swing out, each moving with speed v/2. The total
momentum of the system after the collision would be m(v/2) + m(v/2) = mv. Therefore, the momentum of the system
is conserved in the situation shown in Figure 9.8c!

The kinetic energy of the system immediately before the collision is K; = ymv® and that after the collision is
K, = sm(v/2)* + $m(v/2)? = ymv®. That shows that the kinetic energy of the system is not conserved, which is inconsis-
tent with our assumption that the collisions are elastic.

Finalize Our analysis shows that it is not possible for balls 4 and 5 to swing out when only ball 1 is released. The only
way to conserve both momentum and kinetic energy of the system is for one ball to move out when one ball is released,
two balls to move out when two are released, and so on.

Consider what would happen if balls 4 and 5 are glued together. Now what happens when ball 1 is pulled
out and released?

Answer In this situation, balls 4 and 5 must move together as a single object after the collision. We have argued that
both momentum and energy of the system cannot be conserved in this case. We assumed, however, ball 1 stopped after
striking ball 2. What if we do not make this assumption? Consider the conservation equations with the assumption that
ball 1 moves after the collision. For conservation of momentum,

bi=pr

muy; = moy+ 2muy

where v, 5 refers to the final speed of the ball 4-ball 5 combination. Conservation of kinetic energy gives us
K, =K,
1 1 1ic
gmuy” = gmoyf + 3(2m)vy g

Combining these equations gives

=2 = 1
Uss = 371 Uiy = T3V

Therefore, balls 4 and 5 move together as one object after the collision while ball 1 bounces back from the collision
with one third of its original speed.
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Example 9.5 Carry Collision Insurance!

An 1 800-kg car stopped at a traffic light is struck from the rear by a 900-kg car. The two cars become entangled, mov-
ing along the same path as that of the originally moving car. If the smaller car were moving at 20.0 m/s before the col-
lision, what is the velocity of the entangled cars after the collision?

SOLUTION

Conceptualize This kind of collision is easily visualized, and one can predict that after the collision both cars will be
moving in the same direction as that of the initially moving car. Because the initially moving car has only half the mass
of the stationary car, we expect the final velocity of the cars to be relatively small.

Categorize We identify the two cars as an isolated system in terms of momentwm in the horizontal direction and apply
the impulse approximation during the short time interval of the collision. The phrase “become entangled” tells us to
categorize the collision as perfectly inelastic.

Analyze The magnitude of the total momentum of the system before the collision is equal to that of the smaller car
because the larger car is initially at rest.

Use the isolated system model for momentum: P=0 — p= b = my; = (my + mg)vy

. . myv, (900 kg)(20.0 m/s)
Solve for vy and substitute numerical values: v = = - = 6.67m/s
: my + my 900 kg + 1 800 kg

Finalize Because the final velocity is positive, the direction of the final velocity of the combination is the same as the
velocity of the initially moving car as predicted. The speed of the combination is also much lower than the initial speed
of the moving car.

VAR Suppose we reverse the masses of the cars. What if a stationary 900-kg car is struck by a moving 1 800-kg
car? Is the final speed the same as before?

Answer Intuitively, we can guess that the final speed of the combination is higher than 6.67 m/s if the initially moving
car is the more massive car. Mathematically, that should be the case because the system has a larger momentum if the
initially moving car is the more massive one. Solving for the new final velocity, we find

_omy, (1800 kg)(20.0 m/s)
K my + my B 1 800 kg + 900 kg

=13.3m/s

which is two times greater than the previous final velocity.

Example 9.6 The Ballistic Pendulum

The ballistic pendulum (Fig. 9.9, page 262) is an apparatus used to measure the speed of a fast-moving projectile such
as a bullet. A projectile of mass , is fired into a large block of wood of mass ms, suspended from some light wires. The
projectile embeds in the block, and the entire system swings through a height 4. How can we determine the speed of
the projectile from a measurement of s?

SOLUTION

Conceptualize Figure 9.9a helps conceptualize the situation. Run the animation in your mind: the projectile enters
the pendulum, which swings up to some height at which it momentarily comes to rest.

Categorize The projectile and the block form an isolated system in terms of momentum if we identify configuration A as
immediately before the collision and configuration Bas immediately after the collision. Because the projectile imbeds
in the block, we can categorize the collision between them as perfectly inelastic.

Analyze To analyze the collision, we use Equation 9.15, which gives the speed of the system immediately after the col-
lision when we assume the impulse approximation. continued
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P 9.6
§
my + my g
— — T §
ViA Vp ©
m e my — h g
L3
Figure 9.9 (Example 9.6) (a) Diagram of a ballistic pendulum. Notice that ¥, , is the velocity of the projectile imme-
diately before the collision and ¥y is the velocity of the projectile-block system immediately after the perfectly inelas-
tic collision. (b) Multiflash photograph of a ballistic pendulum used in the laboratory.
. . My V14
Noting that v,, = 0, solve Equation 9.15 for vj: (1) vp=—""""
my + my

Categorize For the process during which the projectile-block combination swings upward to height /4 (ending at a
configuration we’ll call C), we focus on a different system, that of the projectile, the block, and the Earth. We categorize
this part of the problem as one involving an isolated system for energy with no nonconservative forces acting.

Analyze Write an expression for the total kinetic energy of (2) Ky= %(m] + my) g’
the system immediately after the collision:

9. 2
my Ui

Substitute the value of v, from Equation (1) into Equation (2): Ky=—F7—"
Q(m] + 7”2)

This kinetic energy of the system immediately after the collision is less than the initial kinetic energy of the projectile
as is expected in an inelastic collision.

We define the gravitational potential energy of the system for configuration B to be zero. Therefore, U, = 0, whereas
Up= (my + my)gh.

Apply the isolated system model to the system: AK+AU=0 — (K.—Kp + U.—Uy) =0
Substitute the energies: ) 2. 2
g < _omyuy, ) + [(my + mp)gh — 0] = 0
2(m; + my)

my + mg
Solve for v, ,: Uiy = <#> V2gh

my :

Finalize We had to solve this problem in two steps. Each step involved a different system and a different analysis model:
isolated system (momentum) for the first step and isolated system (energy) for the second. Because the collision was
assumed to be perfectly inelastic, some mechanical energy was transformed to internal energy during the collision.
Therefore, it would have been incorrect to apply the isolated system (energy) model to the entire process by equating
the initial kinetic energy of the incoming projectile with the final gravitational potential energy of the projectile—
block-Earth combination.

Example 9.7 A Two-Body Collision with a Spring

A block of mass m; = 1.60 kg initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal track
collides with a light spring attached to a second block of mass m, = 2.10 kg initially moving to the left with a speed of
2.50 m/s as shown in Figure 9.10a. The spring constant is 600 N/m.
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b 9.7
(A) Find the velocities of the two blocks after the collision.

SOLUTION

] Vi =400im/s  Vy=-250im/s  ¥,;=3.00im/s Vos
Conceptualize With the help of Figure 9.10a, run an L -

animation of the collision in your mind. Figure 9.10b wk " k o
shows an instant during the chlision when the spring T N -
is compressed. Eventually, block 1 and the spring will X

again separate, so the system will look like Figure 9.10a a r

again but with different velocity vectors for the two —WAWWWW~
blocks. b

Categorize Because the spring force is conservative, Figure 9.10 (Example 9.7) A moving block approaches a second
kinetic energy in the system of two blocks and the moving block that is attached to a spring.

spring is not transformed to internal energy during the

compression of the spring. Ignoring any sound made when the block hits the spring, we can categorize the collision as
being elastic and the two blocks and the spring as an isolated system for both energy and momentum.

Analyze Because momentum of ) mpvy + move; = myvy+ movy,

the system is conserved, apply

Equation 9.16:

Because the collision is elastic, (2) vy = vy = — (v~ vy)
apply Equation 9.20:

Multiply Equation (2) by m;: @) mvy; — mvy; = —myuy + myvy,
Add Equations (1) and (3): 2myvy; + (mg — my)ve; = (my + m2)v2f
2myvy; + (my — my)vy,;
Solve for v,,: Uy =
my + me
Substi ol val 2(1.60 kg)(4.00 m/s) + (2.10 kg — 1.60 kg)(—2.50 m/s) SN ET]
titut 5 : o = - - = Bk

ubstitute numerical values Voy 160 kg + 2.10 kg m/s

Solve Equation (2) for »;,and V= U9 — Uyt U, = 3.12m/s —4.00m/s + (=2.50m/s) = —3.38 m/s

substitute numerical values:

(B) Determine the velocity of block 2 during the collision, at the instant block 1 is moving to the right with a velocity
of +3.00 m/s as in Figure 9.10b.

SOLUTION

Conceptualize Focus your attention now on Figure 9.10b, which represents the final configuration of the system for
the time interval of interest.

Categorize Because the momentum and mechanical energy of the isolated system of two blocks and the spring are
conserved throughout the collision, the collision can be categorized as elastic for any final instant of time. Let us now
choose the final instant to be when block 1 is moving with a velocity of +3.00 m/s.

Analyze Apply Equation 9.16: myvy; F movy; = myvy,+ moly,
myvy; + Mgy = MUy,
Solve for v,: Vg = "y
, ] (1.60 kg)(4.00 m/s) + (2.10 kg)(—=2.50 m/s) — (1.60 kg)(3.00 m/s)
Substitute numerical values: vy = - -

2.10 kg
= —1.74m/s

conlinued
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b 9.7

Finalize The negative value for vy means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

SOLUTION

Conceptualize Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting.
The system also remains an isolated system in terms of momentum.

Analyze We choose the initial configuration of the system to be that existing immediately before block 1 strikes the
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

Write the appropriate reduction of AK+AU=0
Equation 8.2:

. o 1 1 p 1 9 1 ¢ 1y ¢
Evaluate the energies, recognizing that two [(577111/1/2 + gmgvgf) - (§m1v]f + §7n2U2i2):| + (§kxZ -0)=0
objects in the system have kinetic energy

and that the potential energy is elastic:

Solve for x2: x? = lﬂml(vﬁt - U@’) + ’”2(7’221' - Ugi)]
1 ; :
Substitute = (W ){(1.60 kg)[(4.00 m/s)? = (3.00 m/s)?] + (2.10 kg)[(250 m/s)* — (1.74 m/s)]}
m

numerical values:

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?

SIS Collisions in Two Dimensions

st (s (elllog In Section 9.2, we showed that the momentum of a system of two particles is con-

5 served when the system is isolated. For any collision of two particles, this result
0"1_;‘» _______ implies that the momentum in each of the directions x, y, and z is conserved. An
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional
surface. For such two-dimensional collisions, we obtain two component equations
for conservation of momentum:

My

After the collision MUy, T Mgy, = My i + Moy,
MUy T Moy = MyUy + Mol

vy sin 6 ./i where the three subscripts on the velocity components in these equations repre-
| sent, respectively, the identification of the object (1, 2), initial and final values (i, f),

7 vpcos @ and the velocity component (x, y).
A7\ Let us consider a specific two-dimensional problem in which particle 1 of mass m,
________ ~NJo collides with particle 2 of mass m, initially at rest as in Figure 9.11. After the collision
(Fig. 9.11b), particle 1 moves at an angle 8 with respect to the horizontal and particle 2
) \E moves at an angle ¢ with respect to the horizontal. This event is called a glancing colli-
g -y sion. Applying the law of conservation of momentum in component form and noting
that the initial y component of the momentum of the two-particle system is zero gives
) _ _ Ap,=0 — p=px — muy = muycos 0 + myvy,cos (9.25)
Figure 9.11 An elastic, glancing
collision between two particles. Ap), =0 - by =ty — 0= mlvlj»sin 0— 7n2v2/-sin o} (9.26)
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where the minus sign in Equation 9.26 is included because after the collision par-
ticle 2 has a y component of velocity that is downward. (The symbols v in these
particular equations are speeds, not velocity components. The direction of the
component vector is indicated explicitly with plus or minus signs.) We now have
two independent equations. As long as no more than two of the seven quantities in
Equations 9.25 and 9.26 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.17 (conservation of kinetic
energy) with v,; = 0:

— 1 2 _ 1 2 1 2
K=K, — gmu = gmuS + amavy, (9.27)

Knowing the initial speed of particle 1 and both masses, we are left with four
unknowns (vlf, gy, 0, and ¢). Because we have only three equations, one of the four
remaining quantities must be given to determine the motion after the elastic colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.27

does not apply. Pitfall Prevention 9.4

Don't Use Equation 9.20 Equa-
tion 9.20, relating the initial and

- . . .. final relative velocities of two
FOLIRUENIVTILINIELL WA  Two-Dimensional Collisions colliding objects, is only valid

for one-dimensional elastic col-
lisions. Do not use this equation
lisions between two particles in two dimensions. when analyzing two-dimensional

The following procedure is recommended when dealing with problems involving col-

1. Conceptualize. Imagine the collisions occurring and predict the approximate ol

directions in which the particles will move after the collision. Set up a coordinate
system and define your velocities in terms of that system. It is convenient to have the
x axis coincide with one of the initial velocities. Sketch the coordinate system, draw
and label all velocity vectors, and include all the given information.

2. Categorize. Is the system of particles truly isolated? If so, categorize the collision
as elastic, inelastic, or perfectly inelastic.

3. Analyze. Write expressions for the x and y components of the momentum of each
object before and after the collision. Remember to include the appropriate signs for
the components of the velocity vectors and pay careful attention to signs throughout
the calculation.

Apply the isolated system model for momentum Ap = 0. When applied in each
direction, this equation will generally reduce to p;, = p, and p, = p,, where each
of these terms refer to the sum of the momenta of all objects in the system. Write
expressions for the folal momentum in the x direction before and afier the collision and
equate the two. Repeat this procedure for the total momentum in the y direction.

