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of a System
The definitions of quantities such as position, velocity, acceleration, and force and On a wind farm at the mouth of the
associated principles such as Newton's second law have allowed us to solve a variety of River Mersey in Liverpool, England,

the moving air does work on the
blades of the windmills, causing the
blades and the rotor of an electrical
generator to rotate. Energy is

problems. Some problems that could theoretically be solved with Newton's laws, however,
are very difficult in practice, but they can be made much simpler with a different approach.
Here and in the following chapters, we will investigate this new approach, which will include

definitions of quantities that may not be familiar to you. Other quantities may sound famil- transferred out of the system of the
iar, but they may have more specific meanings in physics than in everyday life. We begin windmill by means of electricity.
this discussion by exploring the notion of energy. (Christopher Furlong/Getty Images)

The concept of energy is one of the most important topics in science and engineering. In
everyday life, we think of energy in terms of fuel for transportation and heating, electric-
ity for lights and appliances, and foods for consumption. These ideas, however, do not truly
define energy. They merely tell us that fuels are needed to do a job and that those fuels pro-
vide us with something we call energy.

Energy is present in the Universe in various forms. Every physical process that occurs in
the Universe involves energy and energy transfers or transformations. Unfortunately, despite
its extreme importance, energy cannot be easily defined. The variables in previous chapters
were relatively concrete; we have everyday experience with velocities and forces, for example.
Although we have experiences with energy, such as running out of gasoline or losing our elec-
trical service following a violent storm, the notion of energy is more abstract.
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178 Chapter 7 Energy of a System

Pitfall Prevention 7.1

Identify the System The most
important first step to take in solv-
ing a problem using the energy
approach is to identify the appro-
priate system of interest.

The concept of energy can be applied to mechanical systems without resorting to Newton's
laws. Furthermore, the energy approach allows us to understand thermal and electrical phe-
nomena in later chapters of the book in terms of the same models that we will develop here in
our study of mechanics.

Our analysis models presented in earlier chapters were based on the motion of a particle
or an object that could be modeled as a particle. We begin our new approach by focusing our
attention on a new simplification model, a system, and analysis models based on the model of
a system. These analysis models will be formally introduced in Chapter 8. In this chapter, we
introduce systems and three ways to store energy in a system.

Systems and Environments

In the system model, we focus our attention on a small portion of the Universe—
the system—and ignore details of the rest of the Universe outside of the system.
A critical skill in applying the system model to problems is identifying the system.

A valid system

° may be a single object or particle

* may be a collection of objects or particles

° may be a region of space (such as the interior of an automobile engine com-
bustion cylinder)

® may vary with time in size and shape (such as a rubber ball, which deforms
upon striking a wall)

Identifying the need for a system approach to solving a problem (as opposed to
a particle approach) is part of the Categorize step in the General Problem-Solving
Strategy outlined in Chapter 2. Identifying the particular system is a second part of
this step.

No matter what the particular system is in a given problem, we identify a system
boundary, an imaginary surface (not necessarily coinciding with a physical sur-
face) that divides the Universe into the system and the environment surrounding
the system.

As an example, imagine a force applied to an object in empty space. We can
define the object as the system and its surface as the system boundary. The force
applied to it is an influence on the system from the environment that acts across the
system boundary. We will see how to analyze this situation from a system approach
in a subsequent section of this chapter.

Another example was seen in Example 5.10, where the system can be defined as
the combination of the ball, the block, and the cord. The influence from the envi-
ronment includes the gravitational forces on the ball and the block, the normal
and friction forces on the block, and the force exerted by the pulley on the cord.
The forces exerted by the cord on the ball and the block are internal to the system
and therefore are not included as an influence from the environment.

There are a number of mechanisms by which a system can be influenced by its
environment. The first one we shall investigate is work.

Work Done by a Constant Force

Almost all the terms we have used thus far—velocity, acceleration, force, and so
on—-convey a similar meaning in physics as they do in everyday life. Now, however,
we encounter a term whose meaning in physics is distinctly different from its every-
day meaning: work.

To understand what work as an influence on a system means to the physicist,
consider the situation illustrated in Figure 7.1. A force F is applied to a chalkboard
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Figure 7.1 An eraser being pushed along a chalkboard tray by a force acting at different angles
with respect to the horizontal direction.

eraser, which we identify as the system, and the eraser slides along the tray. If we
want to know how effective the force is in moving the eraser, we must consider not
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the
other hand, Figure 7.1c shows a situation in which the applied force does not move
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a
force so great that we break the chalkboard tray!). These results suggest that when
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force.
Moving a force with a magnitude of | F| = 2 N through a displacement represents a
greater influence on the system than moving a force of magnitude 1 N through the
same displacement. The magnitude of the displacement is also important. Moving
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if
the same force is used in both cases.

Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude /"that makes an angle 6 with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the
system is the product of the magnitude F of the force, the magnitude Ar of
the displacement of the point of application of the force, and cos 6, where 6 is
the angle between the force and displacement vectors:

W= FArcos 0 (7.1)

Notice in Equation '_7).1 that work is a scalar, even though it is defined in terms
of two vectors, a force F and a displacement AY. In Section 7.3, we explore how to
combine two vectors to generate a scalar quantity.

Notice also that the displacement in Equation 7.1 is that of the point of application
of the force. If the force is applied to a particle or a rigid object that can be modeled
as a particle, this displacement is the same as that of the particle. For a deformable
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves
through zero displacement. The points of application of the forces from your hands
on the sides of the balloon, however, do indeed move through a displacement as
the balloon is compressed, and that is the displacement to be used in Equation 7.1.
We will see other examples of deformable systems, such as springs and samples of
gas contained in a vessel.

As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for
3 min. At the end of this time interval, your tired arms may lead you to think you
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Pitfall Prevention 7.2

Work Is Done by ... on ... Not
only must you identify the system,
you must also identify what agent
in the environment is doing work
on the system. When discussing
work, always use the phrase, “the
work done by ...on....” After
“by,” insert the part of the environ-
ment that is interacting directly
with the system. After “on,” insert
the system. For example, “the work
done by the hammer on the nail”
identifies the nail as the system,
and the force from the hammer
represents the influence from the
environment.

AY

Figure 7.2 An object undergoes
a displacement AT under tile
action of a constant force F.

<« Work done by a
constant force
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Fis the only force
that does work on
the block in this
situation.

Figure 7.3 An object is dis-
placed on a frictionless, horizon-
tal surface. The normal force
and the gravitational force mg do
no work on the object.

Pitfall Prevention 7.3

Cause of the Displacement We can
calculate the work done by a force
on an object, but that force is not
necessarily the cause of the object’s
displacement. For example, if you
lift an object, (negative) work is
done on the object by the gravi-
tational force, although gravity is
not the cause of the object moving
upward!

N
F
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Figure 7.4 (Quick Quiz 7.2)

A block is pulled by a force in four
different directions. In each case,
the displacement of the block

is to the right and of the same
magnitude.

Example 7.1

have done a considerable amount of work on the chair. According to our defini-
tion, however, you have done no work on it whatsoever. You exert a force to support
the chair, but you do not move it. A force does no work on an object if the force
does not move through a displacement. If Ar = 0, Equation 7.1 gives W= 0, which is
the situation depicted in Figure 7.1c.

Also notice from Equation 7.1 that the work done by a force on a moving object
is zero when the force applied is perpendicular to the displacement of its point of
application. That is, if & = 90° then W = 0 because cos 90° = 0. For example, in
Figure 7.3, the work done by the normal force on the object and the work done by
the gravitational force on the object are both zero because both forces are perpen-
dicular to the displacement and have zero components along an axis in the direc-
tion of AT.

The sign of the work also depends on the direction of F relative to Ar The work
done by the applied force on a system is positive when the projection of F onto AT
is in the same direction as the displacement. For example, when an object is lifted,
the work done by the applied force on the object is positive because the direction
of that force is upward, in the same direction as the displacement of its point of
application. When the projection of F onto AT is in the direction opposite the dis-
placement, Wis negative. For example, as an object is lifted, the work done by the
gravitational force on the object is negative. The factor cos 0 in the definition of W
(Eq. 7.1) automatically takes care of the sign.

If an applied force ¥ is in the same direction as the displacement AT, then 6 =
0 and cos 0 = 1. In this case, Equation 7.1 gives

W= FAr

The units of work are those of force multiplied by those of length. Therefore,
the SI unit of work is the newton - meter (N - m = kg - m?/s?). This combination of
units is used so frequently that it has been given a name of its own, the joule (]).

An important consideration for a system approach to problems is that work is an
energy transfer. If Wis the work done on a system and Wis positive, energy is trans-
ferred to the system; if Wis negative, energy is transferred from the system. There-
fore, if a system interacts with its environment, this interaction can be described
as a transfer of energy across the system boundary. The result is a change in the
energy stored in the system. We will learn about the first type of energy storage in
Section 7.5, after we investigate more aspects of work.