Proceed to solve the momentum equations for the unknown quantities. If the
collision is inelastic, kinetic energy is not conserved and additional information is
probably required. If the collision is perfectly inelastic, the final velocities of the two
objects are equal.

If the collision is elastic, kinetic energy is conserved and you can equate the total
kinetic energy of the system before the collision to the total kinetic energy after the
collision, providing an additional relationship between the velocity magnitudes.

4. Finalize. Once you have determined your result, check to see if your answers are
consistent with the mental and pictorial representations and that your results are
realistic.

Example 9.8 Collision at an Intersection

A1 500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2 500-kg truck traveling north
at a speed of 20.0 m/s as shown in Figure 9.12 on page 266. Find the direction and magnitude of the velocity of the
wreckage after the collision, assuming the vehicles stick together after the collision.

continued
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b 9.8

SOLUTION

Conceptualize Figure 9.12 should help you conceptualize the situation before

and after the collision. Let us choose east to be along the positive x direction and y S
s . . i v

north to be along the positive y direction. s

Categorize Because we consider moments immediately before and immediately 95.08 m /s

after the collision as defining our time interval, we ignore the small effect that —

friction would have on the wheels of the vehicles and model the two vehicles as an @ 0
isolated system in terms of momentum. We also ignore the vehicles’ sizes and model

them as particles. The collision is perfectly inelastic because the car and the truck T‘ZQOj m/s

X

stick together after the collision.

Analyze Before the collision, the only object having momentum in the x direction

is the car. Therefore, the magnitude of the total initial momentum of the system

(car plus truck) in the x direction is that of only the car. Similarly, the total initial Figure 9.12 (Example 9.8) An
momentum of the system in the y direction is that of the truck. After the collision, let  eastbound car colliding with a north-
us assume the wreckage moves at an angle 6 with respect to the xaxis with speed v,. bound truck.

Apply the isolated system model for momen- Ap,=0 — Dp.=> Py — (1) moy; = (my + my)v, cos 6
tum in the x direction:

Apply the isolated system model for momen- Ap,=0 — E by = E by = (2) mgvy; = (my + my)v,sin O
tum in the y direction:

MmyVy; sin 6

- . . ) Moo _ SN _ 6
Divide Equation (2) by Equation (1): mo cos B tan
Mo Ty; 2500 kg)(20.0 m/s)
Solve for # and substitute numerical values: 0= tan‘(ﬁ) = _1{( 8)( = 53.1°
My (1500 kg)(25.0m/s)
. . MoUy; (2 500 kg)(?o.o m/S)
Use Equation (2) to find the value of v and = 15.6 m/s

U Gn 0 - °
substitute numerical values: (my + my)sin 6 (1500 kg + 2500 kg) sin 53.1

Finalize Notice that the angle 0 is qualitatively in agreement with Figure 9.12. Also notice that the final speed of the
combination is less than the initial speeds of the two cars. This result is consistent with the kinetic energy of the system
being reduced in an inelastic collision. It might help if you draw the momentum vectors of each vehicle before the col-
lision and the two vehicles together after the collision.

Example 9.9 Proton—Proton Collision Al

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of
3.50 X 10° m/s and makes a glancing collision with the second proton as in Figure 9.11. (At close separations, the pro-
tons exert a repulsive electrostatic force on each other.) After the collision, one proton moves off at an angle of 37.0° to
the original direction of motion and the second deflects at an angle of ¢ to the same axis. Find the final speeds of the
two protons and the angle ¢.

SOLUTION

Conceptualize This collision is like that shown in Figure 9.11, which will help you conceptualize the behavior of the
system. We define the xaxis to be along the direction of the velocity vector of the initially moving proton.

Categorize The pair of protons form an isolated system. Both momentum and kinetic energy of the system are con-
served in this glancing elastic collision.
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Analyze Using the isolated system model for both
momentum and energy for a two-dimensional
elastic collision, set up the mathematical represen-
tation with Equations 9.25 through 9.27:

Rearrange Equations (1) and (2):

Square these two equations and add them:

Incorporate that the sum of the squares of sine
and cosine for any angle is equal to 1:

Substitute Equation (4) into Equation (3):

= v, cos 0 + vy, cos ¢
(2) 0 = vy sin @ — vy sin
3 v? = 1/1/2 + 1/2/2

gy COS ¢ =

Uy Sin ¢ = v, sin 0

vy; — Uy, o8 0

2 o2 232 b =
Uy~ COS &+ g/ Sin ¢ =

07 = 201,03, cos 0 + vy cos® 0 + vy sin® 0

@) vy = v — 2u0y,c08 0 + vy f

o+ (07— 200, cos 0 + v, 7)) = 0,2

() v} — v c0s0 =0

One possible solution of Equation (5) is v;,= 0, which corresponds to a head-on, one-dimensional collision in which the
first proton stops and the second continues with the same speed in the same direction. That is not the solution we want.

Divide both sides of Equation (5) by v;, and solve 01, = vy;c08 0 = (3.50 X 10°m/s) cos 37.0° = 2.80 X 10° m/s

for the remaining factor of vy :

Use Equation (3) to find Vgt Vop = \/vh-2 - vlf = \/(3.50 X 10°m/s)? — (2.80 X 10° m/s)?

2.11 X 10° m/s

} _]<v1fsin 9> ~ . _| (2.80 X 10° m/s) sin 87.0°
R o (2.11 X 10° m/s)

Use Equation (2) to find ¢:

2 ¢

Finalize Itis interesting that 6 + ¢ = 90° This result is not accidental. Whenever two objects of equal mass collide elas-
tically in a glancing collision and one of them is initially at rest, their final velocities are perpendicular to each other.

m The Center of Mass

In this section, we describe the overall motion of a system in terms of a special
point called the center of mass of the system. The system can be either a small
number of particles or an extended, continuous object, such as a gymnast leaping
through the air. We shall see that the translational motion of the center of mass
of the system is the same as if all the mass of the system were concentrated at that
point. That is, the system moves as if the net external force were applied to a single
particle located at the center of mass. This model, the particle model, was introduced
in Chapter 2. This behavior is independent of other motion, such as rotation or
vibration of the system or deformation of the system (for instance, when a gymnast
folds her body).

Consider a system consisting of a pair of particles that have different masses
and are connected by a light, rigid rod (Fig. 9.13 on page 268). The position of
the center of mass of a system can be described as being the average position of the
system’s mass. The center of mass of the system is located somewhere on the line
joining the two particles and is closer to the particle having the larger mass. If a
single force is applied at a point on the rod above the center of mass, the system
rotates clockwise (see Fig. 9.13a). If the force is applied at a point on the rod below
the center of mass, the system rotates counterclockwise (see Fig. 9.13b). If the force
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The system rotates clockwise
when a force is applied
above the center of mass.

CM

The system rotates counter-
clockwise when a force is applied
below the center of mass.

NN

The system moves in the
direction of the force without
rotating when a force is applied
at the center of mass.

CM

Figure 9.13 A force is applied
to a system of two particles of
unequal mass connected by a
light, rigid rod.

X9 |

Figure 9.14 The center of mass
of two particles of unequal mass
on the xaxis is located at xgy, a
point between the particles, closer
to the one having the larger mass.

is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with
this procedure.

The center of mass of the pair of particles described in Figure 9.14 is located on
the x axis and lies somewhere between the particles. Its x coordinate is given by

myx; + MoXy

X (9.28)
my + My
For example, if x; = 0, x, = d, and my = 2m,, we find that xcy = 5d. That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.
We can extend this concept to a system of many particles with masses m, in three

dimensions. The x coordinate of the center of mass of » particles is defined to be
i _

m; + my + mg + -+ m, _E M
mA
- 1

mixy + moxg + mgxg + -0+ mx,

Xom =

1
= 72 mX;
M=
(9.29)

where x;is the x coordinate of the ith particle and the total mass is M = X, m, where
the sum runs over all n particles. The y and z coordinates of the center of mass are
similarly defined by the equations

1 1
Yem = ME m;y; and  zgy = ]T/[E m;z; (9.30)

The center of mass can be located in three dimensions by its position vector T .
The components of this vector are xy, You> and zey, defined in Equations 9.29 and
9.30. Therefore,

A A N 1 A 1 » 1 ~
?(?M = xcmi + Yemj T zenk = MZ mx;i + MEZ my;j + ]T/Izl m;z;k

1
Tony = — T, 9.31
T'cm MZ m;r; ( )

where T, is the position vector of the ith particle, defined by
T, = x,; + y,;j + z,;lA<

Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a
system containing a large number of small mass elements such as the cube in Figure
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements
of mass Am; with coordinates x;, y,, z;, we see that the x coordinate of the center of
mass is approximately

Xem =~ ﬁ ExiAmi

with similar expressions for ycy and zgy. If we let the number of elements n
approach infinity, the size of each element approaches zero and x,, is given pre-
cisely. In this limit, we replace the sum by an integral and Am; by the differential
element dm:

Am;—0

1 1
Xcm — Iim — Exl‘ Ami = MJ x dm (9.32)

Likewise, for ycy and zgy; we obtain

1 1
You = MJ ydm and zoy = MJ z dm (9.33)
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We can express the vector position of the center of mass of an extended object in

An extended object can be
the form

considered to be a distribution

N 1 J’% of small elements of mass Am;.
oy = — | ¥ dm (9.34)
o Ty X
which is equivalent to the three expressions given by Equations 9.32 and 9.33. Am;
The center of mass of any symmetric object of uniform density lies on an axis of f % cMm
symmetry and on any plane of symmetry. For example, the center of mass of a uni-
form rod lies in the rod, midway between its ends. The center of mass of a sphere or o
e

a cube lies at its geometric center.

Because an extended object is a continuous distribution of mass, each small mass
element is acted upon by the gravitational force. The net effect of all these forces is
equivalent to the effect of a single force M g acting through a special point, called Figure 9.15 The center of mass
the center of gravity. If g is constant over the mass distribution, the center of grav-  is located at the vector position
ity coincides with the center of mass. If an extended object is pivoted at its center of ~ Few Which has coordinates xgy,
gravity, it balances in any orientation. Yo and zou.

The center of gravity of an irregularly shaped object such as a wrench can be
determined by suspending the object first from one point and then from another.

In Figure 9.16, a wrench is hung from point A and a vertical line AB (which can be The wrench is hung
established with a plumb bob) is drawn when the wrench has stopped swinging. freely first from point A
The wrench is then hung from point C, and a second vertical line CD is drawn. The and then from point C.

center of gravity is halfway through the thickness of the wrench, under the intersec-
tion of these two lines. In general, if the wrench is hung freely from any point, the
vertical line through this point must pass through the center of gravity.

(Duick Quiz 9.7 A baseball bat of uniform density is cut at the location of its cen-
. ter of mass as shown in Figure 9.17. Which piece has the smaller mass? (a) the
piece on the right (b) the piece on the left (c) both pieces have the same mass
. (d) impossible to determine

Figure 9.17 (Quick ) i
Quiz9.7) A baseball bat The intersection of
cut at the location of its the two lines AB

and CD locates the
center of gravity.

center of mass.

Figure 9.16 An experimental
technique for determining the
center of gravity of a wrench.

Example 9.10 The Center of Mass of Three Particles

A system consists of three particles located as shown in Figure 9.18. Find the cen- y (m)
ter of mass of the system. The masses of the particles are m; = my, = 1.0 kg and 3
mg = 2.0 kg.
SOLUTION 2\_’,’?}
Conceptualize Figure 9.18 shows the three Figure 9.18 (Example 9.10) Two .
masses. Your intuition should tell you that the particles are located on the xaxis, A
. . and a single particle is located on ToM
center of mass is located somewhere in the " ) S ¢
. . . e y axis as shown. The vector indi- y
region between the blue particle and the pair cates the location of the system’s i my My - x (m)
- el
of tan particles as shown in the figure. center of mass. 1 9

Categorize We categorize this example as a
substitution problem because we will be using the equations for the center of mass developed in this section.
continued
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b 9.10
1 myx; + MoXo + mgx.
Use the defining equations for Xem = Mz m;x; = = n 2 2+ S
the coordinates of the center of i M T g T s
mass and notice that z5y = 0: (1.0kg)(1.0m) + (1.0kg)(2.0m) + (2.0kg)(0) 3.0kg-m 075
N 1.0kg + 1.0 kg + 2.0 kg T 40kg 0™
o izm Yy T omeye + mgys
Jom M= Ji my; + my + my
~ (1.0Kkg)(0) + (1.0kg)(0) + (2.0kg)(20m) 4.0kg-m Lo
N 4.0 kg T 40kg ™
Write the position vector of the Fon = xemi + you) = (0.751 + 1.0j) m
center of mass:
B
Example 9.11 The Center of Mass of a Rod
(A) Show that the center of mass of a rod of mass M and length L lies midway y
between its ends, assuming the rod has a uniform mass per unit length. dm = A dx
L
J
Conceptualize Therodisshown aligned along the xaxisin Figure 9.19,50 yqy = X P
zem = 0. What is your prediction of the value of xy,? dx
Categorize We categorize this example as an analysis problem because we need Figure 9.19 (Example 9.11) The
to divide the rod into small mass elements to perform the integration in Equa- geometry used to find the center
tion 9.39. of mass of a uniform rod.

Analyze The mass per unitlength (this quantity is called the linear mass density) can be written as A = M/ L for the uni-
form rod. If the rod is divided into elements of length dx, the mass of each elementis dm = A dx.

1 1 P DY
Use Equation 9.32 to find an expression for xq: ; ——*J d ——*J Adyx=— —| = —
se Equation 9 i Xpressi I Xoum XeMm Y xdm M, XA dx , ",
Substitute A = M/L = 72 — =58
: . ]
ubstitu XoM 5

One can also use symmetry arguments to obtain the same result.