@) uick Quiz 7.1 The gravitational force exerted by the Sun on the Earth holds the
Earth in an orbit around the Sun. Let us assume that the orbit is perfectly cir-

. cular. The work done by this gravitational force during a short time interval in

. which the Earth moves through a displacement in its orbital path is (a) zero

© (b) positive (c) negative (d) impossible to determine

Duick Quiz 7.2 Figure 7.4 shows four situations in which a force is applied to an
object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-

. tions in order of the work done by the force on the object, from most positive to

& most negative.

Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude 7= 50.0 N at an angle of 30.0° with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m
to the right.
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b 7.1

SOLUTION

Conceptualize Figure 7.5 helps conceptualize the
situation. Think about an experience in your life in
which you pulled an object across the floor with a
rope or cord.

50.0 N Figure 7.5 (Example 7.1) A

vacuum cleaner being pulled
at an angle of 30.0° from the
horizontal.

Categorize We are asked for the work done on
an object by a force and are given the force on
the object, the displacement of the object, and
the angle between the two vectors, so we categorize this example as a substitution problem. We identify the vacuum
cleaner as the system.

Use the definition of work (Eq. 7.1): W= FArcos 6 = (50.0 N)(8.00 m)(cos 30.0°)

= 130]

Notice in this situation that the normal force © and the gravitational Fa = mg do no work on the vacuum cleaner
because these forces are perpendicular to the displacements of their points of application. Furthermore, there was
no mention of whether there was friction between the vacuum cleaner and the floor. The presence or absence of fric-
tion is not important when calculating the work done by the applied force. In addition, this work does not depend on

whether the vacuum moved at constant velocity or if it accelerated.

The Scalar Product of Two Vectors

Because of the way the force and displacement vectors are combined in Equation
7.1, it is helpful to use a convenient mathematical tool called th(;sczgar product of
two vectors. We write this scalar product of vectors AandBasA - B. (Because of
the dot symbol, the scalar product is often called tile dot product.)

The scalar product of any two vectors A and B is defined as a scalar quantity
equal to the product of the magnitudes of the two vectors and the cosine of the
angle 6 between them:

- =
A:-B = ABcos0 (7.2)

— —
As is the case with any multiplication, A and B need not have the same units.

By comparing this definition with Equation 7.1, we can express Equation 7.1 as a
scalar product:

W= FArcos6 = F AT (7.3)

In other words, F - AT is a shorthand notation for F Ar cos 6.

Before continuing with our discussion of work, let us investigate some properties
of the dot product. Figure 7.6 shows two vectors A and B and the angle 6 between
them used in the definition of the dot product. In Figure 7_@ B cos 0 is the projec-
tion of B onto A Therefore, Equation 7 7.2 means that A B isthe product of the
magnitude of A and the projection of B onto A.!

From the right-hand side of Equation 7.2, we also see that the scalar product is
commutative.? That is,

- - -
A-B=B-A

This statement is equivalent to stating that A-B equals the product of the magnitude of B and the projection of i
onto B.

“In Chapter 11, you will see another way of combining vectors that proves useful in physics and is not commutative.

Pitfall Prevention 7.4

Work Is a Scalar Although Equa-
tion 7.3 defines the work in terms
of two vectors, work is a scalar;
there is no direction associated
with it. A/l types of energy and
energy transfer are scalars. This
factis a major advantage of the
energy approach because we don’t
need vector calculations!

< Scalar product of any two
— —
vectors A and B

= ABcos 0

Flgu re 7.6 The scalar product_
A-B equals the magnitude of A
multiplied by B cos 6, which is the
projection of B onto A.
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Finally, the scalar product obeys the distributive law of multiplication, so
— - - - o - =
A-(B+C)=A-B+A-C
The scalar product is simple to evaluate from Equation 7.2 when A is cither per-
pendicular or parallel to B.IfA is perpendicular to B (0 =90°), then A B = =0.
(The equality A B —_)O also holds in the more trivial case in which either A
or B is zero. ) If vector A is parallel to vector B and the two point in the same direc-
tion (@ = 0), then A-B =AB.If vector Ai _is parallel to vector B but the two point
in opposite directions (6 = 180°), then X -B = —AB.Thescalar product is negative
when 90° < 0 = 180°.
The unit vectors i, j, and 1A<, which were defined in Chapter 3, lie in the positive

x, y, and z directions, respectively, of a right-handed coordinate system. Therefore, it
follows from the definition of A + B that the scalar products of these unit vectors are