(B) Suppose a rod is nonuniform such that its mass per unit length varies linearly with x according to the expression
A = ax, where « is a constant. Find the x coordinate of the center of mass as a fraction of L.

SOLUTION

Conceptualize Because the mass per unit length is not constant in this case but is proportional to x, elements of the
rod to the right are more massive than elements near the left end of the rod.

Categorize This problem is categorized similarly to part (A), with the added twist that the linear mass density is not
constant.

Analyze In this case, we replace dm in Equation 9.32 by A dx, where A = ax.

1 1(f 1 (f
Use Equation 9.32 to find an expression for xqy: Xom = o J xdm = ’ JO XA dx = I, L xax dx
a JL ) al’
= — X dx = ——
M Jy 3M
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D 9.11
L L CXLQ
Find the total mass of the rod: M= J dm =f A dx =J ax dx = 7
0 0
Substitute M into th ion f al’ 25,
ubstitute M into the expression for xqy: XM = ——— = |5
p cM oM 3al’/2 3

Finalize Notice that the center of mass in part (B) is farther to the right than that in part (A). That result is reasonable
because the elements of the rod become more massive as one moves to the right along the rod in part (B).

Example 9.12 The Center of Mass of a Right Triangle

You have been asked to hang a metal sign from a single vertical string. The sign has
the triangular shape shown in Figure 9.20a. The bottom of the sign is to be parallel
to the ground. At what distance from the left end of the sign should you attach the
support string?

SOLUTION Joe’s

Cheese Shop
Conceptualize Figure 9.20a shows the sign hanging from the string. The string must
be attached at a point directly above the center of gravity of the sign, which is the 8
same as its center of mass because it is in a uniform gravitational field. y
Categorize Asin the case of Example 9.11, we categorize this example as an analysis X
problem because it is necessary to identify infinitesimal mass elements of the sign to ¢

perform the integration in Equation 9.32. y

Analyze We assume the triangular sign has a uniform density and total mass M. 0] x
Because the sign is a continuous distribution of mass, we must use the integral a
expression in Equation 9.32 to find the x coordinate of the center of mass.

We divide the triangle into narrow strips of width dx and height y as shown in
Figure 9.20b, where y is the height of the hypotenuse of the triangle above the x axis Figure 9.20 (Example 9.12)
for a given value of x. The mass of each strip is the product of the volume of the strip (a) A triangular sign to be hung
and the density p of the material from which the sign is made: dm = pyt dx, where ¢ from a single string. (b) Geomet-
is the thickness of the metal sign. The density of the material is the total mass of the chniglitfr;c;gn forlocating the
sign divided by its total volume (area of the triangle times thickness).

Eval d d d ( M ) d 2My d
valuate dm: m= pyldx=|—|ytdx=—"dx
py Labt y b
. : . 1 Lo[" 2My 2 (“
Use Equation 9.32 to find the x coordinate of the center 1) xem=— | xdm=— X dx = — xy dx
of mass: M M Sy ab bty

To proceed further and evaluate the integral, we must express y in terms of x. The line representing the hypotenuse
of the triangle in Figure 9.20b has a slope of /e and passes through the origin, so the equation of this line is y =

(b/a)x.

Substitute for y in Equation (1): 2 (“ (b 2 (¢ 2 [«
xem = — | x| —x)de=5| Pde= 5|
ab a a® 3

Therefore, the string must be attached to the sign at a distance two-thirds of the length of the bottom edge from the
left end.

conlinued
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b 9.12

Finalize This answer is identical to that in part (B) of Example 9.11. For the triangular sign, the linear increase in
height y with position x means that elements in the sign increase in mass linearly along the x axis, just like the linear
increase in mass density in Example 9.11. We could also find the y coordinate of the center of mass of the sign, but that
is not needed to determine where the string should be attached. You might try cutting a right triangle out of cardboard
and hanging it from a string so that the long base is horizontal. Does the string need to be attached at a?

Velocity of the center of P
mass of a system of particles

Total momentum of a b
system of particles

Acceleration of the center of b
mass of a system of particles

Newton's second law for P
a system of particles

Systems of Many Particles

Consider a system of two or more particles for which we have identified the center of
mass. We can begin to understand the physical significance and utility of the center
of mass concept by taking the time derivative of the position vector for the center of
mass given by Equation 9.31. From Section 4.1, we know that the time derivative of
a position vector is by definition the velocity vector. Assuming M remains constant
for a system of particles—that is, no particles enter or leave the system—we obtain
the following expression for the velocity of the center of mass of the system:

Aoy 1 ar
e MZ "

?

s
Vem —

;1
= MZ myv, (9.35)
where ¥, is the velocity of the ith particle. Rearranging Equation 9.35 gives
MVey = 2”%’71' = EF[ = Pt (9.36)

Therefore, the total linear momentum of the system equals the total mass multi-
plied by the velocity of the center of mass. In other words, the total linear momen-
tum of the system is equal to that of a single particle of mass M moving with a
velocity V.

Differentiating Equation 9.35 with respect to time, we obtain the acceleration of
the center of mass of the system:

- —
av CM 1 d \ &

1
— -
M= — ==, —L = =S n3, 9.37
S L TO L (0.37)
Rearranging this expression and using Newton’s second law gives

M@y = Emzﬁ)i = E fi (9.38)

where i‘),- is the net force on particle .

The forces on any particle in the system may include both external forces (from
outside the system) and internal forces (from within the system). By Newton’s third
law, however, the internal force exerted by particle 1 on particle 2, for example, is
equal in magnitude and opposite in direction to the internal force exerted by par-
ticle 2 on particle 1. Therefore, when we sum over all internal force vectors in Equa-
tion 9.38, they cancel in pairs and we find that the net force on the system is caused
only by external forces. We can then write Equation 9.38 in the form

S F. = M3y (9.39)

That is, the net external force on a system of particles equals the total mass of the
system multiplied by the acceleration of the center of mass. Comparing Equation
9.39 with Newton’s second law for a single particle, we see that the particle model
we have used in several chapters can be described in terms of the center of mass:

The center of mass of a system of particles having combined mass M moves
like an equivalent particle of mass M would move under the influence of the
net external force on the system.
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Let us integrate Equation 9.39 over a finite time interval:

-

dv
JEFextdt: J MHCIW dt = J Mﬂ

Notice that this equation can be written as

dt =M f d7CM =M A?’)CM

-
P = 1 (9.40)

where T is the impulse imparted to the system by external forces and P, is the
momentum of the system. Equation 9.40 is the generalization of the impulse—
momentum theorem for a particle (Eq. 9.13) to a system of many particles. It is also
the mathematical representation of the nonisolated system (momentum) model for
a system of many particles.

Finally, if the net external force on a system is zero so that the system is isolated,
it follows from Equation 9.39 that

N dvcm
Magy =M . 0

Therefore, the isolated system model for momentum for a system of many particles
is described by

P =0 (9.41)

which can be rewritten as
MVey = ffmt = constant (when E Fext =0) (9.42)

That is, the total linear momentum of a system of particles is conserved if no net
external force is acting on the system. It follows that for an isolated system of par-
ticles, both the total momentum and the velocity of the center of mass are con-
stant in time. This statement is a generalization of the isolated system (momentum)
model for a many-particle system.

Suppose the center of mass of an isolated system consisting of two or more mem-
bers is at rest. The center of mass of the system remains at rest if there is no net
force on the system. For example, consider a system of a swimmer standing on a
raft, with the system initially at rest. When the swimmer dives horizontally off the
raft, the raft moves in the direction opposite that of the swimmer and the center of
mass of the system remains at rest (if we neglect friction between raft and water).
Furthermore, the linear momentum of the diver is equal in magnitude to that of
the raft, but opposite in direction.

(Duick Quiz 9.8 A cruise ship is moving at constant speed through the water. The

. vacationers on the ship are eager to arrive at their next destination. They decide

© to try to speed up the cruise ship by gathering at the bow (the front) and running
together toward the stern (the back) of the ship. (i) While they are running toward
the stern, is the speed of the ship (a) higher than it was before, (b) unchanged,
(c) lower than it was before, or (d) impossible to determine? (ii) The vacationers
stop running when they reach the stern of the ship. After they have all stopped
running, is the speed of the ship (a) higher than it was before they started run-
ning, (b) unchanged from what it was before they started running, (c) lower than

o itwas before they started running, or (d) impossible to determine?

Conceptual Example 9.13 Exploding Projectile

<« Impulse-momentum theorem
for a system of particles

A projectile fired into the air suddenly explodes into several fragments (Fig. 9.21 on page 274).

(A) What can be said about the motion of the center of mass of the system made up of all the fragments after the

explosion?

conlinued
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» 9.13

SOLUTION 7 TN
7/ AN

Neglecting air resistance, the only external force on the projectile is the gravi- / N
tational force. Therefore, if the projectile did not explode, it would continue / :
to move along the parabolic path indicated by the dashed line in Figure 9.21. / \
Because the forces caused by the explosion are internal, they do not affect the / \
motion of the center of mass of the system (the fragments). Therefore, after the /

explosion, the center of mass of the fragments follows the same parabolic path A \
the projectile would have followed if no explosion had occurred. <

R .

(B) If the projectile did not explode, it would land at a distance R from its launch Figure 9.21 (Conceptual Example

point. Suppose the projectile explodes and splits into two pieces of equal mass. 9.13) When a projectile explodes
One piece lands at a distance 2R to the right of the launch point. Where does the into several fragments, the center
other piece land? of mass of the system made up of all
the fragments follows the same para-
bolic path the projectile would have
taken had there been no explosion.

As discussed in part (A), the center of mass of the two-piece system lands at a dis-

tance Rfrom the launch point. One of the pieces lands at a farther distance Rfrom the landing point (or a distance 2R
from the launch point), to the right in Figure 9.21. Because the two pieces have the same mass, the other piece must
land a distance R to the left of the landing point in Figure 9.21, which places this piece right back at the launch point!

Example 9.14 The Exploding Rocket

A rocket is fired vertically upward. At the instant it reaches an altitude of 1 000 m and a speed of v, = 300 m/s, it
explodes into three fragments having equal mass. One fragment moves upward with a speed of v; = 450 m/s following
the explosion. The second fragment has a speed of v, = 240 m/s and is moving east right after the explosion. What is
the velocity of the third fragment immediately after the explosion?

SOLUTION

Conceptualize Picture the explosion in your mind, with one piece going upward and a second piece moving horizon-
tally toward the east. Do you have an intuitive feeling about the direction in which the third piece moves?

Categorize This example is a two-dimensional problem because we have two fragments moving in perpendicular
directions after the explosion as well as a third fragment moving in an unknown direction in the plane defined by the
velocity vectors of the other two fragments. We assume the time interval of the explosion is very short, so we use the
impulse approximation in which we ignore the gravitational force and air resistance. Because the forces of the explo-
sion are internal to the system (the rocket), the rocket is an isolated system in terms of momentum. Therefore, the total
momentum P; of the rocket immediately before the explosion must equal the total momentum fff of the fragments
immediately after the explosion.

Analyze Because the three fragments have equal mass, the mass of each fragment is M/3, where M is the total mass of
the rocket. We will let V4 represent the unknown velocity of the third fragment.

Use the isolated system (momentum) model to equate ~ Ap =0 — P,=p, — MV
the initial and final momenta of the system and

express the momenta in terms of masses and velocities:
- — -
Solve for ¥5: Vy =3V, — ¥V, — ¥y

Substitute the numerical values: Vs =3(300jm/s) — (450j m/s) — (240im/s) = (—240i + 450j) m/s

Finalize Notice that this event is the reverse of a perfectly inelastic collision. There is one object before the collision
and three objects afterward. Imagine running a movie of the event backward: the three objects would come together
and become a single object. In a perfectly inelastic collision, the kinetic energy of the system decreases. If you were
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to calculate the kinetic energy before and after the event in this example, you would find that the kinetic energy of
the system increases. (Try it!) This increase in kinetic energy comes from the potential energy stored in whatever fuel
exploded to cause the breakup of the rocket.

m Deformable Systems

So far in our discussion of mechanics, we have analyzed the motion of particles or
nondeformable systems that can be modeled as particles. The discussion in Section
9.7 can be applied to an analysis of the motion of deformable systems. For example,
suppose you stand on a skateboard and push off a wall, setting yourself in motion
away from the wall. Your body has deformed during this event: your arms were bent
before the event, and they straightened out while you pushed off the wall. How
would we describe this event?

The force from the wall on your hands moves through no displacement; the
force is always located at the interface between the wall and your hands. Therefore,
the force does no work on the system, which is you and your skateboard. Pushing
off the wall, however, does indeed result in a change in the kinetic energy of the
system. If you try to use the work-kinetic energy theorem, W= AK, to describe this
event, you will notice that the left side of the equation is zero but the right side is
not zero. The work-kinetic energy theorem is not valid for this event and is often
not valid for systems that are deformable.

To analyze the motion of deformable systems, we appeal to Equation 8.2, the
conservation of energy equation, and Equation 9.40, the impulse—-momentum the-
orem. For the example of you pushing off the wall on your skateboard, identifying
the system as you and the skateboard, Equation 8.2 gives

AE =>T — AK+AU=0

system

where AK is the change in kinetic energy, which is related to the increased speed
of the system, and AU is the decrease in potential energy stored in the body from
previous meals. This equation tells us that the system transformed potential energy
into kinetic energy by virtue of the muscular exertion necessary to push off the
wall. Notice that the system is isolated in terms of energy but nonisolated in terms
of momentum.

Applying Equation 9.40 to the system in this situation gives us

Af;t()t = Y —> m ATI) = J f)w.dn dt

where fwall is the force exerted by the wall on your hands, m is the mass of you and
the skateboard, and AV is the change in the velocity of the system during the event.
To evaluate the right side of this equation, we would need to know how the force
from the wall varies in time. In general, this process might be complicated. In the
case of constant forces, or well-behaved forces, however, the integral on the right
side of the equation can be evaluated.

Example 9.15 Pushing on a Spring?

As shown in Figure 9.22a (page 276), two blocks are at rest on a frictionless, level table. Both blocks have the same
mass m, and they are connected by a spring of negligible mass. The separation distance of the blocks when the spring
is relaxed is L. During a time interval A¢, a constant force of magnitude Fis applied horizontally to the left block,

*Example 9.15 was inspired in part by C. E. Mungan, “A primer on work—energy relationships for introductory physics,” The Physics Teacher 43:10, 2005.

continued
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P 9.15
\ |
moving it through a distance x; as shown in Figure 9.22b. During this time inter- ‘ L ‘
val, the right block moves through a distance x,. At the end of this time interval,

the force Fis removed. m :NWWX}WWF "

(A) Find the resulting speed V¢, of the center of mass of the system. . 4 %

Conceptualize Imagine what happens as you push on the left block. It begins to

move to the right in Figure 9.22, and the spring begins to compress. As a result, the

spring pushes to the right on the right block, which begins to move to the right. At Figure 9.22 (Example 9.15)
any given time, the blocks are generally moving with different velocities. As the cen-  (a) Two blocks of equal mass are
ter of mass of the system moves to the right with a constant speed after the force is ~ connected byaspring. (b) The left

. . block is pushed with a constant
removed, the two blocks oscillate back and forth with respect to the center of mass. P .
force of magnitude Fand moves a

Categorize We apply three analysis models in this problem: the deformable sys- ~ distance x during some time inter-
val. During this same time interval,

tem of two blocks and a spring is modeled as a nonisolated system in terms of energy . )

. ‘ ) . . ) the right block moves through a
because work is being done on it by the applied force. It is also modeled as a noniso- distance x,.
lated system in terms of momenium because of the force acting on the system during
a time interval. Because the applied force on the system is constant, the acceleration of its center of mass is constant
and the center of mass is modeled as a particle under constant acceleration.

Analyze Using the nonisolated system (momentum) model, we apply the impulse—-momentum theorem to the system
of two blocks, recognizing that the force F'is constant during the time interval Az while the force is applied.

Write Equation 9.40 for the system: Ap,=1, = (2m)(vey —0) = FAL
1) 2muey = FAL
. . . %( X+ x?)
During the time interval A, the center of mass of the sys- A= T
CM,avg

tem moves a distance 3(x; + x,). Use this fact to express
the time interval in terms of vgy !

%(xl + x9) B (%, + x)

Because the center of mass is modeled as a particle A= 10 + ) =
under constant acceleration, the average velocity of the 2 Yeum oM
center of mass is the average of the initial velocity, which
is zero, and the final velocity vy
. . - . (% + xy)
Substitute this expression into Equation (1): 2moey = F ———
Yem
(%1 + %)
Solve for vy UeMm = T om
m

(B) Find the total energy of the system associated with vibration relative to its center of mass after the force Fis
removed.

SOLUTION

Analyze The vibrational energy is all the energy of the system other than the kinetic energy associated with transla-
tional motion of the center of mass. To find the vibrational energy, we apply the conservation of energy equation. The
kinetic energy of the system can be expressed as K = K, + K;,, where K ; is the kinetic energy of the blocks relative
to the center of mass due to their vibration. The potential energy of the system is U, which is the potential energy
stored in the spring when the separation of the blocks is some value other than L.

From the nonisolated system (energy) model, express (2) AKgy + AK,, + AU, =W
Equation 8.2 for this system:
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Express Equation (2) in an alternate form, noting that AKey + AE, = W
Ko + Uy = Byt

vib T

The initial values of the kinetic energy of the center of Koy + By = W= Ixy
mass and the vibrational energy of the system are zero.
Use this fact and substitute for the work done on the sys-
tem by the force F:
. . 1 : (X1 - xQ)
Solve for the vibrational energy and use the result from Ey =TIx; — Koy = Fxy — 5(2m)vey® = F 5

Finalize Neither of the two answers in this example depends on the spring length, the spring constant, or the time
interval. Notice also that the magnitude x, of the displacement of the point of application of the applied force is differ-
ent from the magnitude 3(x, + x,) of the displacement of the center of mass of the system. This difference reminds us
that the displacement in the definition of work (Eq. 7.1) is that of the point of application of the force.

m Rocket Propulsion

When ordinary vehicles such as cars are propelled, the driving force for the motion
is friction. In the case of the car, the driving force is the force exerted by the road
on the car. We can model the car as a nonisolated system in terms of momentum.
An impulse is applied to the car from the roadway, and the result is a change in the
momentum of the car as described by Equation 9.40.

A rocket moving in space, however, has no road to push against. The rocket is an
isolated system in terms of momentum. Therefore, the source of the propulsion of
a rocket must be something other than an external force. The operation of a rocket
depends on the law of conservation of linear momentum as applied to an isolated ~ The force from a nitrogen-
system, where the system is the rocket plus its ejected fuel. propelled hand-controlled device

Rocket propulsion can be understood by first considering our archer standing ~ 2llows an astronaut to move about

e & ; 5 ; ; freely in space without restrictive
on frictionless ice in Example 9.1. Imagine the archer fires several arrows hori- serliens, ning the Hhivastfores
zontally. For each arrow fired, the archer receives a compensating momentum from the expelled nitrogen.
in the opposite direction. As more arrows are fired, the archer moves faster and
faster across the ice. In addition to this analysis in terms of momentum, we can also v
understand this phenomenon in terms of Newton’s second and third laws. Every = =
time the bow pushes an arrow forward, the arrow pushes the bow (and the archer) M+ Am
backward, and these forces result in an acceleration of the archer. peil —

In a similar manner, as a rocket moves in free space, its linear momentum
changes when some of its mass is ejected in the form of exhaust gases. Because
the gases are given momentum when they are ejected out of the engine, the rocket
receives a compensating momentum in the opposite direction. Therefore, the
rocket is accelerated as a result of the “push,” or thrust, from the exhaust gases. In
free space, the center of mass of the system (rocket plus expelled gases) moves uni-
formly, independent of the propulsion process.! Tk A

Suppose at some time ¢ the magnitude of the momentum of a rocket plus its fuel
is (M + Am)v, where v is the speed of the rocket relative to the Earth (Fig. 9.23a).

Over a short time interval A¢, the rocket ejects fuel of mass Am. At the end of this Figure 9.23 Rocket propul-
interval, the rocket’s mass is M and its speed is v + Av, where Av is the change in  sion. (a) The initial mass of the

speed of the rocket (Fig. 9.23b). If the fuel is ejected with a speed v, relative to ~ rocketplusallits fuelis M-+ Am
¢ at a time 7, and its speed is v.

(b) Ata time ¢ + At the rocket’s
mass has been reduced to M

Courtesy of NASA

P:= (M+ Am)v

Am M

A

“The rocket and the archer represent cases of the reverse of a perfectly inelastic collision: momentum is conserved,
but the kinetic energy of the rocket-exhaust gas system increases (at the expense of chemical potential energy in and an amount of fuel Am has
the fuel), as does the kinetic energy of the archer-arrow system (at the expense of potential energy from the archer’s been ejected. The rocket’s speed
previous meals). increases by an amount Av.
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Expression for rocket P>
propulsion

the rocket (the subscript e stands for exhaust, and v, is usually called the exhaust
speed), the velocity of the fuel relative to the Earth is v — v,. Because the system of
the rocket and the ejected fuel is isolated, we apply the isolated system model for
momentum and obtain

Ap=0 — p=p — (M + Am)v = M(v + Av) + Am(v — v,)
Simplifying this expression gives
MAv = v,Am

If we now take the limit as Az goes to zero, we let Av — dv and Am — dm. Fur-
thermore, the increase in the exhaust mass dm corresponds to an equal decrease in

the rocket mass, so dm = —dM. Notice that dM is negative because it represents a
decrease in mass, so —dM is a positive number. Using this fact gives
Mdv=v,dm= —v,dM (9.43)

Now divide the equation by M and integrate, taking the initial mass of the rocket
plus fuel to be M;and the final mass of the rocket plus its remaining fuel to be M,.

The result is
vy M/ dM
J dv= —uv, J —

v; M; M
M;

VT U=, In (9.44)
M;

which is the basic expression for rocket propulsion. First, Equation 9.44 tells us that
the increase in rocket speed is proportional to the exhaust speed v, of the ejected
gases. Therefore, the exhaust speed should be very high. Second, the increase in
rocket speed is proportional to the natural logarithm of the ratio M;/M,. There-
fore, this ratio should be as large as possible; that is, the mass of the rocket without
its fuel should be as small as possible and the rocket should carry as much fuel as
possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust gases.
We obtain the following expression for the thrust from Newton’s second law and
Equation 9.43:

dv aM
==y,
di di
This expression shows that the thrust increases as the exhaust speed increases and
as the rate of change of mass (called the burn rate) increases.

Thrust = M (9.45)

Fighting a Fire

Two firefighters must apply a total force of 600 N to steady a hose that is discharging water at the rate of 3 600 L/min.
Estimate the speed of the water as it exits the nozzle.

SOLUTION

Conceptualize As the water leaves the hose, it acts in a way similar to the gases being ejected from a rocket engine. As a
result, a force (thrust) acts on the firefighters in a direction opposite the direction of motion of the water. In this case,
we want the end of the hose to be modeled as a particle in equilibrium rather than to accelerate as in the case of the
rocket. Consequently, the firefighters must apply a force of magnitude equal to the thrust in the opposite direction to
keep the end of the hose stationary.

Categorize This example is a substitution problem in which we use given values in an equation derived in this section.
The water exits at 3 600 L/min, which is 60 L/s. Knowing that 1 L of water has a mass of 1 kg, we estimate that about
60 kg of water leaves the nozzle each second.
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. dM
Use Equation 9.45 for the thrust: Thrust = v
Solve for the exhaust speed Thrust
: v, =
olve for the exhaust spee M ]
Substi ical val O0ON 10 m/
: v, = T = m/s
ubstitute numerical values 60 kg/s

Example 9.17 A Rocket in Space

A rocket moving in space, far from all other objects, has a speed of 3.0 X 103 m/s relative to the Earth. Its engines are
turned on, and fuel is ejected in a direction opposite the rocket’s motion at a speed of 5.0 X 103 m/s relative to the
rocket.

(A) What is the speed of the rocket relative to the Earth once the rocket’s mass is reduced to half its mass before

ignition?

SOLUTION

Conceptualize Figure 9.23 shows the situation in this problem. From the discussion in this section and scenes from sci-
ence fiction movies, we can easily imagine the rocket accelerating to a higher speed as the engine operates.

Categorize This problem is a substitution problem in which we use given values in the equations derived in this section.

M;
Solve Equation 9.44 for the final velocity and substitute v=v+ v, ln(ﬁ)
the known values: /

M,;
0 X 10° + (5.0 X 10° —
3.0 X 10°m/s + (5.0 X 10 m/s)ln(o.50Mi)

6.5 X 10° m/s

(B) What is the thrust on the rocket if it burns fuel at the rate of 50 kg/s?

SOLUTION

Use Equation 9.45, noting that dM/dt = 50 kg/s:

Thrust =

dM|
ve;‘ = (5.0 X 10°m/s)(50 kg/s) = 2.5 X 10°N

Summary

The linear momentum p of a particle of mass m _The impulse imparted to a particle by a net force
moving with a velocity ¥ is > F is equal to the time integral of the force:
p=mv 9.2 g
L (.2 1 EJ SF a (9.9)
L

continued
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An inelastic collision is one for which the
total kinetic energy of the system of colliding
particles is not conserved. A perfectly inelastic
collision is one in which the colliding particles
stick together after the collision. An elastic col-
lision is one in which the kinetic energy of the
system is conserved.

Concepts and Principles

The position vector of the center of mass of an extended
object can be obtained from the integral expression

1 J
— —
= d
I oum r dm

The velocity of the center of mass for a system of particles is

G = S
CM — Vi
M=

The position vector of the center of mass of a system of par-
ticles is defined as

1
— —
o = — m;r; (9.31)
CM M - it
where M = X, m, is the total mass of the system and T, is the
position vector of the ith particle.

Newton’s second law applied to a system of
particles is

(9.34) > Fo = Magy (9.39)

where @y, is the acceleration of the center of
mass and the sum is over all external forces.
The center of mass moves like an imaginary
(9.35) particle of mass M under the influence of the
resultant external force on the system.

The total momentum of a system of particles equals the total

mass multiplied by the velocity of the center of mass.

Analysis Models for Problem Solving

| |

Impulse
System
boundary
Momentum

The change in the total
momentum of the system
is equal to the total
impulse on the system.

Nonisolated System (Momentum). Ifa sys-
tem interacts with its environment in the sense
that there is an external force on the system,
the behavior of the system is described by the
impulse-momentum theorem:

—

Po = 1 (9.40)

System
boundary

Momentum

If no external forces act on the
system, the total momentum of
the system is constant.