Scalar products of P iri=jj=kk= (7.4)
unit vectors 5. j k= J E=0 (7.5)

-
Equations 3.18 and 3.19 state that two vectors A and B can be expressed in unit-
vector form as
e 2 2 &
A =Ai1 +Aj +AkK

—

B = Bi + B,j + Bk

Using these expressions for the vectors and the information given in Equations 74
and 7.5 shows that the scalar product of A and B reduces to

A-B =A,B, +AB, + AB, (7.6)

(Details of the derivation are left for you in Problem 7 at the end of the chapter.) In
the special case in which X = B we see that

=

A-K=R+A+A=4

uick Quiz 7.3 Which of the following statements is true about the relationship

. between the dot product of two vectors and the product of the magnitudes

. of the vectors? (a) A-Bis larger than AB. (b) A - B is smaller than AB. (c) A-B
could be larger or smaller than AB, depending on the angle between the vectors.
o (d) A - B could be equal to AB.

The Scalar Product

= = . e > 2 = 2 2
The vectors A and B are givenby A =2i + 3jand B = —1i + 2j.

(A) Determine the scalar product A-B.

SOLUTION

Conceptualize There is no physical system to imagine here. Rather, it is purely a mathematical exercise involving two
vectors.

Categorize Because we have a definition for the scalar product, we categorize this example as a substitution problem.

= — > > » - » +
Substitute the specific vector expressions for A and B : A'B =(2i+3j) (—i+2j)

= —2i-1+2i-2j—38j-1+3j-2j
—2(1) + 4(0) — 3(0) + 6(1) = —2 + 6 = 4

The same result is obtained when we use Equation 7.6 directly, where A, = 2, A), =3,B,=—1,and B), = 2.
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b 7.2

(B) Find the angle 6 between Aand B.

SOLUTION

Evaluate the magnitudes of A and B using the Pythago- A=VA+ A = VI(2)2+ (32 =V13

rean theorem:

B=VB+BE=V(-1)+

- o
Use Equation 7.2 and the result from part (A) to find the cos ) = A-B = j — =
angle: AB - \/13V5
g =gl
cos VBT

Example 7.3 Work Done by a Constant Force
A
F

SOLUTION

= 60.3°
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particle moving in the xy plane undergoes a displacement given by AT = (2.0i + 3. OJ) m as a constant force
= (5.01 + 2.0j) N acts on the particle. Calculate the work done by F on the particle.

Conceptualize Although this example is a little more physical than the previous one in that it identifies a force and a

displacement, it is similar in terms of its mathematical structure.

Categorize Because we are given force and displacement vectors and asked to find the work done by this force on the

particle, we categorize this example as a substitution problem.

Substitute the expressions for F and AT into W= F- AT = [(5.01 + 2.0))
Equation 7.3 and use Equations 7.4 and 7.5:

Work Done by a Varying Force

Consider a particle being displaced along the x axis under the action of a force that
varies with position. In such a situation, we cannot use Equation 7.1 to calculate the
work done by the force because this relationship applies only when F is constant in
magnitude and direction. Figure 7.7a (page 184) shows a varying force applied on
a particle that moves from initial position x; to final position x;. Imagine a particle
undergoing a very small displacement Ax, shown in the figure. The x component
I, of the force is approximately constant over this small interval; for this small dis-
placement, we can approximate the work done on the particle by the force using
Equation 7.1 as

W= F,Ax
which is the area of the shaded rectangle in Figure 7.7a. If the F, versus x curve is
divided into a large number of such intervals, the total work done for the displace-

ment from x; to x;is approximately equal to the sum of a large number of such
terms:

W= EfoAx

NJ]-[(2.0i + 3.0j) m
= (5.0i-2.0i + 5.0i-3.0j + 2.0j-2.0i + 2.0j-
=[10+0+0+6/N-m= 16]

3.0j) N m
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The total work done for the
displacement from &x; to x;is
approximately equal to the sum
of the areas of all the rectangles.

I,

x

Area =F, Ax

X; 44 Fi X
Ax

The work done by the component
I, of the varying force as the par-
ticle moves from x; to x;is exacily
equal to the area under the curve.

F,

X

Work

x
x; X

Figure 7.7 (a) The work done on
a particle by the force component
F, for the small displacement Ax s
F, Ax, which equals the area of the
shaded rectangle. (b) The width Ax
of each rectangle is shrunk to zero.