Isolated System (Momentum). The total momentum of an
isolated system (no external forces) is conserved regardless of
the nature of the forces between the members of the system:

I_;lol = O [9'41)

The system may be isolated in terms of momentum but
nonisolated in terms of energy, as in the case of inelastic
collisions.
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Objective Questions

Objective Questions denotes answer available in Student Solutions Manual/Study Guide

1. You are standing on a saucer-shaped sled at rest in the 7. The momentum of an object is increased by a factor

middle of a frictionless ice rink. Your lab partner throws
you a heavy Frisbee. You take different actions in succes-
sive experimental trials. Rank the following situations
according to your final speed from largest to smallest.
If your final speed is the same in two cases, give them
equal rank. (a) You catch the Frisbee and hold onto it.
(b) You catch the Frisbee and throw it back to your part-
ner. (c) You bobble the catch, just touching the Frisbee
so that it continues in its original direction more slowly.
(d) You catch the Frisbee and throw it so that it moves
vertically upward above your head. (e) You catch the Fris-
bee and set it down so that it remains at rest on the ice.

. A boxcar at a rail yard is set into motion at the top of
a hump. The car rolls down quietly and without fric-
tion onto a straight, level track where it couples with

8.

of 4 in magnitude. By what factor is its kinetic energy
changed? (a) 16 (b) 8 (¢) 4 (d) 2 (e) 1

The kinetic energy of an object is increased by a factor
of 4. By what factor is the magnitude of its momentum
changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1

If two particles have equal momenta, are their kinetic

10.

energies equal? (a) yes, always (b) no, never (c) no,
except when their speeds are the same (d) yes, as long
as they move along parallel lines

If two particles have equal kinetic energies, are their
momenta equal? (a) yes, always (b) no, never (c) yes,
as long as their masses are equal (d) yes, if both their
masses and directions of motion are the same (e) yes,
as long as they move along parallel lines

a flatcar of smaller mass, originally at rest, so that the  11. A 10.0-g bullet is fired into a 200-g block of wood at rest
two cars then roll together without friction. Consider on a horizontal surface. After impact, the block slides
the two cars as a system from the moment of release of 8.00 m before coming to rest. If the coefficient of fric-
the boxcar until both are rolling together. Answer the tion between the block and the surface is 0.400, what
following questions yes or no. (a) Is mechanical energy is the speed of the bullet before impact? (a) 106 m/s
of the system conserved? (b) Is momentum of the sys- (b) 166 m/s (c) 226 m/s (d) 286 m/s (e) none of those
tem conserved? Next, consider only the process of the answers is correct
boxcar gaining speed as it rolls down the.hump. Fo.r 12. Two particles of different mass start from rest. The same
the boxcar and the Earth as a system, (c) is mechani-
net force acts on both of them as they move over equal
cal energy conserved? (d) Is momentum conserved? . . L .
. - distances. How do their final kinetic energies compare?
Finally, consider the two cars as a system as the boxcar " i e A
. . . . (a) The particle of larger mass has more kinetic energy.
is slowing down in the coupling process. (e) Is mechan- . ) e
. . (b) The particle of smaller mass has more kinetic
ical energy of this system conserved? (f) Is momentum Th icles hav | Kineti .
f this system conserved? energy. (c) e particles have equal kinetic energies.
© ’ (d) Either particle might have more kinetic energy.
- A massive tractor is rolling down a country road. In 13. Two particles of different mass start from rest. The

a perfectly inelastic collision, a small sports car runs
into the machine from behind. (i) Which vehicle expe-
riences a change in momentum of larger magnitude?
(a) The car does. (b) The tractor does. (c) Their
momentum changes are the same size. (d) It could be
either vehicle. (i) Which vehicle experiences a larger
change in kinetic energy? (a) The car does. (b) The
tractor does. (c) Their kinetic energy changes are the
same size. (d) It could be either vehicle.

. A 2-kg object moving to the right with a speed of 4 m/s
makes a head-on, elastic collision with a 1-kg object
that is initially at rest. The velocity of the 1-kg object
after the collision is (a) greater than 4 m/s, (b) less
than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impos-
sible to say based on the information provided.

. A b-kg cart moving to the right with a speed of 6 m/s
collides with a concrete wall and rebounds with a speed
of 2 m/s. Whatis the change in momentum of the cart?
(@) 0 (b) 40 kg - m/s (c) —40 kg - m/s (d) —30 kg - m/s
(e) =10 kg - m/s

. A 57.0-g tennis ball is traveling straight at a player at
21.0 m/s. The player volleys the ball straight back at
25.0 m/s. If the ball remains in contact with the racket
for 0.060 0 s, what average force acts on the ball?
(@) 22.6 N (b) 32.5 N (c) 43.7N (d) 72.1 N (e) 102 N

same net force acts on both of them as they move over
equal distances. How do the magnitudes of their final
momenta compare? (a) The particle of larger mass
has more momentum. (b) The particle of smaller
mass has more momentum. (c) The particles have
equal momenta. (d) Either particle might have more
momentum.

A basketball is tossed up into the air, falls freely, and
P Y.

15.

bounces from the wooden floor. From the moment
after the player releases it until the ball reaches the
top of its bounce, what is the smallest system for which
momentum is conserved? (a) the ball (b) the ball plus
player (c) the ball plus floor (d) the ball plus the Earth
(e) momentum is not conserved for any system

A 3-kg object moving to the right on a frictionless,
horizontal surface with a speed of 2 m/s collides head-
on and sticks to a 2-kg object that is initially moving
to the left with a speed of 4 m/s. After the collision,
which statement is true? (a) The kinetic energy of the
system is 20 J. (b) The momentum of the system is
14 kg - m/s. (c) The kinetic energy of the system is
greater than 5 J but less than 20 J. (d) The momentum
of the system is —2 kg - m/s. (¢) The momentum of the
system is less than the momentum of the system before
the collision.
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16.

17.

Conceptual Questions

Chapter 9 Linear Momentum and Collisions

A ball is suspended by a string
that is tied to a fixed point !

above a wooden block stand- L 0
ing on end. The ball is pulled
back as shown in Figure m

0Q9.16 and released. In trial
A, the ball rebounds elasti-
cally from the block. In trial B,
two-sided tape causes the ball
to stick to the block. In which
case is the ball more likely to
knock the block over? (a) It is
more likely in trial A. (b) It is more likely in trial B.
(c) It makes no difference. (d) It could be either case,
depending on other factors.

Figure 0Q9.16

A car of mass m traveling at speed v crashes into the
rear of a truck of mass 2m that is at rest and in neutral
at an intersection. If the collision is perfectly inelastic,

. An airbag in an automobile inflates when a collision

occurs, which protects the passenger from serious
injury (see the photo on page 254). Why does the air-
bag soften the blow? Discuss the physics involved in
this dramatic photograph.

. In golf, novice players are often advised to be sure to

“follow through” with their swing. Why does this advice
make the ball travel a longer distance? If a shot is taken
near the green, very little follow-through is required.
Why?

. An open box slides across a frictionless, icy surface of

a frozen lake. What happens to the speed of the box as
water from a rain shower falls vertically downward into
the box? Explain.

. While in motion, a pitched baseball carries kinetic

energy and momentum. (a) Can we say that it carries a
force that it can exert on any object it strikes? (b) Can
the baseball deliver more kinetic energy to the bat
and batter than the ball carries initially? (c) Can the
baseball deliver to the bat and batter more momentum
than the ball carries initially? Explain each of your
answers.

. You are standing perfectly still and then take a step for-

ward. Before the step, your momentum was zero, but
afterward you have some momentum. Is the principle
of conservation of momentum violated in this case?
Explain your answer.

A sharpshooter fires a rifle while standing with the

butt of the gun against her shoulder. If the forward
momentum of a bullet is the same as the backward
momentum of the gun, why isn’t it as dangerous to be
hit by the gun as by the bullet?

18.

7.

what is the speed of the combined car and truck after
the collision? (a) v (b) v/2 (c) v/3 (d) 2v (¢) None of
those answers is correct.

A head-on, elastic collision occurs between two billiard
balls of equal mass. If a red ball is traveling to the right
with speed vand a blue ball is traveling to the left with
speed 3v before the collision, what statement is true
concerning their velocities subsequent to the collision?
Neglect any effects of spin. (a) The red ball travels to
the left with speed v, while the blue ball travels to the
right with speed 3v. (b) The red ball travels to the left
with speed v, while the blue ball continues to move to
the left with a speed 2v. (c¢) The red ball travels to the
left with speed 3v, while the blue ball travels to the
right with speed v. (d) Their final velocities cannot be
determined because momentum is not conserved in
the collision. (e) The velocities cannot be determined
without knowing the mass of each ball.

denotes answer available in Student Solutions Manual/Study Guide

Two students hold a large bed sheet vertically between
them. A third student, who happens to be the star
pitcher on the school baseball team, throws a raw egg
at the center of the sheet. Explain why the egg does
not break when it hits the sheet, regardless of its initial
speed.

. Ajuggler juggles three balls in a continuous cycle. Any

one ball is in contact with one of his hands for one
fifth of the time. (a) Describe the motion of the center
of mass of the three balls. (b) What average force does
the juggler exert on one ball while he is touching it?

(a) Does the center of mass of a rocket in free space

10.

11.

12.

13.

accelerate? Explain. (b) Can the speed of a rocket
exceed the exhaust speed of the fuel? Explain.

On the subject of the following positions, state your
own view and argue to support it. (a) The best theory
of motion is that force causes acceleration. (b) The true
measure of a force’s effectiveness is the work it does, and
the best theory of motion is that work done on an object
changes its energy. (c) The true measure of a force’s
effect is impulse, and the best theory of motion is that
impulse imparted to an object changes its momentum.

Does a larger net force exerted on an object always pro-
duce a larger change in the momentum of the object
compared with a smaller net force? Explain.

Does a larger net force always produce a larger change
in kinetic energy than a smaller net force? Explain.

A bomb, initially at rest, explodes into several pieces.
(a) Is linear momentum of the system (the bomb
before the explosion, the pieces after the explosion)
conserved? Explain. (b) Is kinetic energy of the system
conserved? Explain.
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1. A particle of mass m moves with momentum of magni-

tude p. (a) Show that the kinetic energy of the particle
is K = p?/2m. (b) Express the magnitude of the parti-
cle’s momentum in terms of its kinetic energy and mass.

. An object has a kinetic energy of 275 ] and a momen-
tum of magnitude 25.0 kg *+ m/s. Find the speed and
mass of the object.

. At one instant, a 17.5-kg sled is moving over a horizontal
surface of snow at 3.50 m/s. After 8.75 s has elapsed, the
sled stops. Use a momentum approach to find the aver-
age friction force acting on the sled while it was moving.

. A 3.00-kg particle has a velocity of (3.001 — 4.00j) m/s.
(a) Find its xand y components of momentum. (b) Find
the magnitude and direction of its momentum.

. Abaseball approaches home plate ataspeed of45.0m/s,
moving horizontally just before being hit by a bat. The
batter hits a pop-up such that after hitting the bat, the
baseball is moving at 55.0 m/s straight up. The ball has
amass of 145 g and is in contact with the bat for 2.00 ms.
What is the average vector force the ball exerts on the
bat during their interaction?

Section 9.2 Analysis Model: Isolated System (Momentum)

A 45.0-kg girl is standing on a 150-kg plank. Both are
7] originally at rest on a frozen lake that constitutes a fric-

tionless, flat surface. The girl begins to walk along the
plank at a constant velocity of 1.501 m/s relative to the
plank. (a) What is the velocity of the plank relative to
the ice surface? (b) What is the girl’s velocity relative to
the ice surface?

7. A girl of mass m,is standing on a plank of mass m,. Both
are originally at rest on a frozen lake that constitutes a
frictionless, flat surface. The girl begins to walk along
the plank ata constantvelocity v,, to the right relative to
the plank. (The subscript gp denotes the girl relative to
plank.) (a) What is the velocity v,; of the plank relative
to the surface of the ice? (b) What is the girl’s velocity

v,; relative to the ice surface?

8. A 65.0-kg boy and his 40.0-kg sister, both wearing roller

blades, face each other at rest. The girl pushes the boy
hard, sending him backward with velocity 2.90 m/s
toward the west. Ignore friction. (a) Describe the sub-
sequent motion of the girl. (b) How much potential
energy in the girl’s body is converted into mechanical

10.

11.
M 3m are placed on a friction-

energy of the boy-girl system? (c) Is the momentum
of the boy-girl system conserved in the pushing-apart
process? If so, explain how that is possible consider-
ing (d) there are large forces acting and (e) there is no
motion beforehand and plenty of motion afterward.

. In research in cardiology and exercise physiology, it is

often important to know the mass of blood pumped by
a person’s heart in one stroke. This information can be
obtained by means of a ballistocardiograph. The instru-
ment works as follows. The subject lies on a horizontal
pallet floating on a film of air. Friction on the pallet is
negligible. Initially, the momentum of the system is zero.
When the heart beats, it expels a mass m of blood into
the aorta with speed v, and the body and platform move
in the opposite direction with speed V. The blood veloc-
ity can be determined independently (e.g., by observ-
ing the Doppler shift of ultrasound). Assume that it is
50.0 cm/s in one typical trial. The mass of the subject
plus the palletis 54.0 kg. The pallet moves 6.00 X 105 m
in 0.160 s after one heartbeat. Calculate the mass of
blood that leaves the heart. Assume that the mass of
blood is negligible compared with the total mass of the
person. (This simplified example illustrates the prin-
ciple of ballistocardiography, but in practice a more
sophisticated model of heart function is used.)

When you jump straight up as high as you can, what is
the order of magnitude of the maximum recoil speed
that you give to the Earth? Model the Earth as a per-
fectly solid object. In your solution, state the physical
quantities you take as data and the values you measure
or estimate for them.

Two blocks of masses m and

o[22

Before

less, horizontal surface. A
light spring is attached to the
more massive block, and the
blocks are pushed together
with the spring between
them (Fig. P9.11). A cord
initially holding the blocks
together is burned; after that

happens, the block of mass After
3m moves to the right with a
speed of 2.00 m/s. (a) What Figure P9.11

is the velocity of the block of
mass m? (b) Find the system’s original elastic potential
energy, taking m = 0.350 kg. (c) Is the original energy
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in the spring or in the cord? (d) Explain your answer
to part (c). (e) Is the momentum of the system con-
served in the bursting-apart process? Explain how that
is possible considering (f) there are large forces acting
and (g) there is no motion beforehand and plenty of
motion afterward?

Section 9.3 Analysis Model: Nonisolated System
(Momentum)

12. A man claims that he can hold onto a 12.0-kg child in a
head-on collision as long as he has his seat belt on.
Consider this man in a collision in which he is in one
of two identical cars each traveling toward the other at
60.0 mi/h relative to the ground. The car in which he
rides is brought to rest in 0.10 s. (a) Find the magni-
tude of the average force needed to hold onto the
child. (b) Based on your result to part (a), is the man’s
claim valid? (c) What does the answer to this problem
say about laws requiring the use of proper safety
devices such as seat belts and special toddler seats?

R

estimated force—

F(N) Fac = 18000 N
time curve for a baseball 20000 \

struck by a bat is shown 15000

in Figure P9.13. From 1¢qgo

this curve, determine 5000

'(a) the magpitude of the 0 ¢ (ms)
impulse delivered to the 0 1 2

11 h .
ball and (b) the average Figure P9.13

force exerted on the ball.

14. Review. After a 0.300-kg rubber ball is dropped from
a height of 1.75 m, it bounces off a concrete floor and
rebounds to a height of 1.50 m. (a) Determine the
magnitude and direction of the impulse delivered to
the ball by the floor. (b) Estimate the time the ball is
in contact with the floor and use this estimate to calcu-
late the average force the floor exerts on the ball.

15. A glider of mass m is free to slide along a horizontal
air track. It is pushed against a launcher at one end
of the track. Model the launcher as a light spring of
force constant k compressed by a distance x. The glider
is released from rest. (a) Show that the glider attains a
speed of v = x(k/m)'/%. (b) Show that the magnitude
of the impulse imparted to the glider is given by the
expression I = x(km)'/2. (c) Is more work done on a cart
with a large or a small mass?

16. In a slow-pitch softball game, a 0.200-kg softball crosses
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The batter hits the ball toward center field, giv-
ingitavelocity of40.0 m/s at 30.0° above the horizontal.
(a) Determine the impulse delivered to the ball. (b) If
the force on the ball increases linearly for 4.00 ms,
holds constant for 20.0 ms, and then decreases linearly
to zero in another 4.00 ms, what is the maximum force
on the ball?

17. The front 1.20 m of a 1400-kg car is designed as a
7] “crumple zone” that collapses to absorb the shock of a
collision. If a car traveling 25.0 m/s stops uniformly in
1.20 m, (a) how long does the collision last, (b) what
is the magnitude of the average force on the car, and

(c) what is the acceleration of the car? Express the accel-
eration as a multiple of the acceleration due to gravity.

A tennis player receives a shot with the ball (0.060 0 kg)

traveling horizontally at 20.0 m/s and returns the shot
with the ball traveling horizontally at 40.0 m/s in the
opposite direction. (a) What is the impulse delivered
to the ball by the tennis racket? (b) Some work is done
on the system of the ball and some energy appears in
the ball as an increase in internal energy during the
collision between the ball and the racket. What is the
sum W — AE,  for the ball?

mt

19. The magnitude of the net
force exerted in the xdirec-
tion on a 2.50-kg particle 3
varies in time as shown in
Figure P9.19. Find (a) the
impulse of the force over 1
the 5.00-s time interval, T I
(b) the final velocity the ol 1 2 3 4 5
particle attains if it is origi- Figure P9.19
nally at rest, (c) its final
velocity if its original veloc-
ity is —2.001 m/s, and (d) the average force exerted on
the particle for the time interval between 0 and 5.00s.

F(N)
4

t(s)

20. Review. A force platform is a tool used to analyze the per-
formance of athletes by measuring the vertical force
the athlete exerts on the ground as a function of time.
Starting from rest, a 65.0-kg athlete jumps down onto
the platform from a height of 0.600 m. While she is in
contact with the platform during the time interval 0 <
1< 0.800 s, the force she exerts on it is described by the
function

F=9200¢— 11 500¢?

where Fis in newtons and {is in seconds. (a) What im-
pulse did the athlete receive from the platform? (b) With
what speed did she reach the platform? (c) With what
speed did she leave it? (d) To what height did she jump
upon leaving the platform?

21. Water falls without splashing at a rate of 0.250 L/s from
a height of 2.60 m into a 0.750-kg bucket on a scale. If
the bucket is originally empty, what does the scale read
in newtons 3.00 s after water starts to accumulate in it?

Section 9.4 Collisions in One Dimension

22. A'1200-kg car traveling initially at v; = 25.0 m/s in an
easterly direction crashes into the back of a 9 000-kg
truck moving in the same direction at vy, = 20.0 m/s
(Fig. P9.22). The velocity of the car immediately after
the collision is Vo = 18.0 m/s to the east. (a) What is
the velocity of the truck immediately after the colli-

;;(Ii VT; ;)Cf 7Tf
— — —

Before

Figure P9.22



sion? (b) What is the change in mechanical energy of
the car—truck system in the collision? (c) Account for
this change in mechanical energy.

A 10.0-g bullet is fired into a stationary block of wood
M having mass m = 5.00 kg. The bullet imbeds into the

24.

25.

26.

block. The speed of the bullet-plus-wood combination
immediately after the collision is 0.600 m/s. What was
the original speed of the bullet?

A car of mass m moving at a speed v, collides and cou-
ples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed
Uy. () What is the speed v of the two vehicles imme-
diately after the collision? (b) What is the change in
kinetic energy of the car—truck system in the collision?

A railroad car of mass 2.50 X 10* kg is moving with a
speed of 4.00 m/s. It collides and couples with three
other coupled railroad cars, each of the same mass as
the single car and moving in the same direction with
an initial speed of 2.00 m/s. (a) What is the speed
of the four cars after the collision? (b) How much
mechanical energy is lost in the collision?

Four railroad cars, each of mass 2.50 X 10* kg, are
coupled together and coasting along horizontal tracks
at speed v, toward the south. A very strong but fool-
ish movie actor, riding on the second car, uncouples
the front car and gives it a big push, increasing its
speed to 4.00 m/s southward. The remaining three
cars continue moving south, now at 2.00 m/s. (a) Find
the initial speed of the four cars. (b) By how much
did the potential energy within the body of the actor
change? (c) State the relationship between the process
described here and the process in Problem 25.

A neutron in a nuclear reactor makes an elastic, head-
[}l on collision with the nucleus of a carbon atom initially

28.

atrest. (a) What fraction of the neutron’s kinetic energy
is transferred to the carbon nucleus? (b) The initial
kinetic energy of the neutron is 1.60 X 107%® J. Find its
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision. (The mass of the carbon
nucleus is nearly 12.0 times the mass of the neutron.)

A 7.00-g bullet, when fired from a gun into a 1.00-kg
block of wood held in a vise, penetrates the block to a
depth of 8.00 cm. This block of wood is next placed on
a frictionless horizontal surface, and a second 7.00-g
bullet is fired from the gun into the block. To what
depth will the bullet penetrate the block in this case?

29. A tennis ball of mass 57.0 g is held
I just above a basketball of mass 590 g.

With their centers vertically aligned,
both balls are released from rest at
the same time, to fall through a dis-
tance of 1.20 m, as shown in Figure
P9.29. (a) Find the magnitude of the
downward velocity with which the
basketball reaches the ground. (b) Assume that an elas-
tic collision with the ground instantaneously reverses
the velocity of the basketball while the tennis ball is still
moving down. Next, the two balls meet in an elastic col-
lision. To what height does the tennis ball rebound?

Figure P9.29

30.

Problems 285
As shown in Figure P9.30, a PaERRN
bullet of mass m and speed v N\
passes completely through a ' )
pendulum bob of mass M. The ¢ )
bullet emerges with a speed Ry ST
of v/2. The pendulum bob is _;.> h —;,72
suspended by a stiff rod (not a
string) of length ¢ and negli- Figure P9.30

gible mass. What is the mini-
mum value of vsuch that the pendulum bob will barely
swing through a complete vertical circle?

A 12.0-g wad of sticky clay is hurled horizontally at a
100-g wooden block initially at rest on a horizontal sur-
7} face. The clay sticks to the block. After impact, the block

32.

33.

slides 7.50 m before coming to rest. If the coefficient of
friction between the block and the surface is 0.650, what
was the speed of the clay immediately before impact?

A wad of sticky clay of mass m is hurled horizontally ata
wooden block of mass M initially at rest on a horizontal
surface. The clay sticks to the block. After impact, the
block slides a distance d before coming to rest. If the
coefficient of friction between the block and the sur-
face is u, what was the speed of the clay immediately
before impact?

Two blocks are free to slide along the frictionless,

[AYij wooden track shown in Figure P9.33. The block of
mass m; = 5.00 kg is released from the position shown,

at height 2 = 5.00 m above the flat part of the track.
Protruding from its front end is the north pole of a
strong magnet, which repels the north pole of an iden-
tical magnet embedded in the back end of the block
of mass m, = 10.0 kg, initially at rest. The two blocks
never touch. Calculate the maximum height to which
m, rises after the elastic collision.

my

34.

Figure P9.33

(a) Three carts of masses m; = 4.00 kg, my, = 10.0 kg,
and mg = 3.00 kg move on a frictionless, horizontal
track with speeds of v; = 5.00 m/s to the right, v, =
3.00 m/s to the right, and v; = 4.00 m/s to the left as
shown in Figure P9.34. Velcro couplers make the carts
stick together after colliding. Find the final velocity of
the train of three carts. (b) What If? Does your answer
in part (a) require that all the carts collide and stick

) Uy Ug

> > -
my L) | I ms I
! 1
Figure P9.34
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together at the same moment? What if they collide in a
different order?

Section 9.5 Collisions in Two Dimensions

35. A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving
initially along the x axis with a speed of 2.00 m/s. After
the collision, the 0.200-kg puck has a speed of 1.00 m/s
at an angle of § = 53.0° to the positive x axis (see Fig-
ure 9.11). (a) Determine the velocity of the 0.300-kg
puck after the collision. (b) Find the fraction of kinetic
energy transferred away or transformed to other forms
of energy in the collision.

36. Two automobiles of equal mass approach an inter-
section. One vehicle is traveling with speed 13.0 m/s
toward the east, and the other is traveling north with
speed v,;. Neither driver sees the other. The vehicles
collide in the intersection and stick together, leaving
parallel skid marks at an angle of 55.0° north of east.
The speed limit for both roads is 35 mi/h, and the
driver of the northward-moving vehicle claims he was
within the speed limit when the collision occurred. Is
he telling the truth? Explain your reasoning.

An object of mass 3.00 kg, moving with an initial veloc-

M ity of 5.00i m/s, collides with and sticks to an object

of mass 2.00 kg with an initial velocity of —3.00j m/s.
Find the final velocity of the composite object.

38. Two shuffleboard disks of equal mass, one orange and

the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed of 5.00 m/s. After
the collision, the orange disk moves along a direction
that makes an angle of 37.0° with its initial direction
of motion. The velocities of the two disks are perpen-
dicular after the collision. Determine the final speed of
each disk.

39. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing
collision. The yellow disk is initially at rest and is struck
by the orange disk moving with a speed v,. After the
collision, the orange disk moves along a direction that
makes an angle 6 with its initial direction of motion.
The velocities of the two disks are perpendicular after
the collision. Determine the final speed of each disk.

40. A proton, moving with a velocity of v, i, collides elas-
tically with another proton that is initially at rest.
Assuming that the two protons have equal speeds after
the collision, find (a) the speed of each proton after
the collision in terms of v;and (b) the direction of the
velocity vectors after the collision.

A billiard ball moving at 5.00 m/s strikes a stationary

7] ball of the same mass. After the collision, the first ball

moves at 4.33 m/s at an angle of 30.0° with respect to

the original line of motion. Assuming an elastic col-

lision (and ignoring friction and rotational motion),
find the struck ball’s velocity after the collision.

42. A 90.0-kg fullback running east with a speed of 5.00 m/s
is tackled by a 95.0-kg opponent running north with a
speed of 3.00 m/s. (a) Explain why the successful tackle

constitutes a perfectly inelastic collision. (b) Calculate
the velocity of the players immediately after the tackle.
(c) Determine the mechanical energy that disappears as
a result of the collision. Account for the missing energy.

[43] An unstable atomic nucleus of mass 17.0 X 10727 kg ini-
7] tially at rest disintegrates into three particles. One of
the particles, of mass 5.00 X 1077 kg, moves in the y
direction with a speed of 6.00 X 10 m/s. Another par-
ticle, of mass 8.40 X 10727 kg, moves in the x direction
with a speed of 4.00 X 10° m/s. Find (a) the velocity of
the third particle and (b) the total kinetic energy
increase in the process.

44. The mass of the blue puck in v 4
Figure P9.44 is 20.0% greater o
than the mass of the green o— N300
puck. Before colliding, the 1‘\;‘/“*@
pucks approach each other 30.0.

with momenta of equal magni-
tudes and opposite directions,
and the green puck has an
initial speed of 10.0 m/s. Find
the speeds the pucks have after the collision if half the
kinetic energy of the system becomes internal energy
during the collision.

V
Figure P9.44

Section 9.6 The Center of Mass

45. Four objects are situated along the y axis as follows: a

[ 2.00-kg object is at +3.00 m, a 3.00-kg object is at
+2.50 m, a 2.50-kg object is at the origin, and a 4.00-kg
object is at —0.500 m. Where is the center of mass of
these objects?