If the size of the small displacements is allowed to approach zero, the number of
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the F, curve and the x axis:

*r Xr
lim > F, szf F, dx

Ax=0 "y x

i

Therefore, we can express the work done by F, on the system of the particle as it
moves from x; to x,as

&
W=J F, dx (7.7)

xl

This equation reduces to Equation 7.1 when the component F, = F cos  remains
constant.

If more than one force acts on a system and the system can be modeled as a particle,
the total work done on the system is just the work done by the net force. If we
express the net force in the x direction as 2 F,, the total work, or net work, done as
the particle moves from x; to x;is

Xy
DW=W, = f (DIF,) dx (particle)

>
For the general case of a net force X F whose magnitude and direction may both
vary, we use the scalar product,

SW= W, = J(E F)-dT (particle) (7.8)

where the integral is calculated over the path that the particle takes through space.
The subscript “ext” on work reminds us that the net work is done by an external
agent on the system. We will use this notation in this chapter as a reminder and to
differentiate this work from an internal work to be described shortly.

If the system cannot be modeled as a particle (for example, if the system is
deformable), we cannot use Equation 7.8 because different forces on the system
may move through different displacements. In this case, we must evaluate the work
done by each force separately and then add the works algebraically to find the net
work done on the system:

SW= Wy = > (J F- d?) (deformable system)

forces

Example 7.4 Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the

The net work done by this force

work done by the force on the particle as it moves from x = 0 to x = 6.0 m. T ey

F. (N)
SOLUTION x

|®

Conceptualize Imagine a particle subject to the force in Figure 7.8. The force B !
remains constant as the particle moves through the first 4.0 m and then decreases B !
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could T

0 x (m)

1 2 3 4

be modeled as a particle under constant acceleration for the first 4.0 m because
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit
into one of our earlier analysis models because the acceleration of the particle is
changing. If the particle starts from rest, its speed increases throughout the motion,
and the particle is always moving in the positive x direction. These details about its
speed and direction are not necessary for the calculation of the work done, however.

Categorize Because the force varies during the motion of the particle, we must

Figure 7.8 (Example 7.4) The
force acting on a particle is constant
for the first 4.0 m of motion and then
decreases linearly with x from xg =
4.0 m to xg = 6.0 m.

use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used

to evaluate the work done.
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Analyze The work done by the force is equal to the area under the curve from xg = 0 to xg = 6.0 m. This area is equal
to the area of the rectangular section from ® to ® plus the area of the triangular section from ® to ©.

Evaluate the area of the rectangle: Wawe = (5.0N)4.0m) = 20]
Evaluate the area of the triangle: Weweo =3(B.0N)(2.0m) =5.0]
Find the total work done by the force on the particle: Woweo = Wawe T Wowe =20]J+50]= 25]

Finalize Because the graph of the force consists of straight lines, we can use rules for finding the areas of simple geo-
metric models to evaluate the total work done in this example. If a force does not vary linearly as in Figure 7.7, such
rules cannot be used and the force function must be integrated as in Equation 7.7 or 7.8.

Work Done by a Spring

A model of a common physical system on which the force varies with position is
shown in Figure 7.9. The system is a block on a frictionless, horizontal surface and
connected to a spring. For many springs, if the spring is either stretched or com-
pressed a small distance from its unstretched (equilibrium) configuration, it exerts
on the block a force that can be mathematically modeled as

F = —kx (7.9) < Spring force

where xis the position of the block relative to its equilibrium (x = 0) position and &
is a positive constant called the force constant or the spring constant of the spring.
In other words, the force required to stretch or compress a spring is proportional
to the amount of stretch or compression x. This force law for springs is known as
Hooke’s law. The value of k is a measure of the stiffness of the spring. Stiff springs
have large k values, and soft springs have small k values. As can be seen from Equa-
tion 7.9, the units of kare N/m.

3 When x is positive

——
‘\< (stretched spring), the

spring force is directed

a8 x to the left.
: When x is zero
: (natural length of the
#ﬁWﬁMNﬁWMﬁ&F’\ Ny —9 spring), the spring
b T x force is zero.
|
|
F,
—_— When x is negative
WNW | \?\4 (compressed spring),
G : x tl?e spring force s
| directed to the right.
I
S
I
I
’ The work done by the
/ spring force on the Figure 7.9 The force exerted
kX pax - block as it moves from by a spring on a block varies with
a Xmax t0 0 i th‘f area the block’s position x relative to
0 X cl>f the shaded triangle, the equilibrium position x = 0.
— F, = —hx i (a) xis positive. (b) xis zero. () x
max is negative. (d) Graph of F, versus
x for the block—spring system.
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Work done by a spring P

The vector form of Equation 7.9 is
- ~ ~
F,=Fi=—kxi (7.10)

where we have chosen the x axis to lie along the direction the spring extends or
compresses.