46. The mass of the Earth is 5.97 X 10%* kg, and the mass
of the Moon is 7.35 X 10?2 kg. The distance of separa-
tion, measured between their centers, is 3.84 X 10% m.
Locate the center of mass of the Earth—-Moon system as
measured from the center of the Earth.

47. Explorers in the jungle find an ancient monument in
the shape of a large isosceles triangle as shown in Fig-
ure P9.47. The monument is made from tens of thou-
sands of small stone blocks of density 3 800 kg/m3. The
monument is 15.7 m high and 64.8 m wide at its base
and is everywhere 3.60 m thick from front to back.
Before the monument was built many years ago, all the
stone blocks lay on the ground. How much work did
laborers do on the blocks to put them in position while
building the entire monument? Note: The gravitational
potential energy of an object-Earth system is given by
U, = Mgycy, where M is the total mass of the object
and yqy is the elevation of its center of mass above the
chosen reference level.

Figure P9.47



A uniform piece of sheet y(cm)
M metal is shaped as shown in

49.

50.

Figure P9.48. Compute the
x and y coordinates of the 20
center of mass of the piece.

A rod of length 30.0 cm has
linear density (mass per
length) given by

A =150.0 + 20.0x
where x is the distance from one end, measured in
meters, and A is in grams/meter. (a) What is the mass

of the rod? (b) How far from the x = 0 end is its center
of mass?

10

x (cm)
10 20 30

Figure P9.48

A water molecule con- [0)
sists of an oxygen
atom with two hydro-
gen atoms bound to it

0.100 nm 0.100 nm
(Fig. P9.50). The angle 530 1 °3°
between the two bonds !
is 106°. If the bonds are (H" %
0.100 nm long, where
is the center of mass of Figure P9.50

the molecule?

Section 9.7 Systems of Many Particles

[51.]A 2.00-kg particle has a velocity (2.001 — 3.00j) m/s,
M and a 3.00-kg particle hasavelocity (1.001 + 6.00j) m/s.

52.

Find (a) the velocity of the center of mass and (b) the
total momentum of the system.

Consider a system of two partlcles in the xy plane: m; =
2.00 kg is at the location ¥, = (1. 00i + 2.00j) m and
has a veloc1ty of (3.00i + 0.500§) m/s; my = 3.00 kg
isat ¥y = (—4. 00i — 3.00j) m and has velocity (3.00i —

2. OOJ) m/s. (a) Plot these particles on a grid or graph
paper. Draw their position vectors and show their
velocities. (b) Find the position of the center of mass
of the system and mark it on the grid. (c) Determine
the velocity of the center of mass and also show it on
the diagram. (d) What is the total linear momentum
of the system?

53.]Romeo (77.0 kg) entertains Juliet (55.0 kg) by play-
[} ing his guitar from the rear of their boat at rest in still

54.

55.

water, 2.70 m away from Juliet, who is in the front of
the boat. After the serenade, Juliet carefully moves to
the rear of the boat (away from shore) to plant a kiss
on Romeo’s cheek. How far does the 80.0-kg boat move
toward the shore it is facing?

The vector position of a 3.50-g par t1cle moving in the xy
plane varies in time accordmg to T, = (31 + 3))¢+

2j1%, where ¢ is in seconds and T is in centimeters. At
the same { time, the vector position of a 5.50 g particle
varies as Ty = 31 — 211> — 6j1. At 1= 2.50 5, determine
(a) the vector position of the center of mass, (b) the lin-
ear momentum of the system, (c) the velocity of the cen-
ter of mass, (d) the acceleration of the center of mass,
and (e) the net force exerted on the two-particle system.

Aball of mass 0.200 kg with a velocity of 1. 50 m/s meets
a ball of mass 0.300 kg with a velocity of —0. 4001 m/s
in a head-on, elastic collision. (a) Find their velocities
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after the collision. (b) Find the velocity of their center
of mass before and after the collision.

Section 9.8 Deformable Systems

For a technology project, a stu-

57.

58

dent has built a vehicle, of total
mass 6.00 kg, that moves itself.
As shown in Figure P9.56, it
runs on four light wheels. A reel
is attached to one of the axles,
and a cord originally wound on
the reel goes up over a pulley
attached to the vehicle to sup-
port an elevated load. After the
vehicle is released from rest,
the load descends very slowly,
unwinding the cord to turn
the axle and make the vehicle
move forward (to the left in
Fig. P9.56). Friction is negligible in the pulley and axle
bearings. The wheels do not slip on the floor. The reel
has been constructed with a conical shape so that the
load descends at a constant low speed while the vehi-
cle moves horizontally across the floor with constant
acceleration, reaching a final velocity of 3. 003 m/s.
(a) Does the floor impart impulse to the vehicle? If so,
how much? (b) Does the floor do work on the vehicle?
If so, how much? (c) Does it make sense to say that the
final momentum of the vehicle came from the floor?
If not, where did it come from? (d) Does it make sense
to say that the final kinetic energy of the vehicle came
from the floor? If not, where did it come from? (e) Can
we say that one particular force causes the forward
acceleration of the vehicle? What does cause it?

Figure P9.56

A particle is suspended from a post on top of a cart by
a light string of length L as shown in Figure P9.57a.
The cart and particle are initially moving to the right
at constant speed v;, with the string vertical. The cart
suddenly comes to rest when it runs into and sticks to
a bumper as shown in Figure P9.57b. The suspended
particle swings through an angle 6. (a) Show that
the original speed of the cart can be computed from
v, = V2gL(1 — cos ). (b) If the bumper is still exert-
ing a horizontal force on the cart when the hanging
particle is at its maximum angle forward from the verti-
cal, at what moment does the bumper stop exerting a
horizontal force?

Vi

}

~
-T-3T

Figure P9.57

. A 60.0-kg person bends his knees and then jumps

straight up. After his feet leave the floor, his motion is
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unaffected by air resistance and his center of mass rises
by a maximum of 15.0 cm. Model the floor as com-
pletely solid and motionless. (a) Does the floor impart
impulse to the person? (b) Does the floor do work on
the person? (¢) With what momentum does the person
leave the floor? (d) Does it make sense to say that this
momentum came from the floor? Explain. (e) With
what kinetic energy does the person leave the floor?
(f) Does it make sense to say that this energy came
from the floor? Explain.

Figure P9.59a shows an overhead view of the initial
configuration of two pucks of mass m on frictionless
ice. The pucks are tied together with a string of length
£ and negligible mass. At time { = 0, a constant force of
magnitude F begins to pull to the right on the center
point of the string. At time ¢, the moving pucks strike
each other and stick together. At this time, the force
has moved through a distance d, and the pucks have
attained a speed v (Fig. P9.59b). (a) What is v in terms
of K, d, €, and m? (b) How much of the energy trans-
ferred into the system by work done by the force has
been transformed to internal energy?

1§

dom } -
—
| |
F F
l d
©m
=0 ="
Figure P9.59

Section 9.9 Rocket Propulsion

60.

61.

A model rocket engine has an average thrust of 5.26 N.
It has an initial mass of 25.5 g, which includes fuel mass
of 12.7 g. The duration of its burn is 1.90 s. (a) What is
the average exhaust speed of the engine? (b) This
engine is placed in a rocket body of mass 53.5 g. What
is the final velocity of the rocket if it were to be fired
from rest in outer space by an astronaut on a space-
walk? Assume the fuel burns at a constant rate.

A garden hose is held as
shown in Figure P9.61.
The hose is originally
full of motionless water.
What additional force
is necessary to hold the
nozzle stationary after
the water flow is turned
on if the discharge rate
is 0.600 kg/s with a
speed of 25.0 m/s?

Figure P9.61

62.|Review. The first stage of a Saturn V space vehicle con-

sumed fuel and oxidizer at the rate of 1.50 X 10* kg/s
with an exhaust speed of 2.60 X 10° m/s. (a) Calculate
the thrust produced by this engine. (b) Find the accel-
eration the vehicle had just as it lifted off the launch

63.

64.

pad on the Earth, taking the vehicle’s initial mass as
3.00 X 10° kg.

A rocket for use in deep space is to be capable of
boosting a total load (payload plus rocket frame and
engine) of 3.00 metric tons to a speed of 10 000 m/s.
(a) It has an engine and fuel designed to produce an
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine
design could give an exhaust speed of 5 000 m/s, what
amount of fuel and oxidizer would be required for the
same task? (c) Noting that the exhaust speed in part
(b) is 2.50 times higher than that in part (a), explain
why the required fuel mass is not simply smaller by a
factor of 2.50.

A rocket has total mass M; = 360 kg, including M, =
330 kg of fuel and oxidizer. In interstellar space,
it starts from rest at the position x = 0, turns on its
engine at time / = 0, and puts out exhaust with rel-
ative speed v, = 1 500 m/s at the constant rate k =
2.50 kg/s. The fuel will last for a burn time of 7, =
M;/k = 330 kg/(2.5 kg/s) = 132's. (a) Show that dur-
ing the burn the velocity of the rocket as a function of
time is given by

o(t) = —v, 1n<1 - %)

(b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132's. (c¢) Show
that the acceleration of the rocket is

kv

a(t) = .
() M, — ke

(d) Graph the acceleration as a function of time.
(e) Show that the position of the rocket is

M, kt
()=v|——t)In[1—— )+ vt
k M,

(f) Graph the position during the burn as a function of
time.

Additional Problems

65.

66.

A ball of mass m is thrown straight up into the air with
an initial speed v,. Find the momentum of the ball (a) at
its maximum height and (b) halfway to its maximum
height.

An amateur skater of mass M is trapped in the middle
of an ice rink and is unable to return to the side where
there is no ice. Every motion she makes causes her to
slip on the ice and remain in the same spot. She decides
to try to return to safety by throwing her gloves of mass
min the direction opposite the safe side. (a) She throws
the gloves as hard as she can, and they leave her hand
with a horizontal velocity Vgloves. Explain whether or
not she moves. If she does move, calculate her velocity
ng relative to the Earth after she throws the gloves.
(b) Discuss her motion from the point of view of the
forces acting on her.

A 3.00-kg steel ball strikes a wall with a speed of 10.0 m /s

M at an angle of § = 60.0° with the surface. It bounces

off with the same speed and angle (Fig. P9.67). If the



68.

69.

ball is in contact with y
the wall for 0.200 s,
what is the average
force exerted by the
wall on the ball? > X

(a) Figure P9.68 shows //9\
three points in the -7
operation of the bal- @/

listic pendulum  dis-

cussed in  Example Figure P9.67

9.6 (and shown in Fig.

9.9b). The projectile approaches the pendulum in
Figure P9.68a. Figure P9.68b shows the situation just
after the projectile is captured in the pendulum. In
Figure P9.68c, the pendulum arm has swung upward
and come to rest at a height /s above its initial posi-
tion. Prove that the ratio of the kinetic energy of the
projectile—pendulum system immediately after the
collision to the kinetic energy immediately before is
my/(m; + my). (b) What is the ratio of the momentum
of the system immediately after the collision to the
momentum immediately before? (c) A student believes
that such a large decrease in mechanical energy must
be accompanied by at least a small decrease in momen-
tum. How would you convince this student of the truth?

1 My

Figure P9.68 Problems 68 and 86. (a) A metal ball
moves toward the pendulum. (b) The ball is captured
by the pendulum. (c) The ball-pendulum combination
swings up through a height /i before coming to rest.

Review. A 60.0-kg person running at an initial speed of
4.00 m/s jumps onto a 120-kg cart initially at rest (Fig.
P9.69). The person slides on the cart’s top surface and
finally comes to rest relative to the cart. The coeffi-
cient of kinetic friction between the person and the
cart is 0.400. Friction between the cart and ground can
be ignored. (a) Find the final velocity of the person
and cart relative to the ground. (b) Find the friction
force acting on the person while he is sliding across the
top surface of the cart. (c) How long does the friction
force act on the person? (d) Find the change in
momentum of the person and the change in momen-
tum of the cart. (e) Determine the displacement of the
person relative to the ground while he is sliding on the
cart. (f) Determine the displacement of the cart rela-
tive to the ground while the person is sliding. (g) Find
the change in kinetic energy of the person. (h) Find
the change in kinetic energy of the cart. (i) Explain
why the answers to (g) and (h) differ. (What kind of
collision is this one, and what accounts for the loss of
mechanical energy?)

60.0 kg

70.

[71]a

72.

73.
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4.00 m/s
—

o o

Figure P9.69

A cannon is rigidly
attached to a car-
riage, which can
move along horizon-
tal rails but is con-
nected to a post by a
large spring, initially
unstretched and with
force constant k =
2.00 X 10* N/m, as
shown in Figure
P9.70. The cannon fires a 200-kg projectile at a velocity
of 125 m/s directed 45.0° above the horizontal.
(a) Assuming that the mass of the cannon and its car-
riage is 5 000 kg, find the recoil speed of the cannon.
(b) Determine the maximum extension of the spring.
(c) Find the maximum force the spring exerts on the
carriage. (d) Consider the system consisting of the can-
non, carriage, and projectile. Is the momentum of this
system conserved during the firing? Why or why not?

1.25-kg  wooden
block rests on a table
over a large hole as in
Figure P9.71. A 5.00-g
bullet with an ini- |
tial velocity v, is fired
upward into the bot-
tom of the block and
remains in the block
after the collision. The
block and bullet rise
to a maximum height of 22.0 cm. (a) Describe how you
would find the initial velocity of the bullet using ideas
you have learned in this chapter. (b) Calculate the ini-
tial velocity of the bullet from the information provided.

45.0°

-

Figure P9.70

01

Figure P9.71
Problems 71 and 72.

A wooden block of mass M rests on a table over a large
hole as in Figure 9.71. A bullet of mass m with an ini-
tial velocity of v, is fired upward into the bottom of
the block and remains in the block after the collision.
The block and bullet rise to a maximum height of 4.
(a) Describe how you would find the initial velocity of
the bullet using ideas you have learned in this chap-
ter. (b) Find an expression for the initial velocity of the
bullet.

Two particles with masses m and 3m are moving toward
each other along the x axis with the same initial speeds
v;. The particle with mass m is traveling to the left, and
particle with mass 3m is traveling to the right. They
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75.

76.

71.
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undergo a head-on elastic collision, and each rebounds
along the same line as it approached. Find the final
speeds of the particles.

Pursued by ferocious wolves, you are in a sleigh with no
horses, gliding without friction across an ice-covered
lake. You take an action described by the equations

(270 kg)(7.50 m/s)i = (15.0 kg)(—vlﬁ) + (255 kg)(v«zfi)
v+ vy, = 8.00m/s

(a) Complete the statement of the problem, giving the
data and identifying the unknowns. (b) Find the val-
ues of v;,and vy, (¢) Find the amount of energy that
has been transformed from potential energy stored in
your body to kinetic energy of the system.

Two gliders are set in motion on a horizontal air track.
A spring of force constant kis attached to the back end
of the second glider. As shown in Figure P9.75, the first
glider, of mass m;, moves to the right with speed v, and
the second glider, of mass m,, moves more slowly to the
right with speed v,. When m,; collides with the spring
attached to m,, the spring compresses by a distance
X and the gliders then move apart again. In terms
of vy, vy, my, my, and k, find (a) the speed v at maxi-
mum compression, (b) the maximum compression
Xnaxo and (c) the velocity of each glider after m,; has lost
contact with the spring.

Figure P9.75

Why is the following situation impossible? An astronaut,
together with the equipment he carries, has a mass
of 150 kg. He is taking a space walk outside his space-
craft, which is drifting through space with a constant
velocity. The astronaut accidentally pushes against the
spacecraft and begins moving away at 20.0 m/s, relative
to the spacecraft, without a tether. To return, he takes
equipment off his space suit and throws it in the direc-
tion away from the spacecraft. Because of his bulky
space suit, he can throw equipment at a maximum
speed of 5.00 m/s relative to himself. After throwing
enough equipment, he starts moving back to the space-
craft and is able to grab onto it and climb inside.

Two blocks of masses m; = 2.00 kg and m, = 4.00 kg
are released from rest at a height of 4 = 5.00 m on a
frictionless track as shown in Figure P9.77. When they
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Figure P9.77

78.

[79.]A 0.400-kg blue bead

80.

meet on the level portion of the track, they undergo
a head-on, elastic collision. Determine the maximum
heights to which m; and my rise on the curved portion
of the track after the collision.

Review. A metal cannonball of mass m rests next to a
tree at the very edge of a cliff 36.0 m above the surface
of the ocean. In an effort to knock the cannonball off
the cliff, some children tie one end of a rope around a
stone of mass 80.0 kg and the other end to a tree limb
just above the cannonball. They tighten the rope so
that the stone just clears the ground and hangs next to
the cannonball. The children manage to swing the
stone back until it is held at rest 1.80 m above the
ground. The children release the stone, which then
swings down and makes a head-on, elastic collision
with the cannonball, projecting it horizontally off the
cliff. The cannonball lands in the ocean a horizontal
distance R away from its initial position. (a) Find the
horizontal component R of the cannonball’s displace-
ment as it depends on m. (b) What is the maximum
possible value for R, and (c) to what value of m does it
correspond? (d) For the stone—cannonball-Earth sys-
tem, is mechanical energy conserved throughout the
process? Is this principle sufficient to solve the entire
problem? Explain. (¢) What if? Show that R does not
depend on the value of the gravitational acceleration.
Is this result remarkable? State how one might make
sense of it.

slides on a frictionless,
curved wire, starting
from rest at point ® in
Figure P9.79, where h =
1.50 m. At point ®, the
blue bead collides elas-
tically with a 0.600-kg
green bead at rest.
Find the maximum height the green bead rises as it
moves up the wire.

Figure P9.79

A small block of mass m; = 0.500 kg is released from

rest at the top of a frictionless, curve-shaped wedge of

——

mass m, = 3.00 kg, which sits on a frictionless, hori-
zontal surface as shown in Figure P9.80a. When the
block leaves the wedge, its velocity is measured to
be 4.00 m/s to the right as shown in Figure P9.80b.
(a) What is the velocity of the wedge after the block
reaches the horizontal surface? (b) What is the height
v of the wedge?

my

mgy Vo my >

Figure P9.80



81.

Review. A bullet of mass m = 8.00 g is fired into a block

I} of mass M = 250 g that is initially at rest at the edge

82.

83.

84.

85.

of a table of height # = 1.00 m (Fig. P9.81). The bullet
remains in the block, and after the impact the block
lands d = 2.00 m from the bottom of the table. Deter-
mine the initial speed of the bullet.

m
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4

Figure P9.81 Problems 81 and 82.

Review. A bullet of mass m is fired into a block of mass
M initially at rest at the edge of a frictionless table of
height % (Fig. P9.81). The bullet remains in the block,
and after impact the block lands a distance d from the
bottom of the table. Determine the initial speed of the
bullet.

A 0.500-kg sphere moving with a velocity given by
(2.00i —3.00j + 1.00k) m/s strikes another sphere
of mass 1.50 kg moving with an initial velocity of
(=1.00i + 2.00j — 3.00k) m/s. (a) The velocity of
the 0.500-kg sphere after the collision is (—1.00i +
3.00j — 8.00k) m/s. Find the final velocity of the 1.50-kg
sphere and identify the kind of collision (elastic,
inelastic, or perfectly inelastic). (b) Now assume the
velocity of the 0.500-kg sphere after the collision is
(=0.2501 + 0.750j — 2.00k) m/s. Find the final velocity
of the 1.50-kg sphere and identify the kind of col-
lision. (c) What If? Take the velocity of the 0.500-kg
sphereafter the collisionas (—1.001 + S.OOj + ak)m/s.
Find the value of @ and the velocity of the 1.50-kg
sphere after an elastic collision.

A 75.0-kg firefighter slides down a pole while a constant
friction force of 300 N retards her motion. A horizontal
20.0-kg platform is supported by a spring at the bottom
of the pole to cushion the fall. The firefighter starts
from rest 4.00 m above the platform, and the spring
constant is 4 000 N/m. Find (a) the firefighter’s speed
just before she collides with the platform and (b) the
maximum distance the spring is compressed. Assume
the friction force acts during the entire motion.

George of the Jungle, with mass m, swings on a light
vine hanging from a stationary tree branch. A second
vine of equal length hangs from the same point, and a
gorilla of larger mass M swings in the opposite direc-
tion on it. Both vines are horizontal when the primates
start from rest at the same moment. George and the
gorilla meet at the lowest point of their swings. Each is
afraid that one vine will break, so they grab each other
and hang on. They swing upward together, reaching a
point where the vines make an angle of 35.0° with the
vertical. Find the value of the ratio m/M.

Review. A student performs a ballistic pendulum

experiment using an apparatus similar to that dis-
cussed in Example 9.6 and shown in Figure P9.68. She
obtains the following average data: 4 = 8.68 cm, projec-

87.

88.

90.
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tile mass m; = 68.8 g, and pendulum mass m, = 263 g.
(a) Determine the initial speed v;, of the projectile.
(b) The second part of her experiment is to obtain v,
by firing the same projectile horizontally (with the pen-
dulum removed from the path) and measuring its final
horizontal position x and distance of fall y (Fig. P9.86).
What numerical value does she obtain for v, based on
her measured values of x = 257 cm and y = 85.3 cm?
(c) What factors might account for the difference in
this value compared with that obtained in part (a)?
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Figure P9.86

Review. A light spring of force constant 3.85 N/m is
compressed by 8.00 cm and held between a 0.250-kg
block on the left and a 0.500-kg block on the right.
Both blocks are at rest on a horizontal surface. The
blocks are released simultaneously so that the spring
tends to push them apart. Find the maximum velocity
each block attains if the coefficient of kinetic friction
between each block and the surface is (a) 0, (b) 0.100,
and (c¢) 0.462. Assume the coefficient of static friction
is greater than the coefficient of kinetic friction in
every case.

Consider as a system the Sun with the Earth in a circu-
lar orbit around it. Find the magnitude of the change
in the velocity of the Sun relative to the center of mass
of the system over a six-month period. Ignore the influ-
ence of other celestial objects. You may obtain the nec-
essary astronomical data from the endpapers of the
book.

[89]A 5.00-g bullet mov- ”
Y ing
¥l speed of v; = 400 m/s

with an initial

is fired into and passes
through a  1.00-kg
block as shown in Fig-
ure P9.89. The block,
initially at rest on a
frictionless, horizontal
surface, is connected
to a spring with force
constant 900 N/m.
The block moves d = 5.00 cm to the right after impact
before being brought to rest by the spring. Find (a) the
speed at which the bullet emerges from the block and
(b) the amount of initial kinetic energy of the bullet
that is converted into internal energy in the bullet—
block system during the collision.
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Figure P9.89

Review. There are (one can say) three coequal theo-
ries of motion for a single particle: Newton’s second
law, stating that the total force on the particle causes its
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acceleration; the work—kinetic energy theorem, stating
that the total work on the particle causes its change in
kinetic energy; and the impulse-momentum theorem,
stating that the total impulse on the particle causes its
change in momentum. In this problem, you compare
predictions of the three theories in one particular
case. A 3.00-kg object has velocity 7. 00] m/s. Then, a
constant net force 12.01 N acts on the object for 5.00 s.
(a) Calculate the object’s final velocity, using the
impulse—momentum theorem. (b) Calculate its acceler-
ation from a = (v/ V,)/At. (c) Calculate its accel-
eration from a = X F/m (d) Flnd the object’s vector
displacement from AT = Vit + 3 at' (e) Find the work
done on the object from W = F A_’ (f) Find the
final kinetic energy from 3 2mvf zmvf vf (g) Find the
final kinetic energy from ymv;> + W. (h) State the result
of comparing the answers to parts (b) and (c), and the
answers to parts (f) and (g).

A 2.00-g particle moving at 8.00 m/s makes a perfectly
elastic head-on collision with a resting 1.00-g object.
(a) Find the speed of each particle after the collision.
(b) Find the speed of each particle after the collision
if the stationary particle has a mass of 10.0 g. (c) Find
the final kinetic energy of the incident 2.00-g particle
in the situations described in parts (a) and (b). In
which case does the incident particle lose more kinetic
energy?

Challenge Problems

92. In the 1968 Olympic games, University of Oregon

jumper Dick Fosbury introduced a new technique of
high jumping called the “Fosbury flop.” It contributed
to raising the world record by about 30 cm and is cur-
rently used by nearly every world-class jumper. In this
technique, the jumper goes over the bar face-up while
arching her back as much as possible as shown in Figure
P9.92a. This action places her center of mass outside
her body, below her back. As her body goes over the
bar, her center of mass passes below the bar. Because
a given energy input implies a certain elevation for her
center of mass, the action of arching her back means
that her body is higher than if her back were straight.
As a model, consider the jumper as a thin uniform rod
of length L. When the rod is straight, its center of mass
is at its center. Now bend the rod in a circular arc so
that it subtends an angle of 90.0° at the center of the
arc as shown in Figure P9.92b. In this configuration,
how far outside the rod is the center of mass?
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Figure P9.92

93. Two particles with masses m and 3m are moving toward

each other along the xaxis with the same initial speeds

94.

95.

96.

v,. Particle m is traveling to the left, and particle 3m is
traveling to the right. They undergo an elastic glanc-
ing collision such that particle m is moving in the nega-
tive y direction after the collision at a right angle from
its initial direction. (a) Find the final speeds of the two
particles in terms of v;. (b) What is the angle 0 at which
the particle 3m is scattered?

Sand from a stationary hopper falls onto a moving
conveyor belt at the rate of 5.00 kg/s as shown in
Figure P9.94. The conveyor belt is supported by fric-
tionless rollers and moves at a constant speed of v =
0.750 m/s under the action of a constant horizontal
external force F., supplied by the motor that drives
the belt. Find (a) the sand’s rate of change of momen-
tum in the horizontal direction, (b) the force of fric-
tion exerted by the belt on the sand (c) the external
force Fext, (d) the work done by Fext in 1s,and (e) the
kinetic energy acquired by the falling sand each
second due to the change in its horizontal motion.
(f) Why are the answers to parts (d) and (e) different?

v

1

» FEX[
© © © © © © © o
Figure P9.94

On a horizontal air track, a glider of mass m carries
a Ishaped post. The post supports a small dense
sphere, also of mass m, hanging just above the top
of the glider on a cord of length L. The glider and
sphere are initially at rest with the cord vertical. (Fig-
ure P9.57 shows a cart and a sphere similarly con-
nected.) A constant horizontal force of magnitude F
is applied to the glider, moving it through displace-
ment x;; then the force is removed. During the time
interval when the force is applied, the sphere moves
through a displacement with horizontal component
Xo. (a) Find the horizontal component of the veloc-
ity of the center of mass of the glider—sphere system
when the force is removed. (b) After the force is
removed, the glider continues to move on the track
and the sphere swings back and forth, both without
friction. Find an expression for the largest angle the
cord makes with the vertical.

Review. A chain of length L x
and total mass M is released
from rest with its lower end just
touching the top of a table as L
shown in Figure P9.96a. Find
the force exerted by the table
on the chain after the chain
has fallen through a distance
x as shown in Figure P9.96b.
(Assume each link comes to
rest the instant it reaches the
table.)

Figure P9.96