The negative sign in Equations 7.9 and 7.10 signifies that the force exerted by
the spring is always directed opposite the displacement from equilibrium. When
x> 0 as in Figure 7.9a so that the block is to the right of the equilibrium position,
the spring force is directed to the left, in the negative x direction. When x < 0 as in
Figure 7.9c¢, the block is to the left of equilibrium and the spring force is directed
to the right, in the positive x direction. When x = 0 as in Figure 7.9b, the spring
is unstretched and F, = 0. Because the spring force always acts toward the equilib-
rium position (x = 0), it is sometimes called a restoring force.

If the spring is compressed until the block is at the point —x,,, and is then
released, the block moves from —x, ., through zero to +x,_ .. It then reverses direc-
tion, returns to —x,,,., and continues oscillating back and forth. We will study these
oscillations in more detail in Chapter 15. For now, let’s investigate the work done by
the spring on the block over small portions of one oscillation.

Suppose the block has been pushed to the left to a position —x, . and is then
released. We identify the block as our system and calculate the work W, done by the
spring force on the block as the block moves from x; = —x,,,, to x, = 0. Applying
Equation 7.8 and assuming the block may be modeled as a particle, we obtain

W, = de? = Jx/(—kxi)-(dxi) = Ji} (—kx) dx = Skl (7.11)

xl X max

where we have used the integral [ x" dx = x"*!/(n + 1) with n = 1. The work done by
the spring force is positive because the force is in the same direction as its displace-
ment (both are to the right). Because the block arrives at x = 0 with some speed, it
will continue moving until it reaches a position +x,, . The work done by the spring
force on the block as it moves from x; = 0 to x, = x,,,, is W, = —Skx?,. The work is
negative because for this part of the motion the spring force is to the left and its
displacement is to the right. Therefore, the net work done by the spring force on the
block as it moves from x; = —x,,,, t0 x,= X, s zero.

Figure 7.9d is a plot of F, versus x. The work calculated in Equation 7.11 is the
area of the shaded triangle, corresponding to the displacement from —x,, to O.
Because the triangle has base x,,and height kx,,, its area is jkx2,,, agreeing with
the work done by the spring as given by Equation 7.11.

If the block undergoes an arbitrary displacement from x = x; to x = x;, the work
done by the spring force on the block is

max*

max?

o
W, = [ (—kx) dx = gkx,® — ghx? (7.12)

From Equation 7.12, we see that the work done by the spring force is zero for any
motion that ends where it began (x; = x;). We shall make use of this important
result in Chapter 8 when we describe the motion of this system in greater detail.

Equations 7.11 and 7.12 describe the work done by the spring on the block. Now
let us consider the work done on the block by an external agent as the agent applies
a force on the block and the block moves very slowly from x; = —x,,,, to x,= 0 as
in Figure 7.10. We can calculate this work by noting that at any value of the posi-
tion, the applied force F,,, is equal in magmtude and opposite in direction to the
spring force F, so Fapp = Pl = — ¥, = —(—kxi) = kxi. Therefore, the work
done by this applied force (the external agent) on the system of the block is

X 0
Wext=J F e df = J (kxi) + (dxi) =J kx dx = —3hx2,

X; T Xmax
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This work is equal to the negative of the work done by the spring force for this dis- .

. . If the process of moving the
placement (Eq. 7.11). The work is negative because the external agent must push el
inward on the spring to prevent it from expanding, and this direction is opposite then fapp is equal in magnitude
the direction of the displacement of the point of application of the force as the and opposite in direction to F,
block moves from —x,_ .. to 0. atall times.

For an arbitrary displacement of the block, the work done on the system by the X

external agent is

*r
W = J kx dx = gkx? — ghx? (7.13)

xx

Notice that this equation is the negative of Equation 7.12.

(Muick Quiz 7.4 A dartis inserted into a spring-loaded dart gun by pushing the

; spring in by a distance x. For the next loading, the spring is compressed a dis- Figure 710 A block moves from
: tance 2x. How much work is required to load the second dart compared with X, = ~Xpux 10 %, = 0 on a friction-
. that required to load the first? (a) four times as much (b) two times as much less surface as a force Fapp

& (c) the same (d) half as much (e) one-fourth as much applied to the block.

SETT AL Measuring k for a Spring

A common technique used to measure the force constant of a spring is demon-
strated by the setup in Figure 7.11. The spring is hung vertically (Fig. 7.11a), and
an object of mass m is attached to its lower end. Under the action of the “load” mg,
the spring stretches a distance d from its equilibrium position (Fig. 7.11b).

(A) Ifaspring is stretched 2.0 cm by a suspended object having a mass of
0.55 kg, what is the force constant of the spring?

SOLUTION "
The elongation dis
m

caused by the weight mg

Conceptualize Figure 7.11b shows what happens to the spring when the object is : _
of the attached object.

attached to it. Simulate this situation by hanging an object on a rubber band.

Categorize The object in Figure 7.11b is at rest and not accelerating, so it is mod-

eled as a particle in equilibrium. Figure 7.11 (Example 7.5) Deter-
......................................................................................... mining tlle force constant k Of a
Analyze Because the object is in equilibrium, the net force on it is zero and the spring.

upward spring force balances the downward gravitational force mg (Fig. 7.11c).

Apply the particle in equilibrium model to the object: FS +mg=0 - F—-—mg=0 — F=nmg
] mg  (0.55 kg)(9.80 m/s?)
Apply Hooke’s law to give F, = kd and solve for k: k=—= = = 27X 10°N/m
d 2.0 X 107 m

(B) How much work is done by the spring on the object as it stretches through this distance?

SOLUTION

Use Equation 7.12 to find the work done by the spring W, =0 — skd®> = —5(2.7 X 102N/m)(2.0 X 1072 m)?
on the object: —5.4 X 102]

Il

Finalize This work is negative because the spring force acts upward on the object, but its point of application (where
the spring attaches to the object) moves downward. As the object moves through the 2.0-cm distance, the gravitational
force also does work on it. This work is positive because the gravitational force is downward and so is the displacement

continued
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of the point of application of this force. Would we expect the work done by the gravitational force, as the applied force
in a direction opposite to the spring force, to be the negative of the answer above? Let’s find out.

Evaluate the work done by the gravitational force on the W= F AT = (mg)(d) cos 0 = mgd

object:

= (0.55 kg)(9.80 m/52)(2.0 X 102 m) = 1.1 X 107']

If you expected the work done by gravity simply to be that done by the spring with a positive sign, you may be surprised
by this result! To understand why that is not the case, we need to explore further, as we do in the next section.

‘ Ax i
SF
—
m
——— ——
v

i \i

Figure 7.12 An object undergo-
ing a displacement AT = Axiand
a change in velocity under the
action of a constant net force X F.

Kinetic energy P>

Kinetic Energy and the Work-Kinetic
Energy Theorem

We have investigated work and identified it as a mechanism for transferring energy
into a system. We have stated that work is an influence on a system from the envi-
ronment, but we have not yet discussed the result of this influence on the system.
One possible result of doing work on a system is that the system changes its speed.
In this section, we investigate this situation and introduce our first type of energy
that a system can possess, called kinetic energy.

Consider a system consisting of a single object. Figure 7.12 shows a block of
mass m moving through a displacement directed to the right under the action of a
net force X F, also directed to the right. We know from Newton’s second law that
the block moves with an acceleration @. If the block (and therefore the force) moves
through a displacement A¥ = Axi = (x,— x,)i, the net work done on the block by
the external net force 3 F is

#f
W, = J > Fdx (7.14)

Using Newton’s second law, we substitute for the magnitude of the net force 2 F'=
ma and then perform the following chain-rule manipulations on the integrand:

4 T dv Y dv dx K
Wee = ma dx = m—dx = m— —dx mu dv
5. . o di , dx di "
Wy = gmvf? — gmo? (7.15)

where v, is the speed of the block at x = x; and v,is its speed at x;.

Equatlon 7.15 was generated for the specific situation of one-dimensional
motion, but it is a general result. It tells us that the work done by the net force on a
particle of mass m is equal to the difference between the initial and final values of
a quantity ymv”. This quantity is so important that it has been given a special name,
kinetic energy:

K= %m,ﬂ (7.16)

Kinetic energy represents the energy associated with the motion of the particle.
Note that kinetic energy is a scalar quantity and has the same units as work. For
example, a 2.0-kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J.
Table 7.1 lists the kinetic energies for various objects.

Equation 7.15 states that the work done on a particle by a net force > F acting
on it equals the change in kinetic energy of the particle. It is often convenient to
write Equation 7.15 in the form

W,

el

— = = (7.17)

Another way to write itis K, = K; + W,,,, which tells us that the final kinetic energy
of an object is equal to its 1n1t1a1 kinetic energy plus the change in energy due to
the net work done on it.
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ELIGVARS  Kinetic Energies for Various Objects

Object Mass (kg) Speed (m/s) Kinetic Energy (])
Earth orbiting the Sun 5.97 2.98 2.65

Moon orbiting the Earth 7.35 1.02 3.82 2
Rocket moving at escape speed 500 1.12 3.14
Automobile at 656 mi/h 000 29 8.4
Running athlete 70 10 3500
Stone dropped from 10 m 1.0 14 98

Golf ball at terminal speed 0.046 44 45
Raindrop at terminal speed 3.5 9.0 1.4

Oxygen molecule in air 5.3 500 6.6 2

Escape speed is the minimum speed an object must reach near the Earth’s surface to move infinitely far away from
the Earth.

We have generated Equation 7.17 by imagining doing work on a particle. We
could also do work on a deformable system, in which parts of the system move with
respect to one another. In this case, we also find that Equation 7.17 is valid as long
as the net work is found by adding up the works done by each force and adding, as
discussed earlier with regard to Equation 7.8.

Equation 7.17 is an important result known as the work—kinetic energy theorem:

When work is done on a system and the only change in the system is in its
speed, the net work done on the system equals the change in kinetic energy of
the system, as expressed by Equation 7.17:

The work-kinetic energy theorem indicates that the speed of a system increases if
the net work done on it is positive because the final kinetic energy is greater than
the initial kinetic energy. The speed decreases if the net work is negative because the
final kinetic energy is less than the initial kinetic energy.

Because we have so far only investigated translational motion through space,
we arrived at the work-kinetic energy theorem by analyzing situations involving
translational motion. Another type of motion is rotational motion, in which an
object spins about an axis. We will study this type of motion in Chapter 10. The
work-kinetic energy theorem is also valid for systems that undergo a change in
the rotational speed due to work done on the system. The windmill in the photo
graph at the beginning of this chapter is an example of work causing rotational
motion.

The work—kinetic energy theorem will clarify a result seen earlier in this chapter
that may have seemed odd. In Section 7.4, we arrived at a result of zero net work
done when we let a spring push a block from max O max- Notice that
because the speed of the block is continually changing, it may seem complicated
to analyze this process. The quantity in the work—kinetic energy theorem, how
ever, only refers to the initial and final points for the speeds; it does not depend on
details of the path followed between these points. Therefore, because the speed
is zero at both the initial and final points of the motion, the net work done on
the block is zero. We will often see this concept of path independence in similar
approaches to problems.

Let us also return to the mystery in the Finalize step at the end of Example 7.5.
Why was the work done by gravity not just the value of the work done by the spring
with a positive sign? Notice that the work done by gravity is larger than the magni
tude of the work done by the spring. Therefore, the total work done by all forces
on the object is positive. Imagine now how to create the situation in which the only
forces on the object are the spring force and the gravitational force. You must sup
port the object at the highest point and then remove your hand and let the object
fall. If you do so, you know that when the object reaches a position 2.0 cm below
your hand, it will be moving, which is consistent with Equation 7.17. Positive net
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<« Work-kinetic energy
theorem

Pitfall Prevention 7.5

Conditions for the Work-Kinetic
Energy Theorem The work—
kinetic energy theorem is impor-
tant but limited in its application;
it is not a general principle. In
many situations, other changes in
the system occur besides its speed,
and there are other interactions
with the environment besides
work. A more general principle
involving energy is conservation of
energy in Section 8.1.

Pitfall Prevention 7.6

The Work-Kinetic Energy
Theorem: Speed, ot Velocity
The work-kinetic energy theorem
relates work to a change in the
speed of a system, not a change

in its velocity. For example, if

an object is in uniform circular
motion, its speed is constant. Even
though its velocity is changing, no
work is done on the object by the
force causing the circular motion.
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work is done on the object, and the result is that it has a kinetic energy as it passes
through the 2.0-cm point.

The only way to prevent the object from having a kinetic energy after moving
through 2.0 cm is to slowly lower it with your hand. Then, however, there is a third
force doing work on the object, the normal force from your hand. If this work is
calculated and added to that done by the spring force and the gravitational force,
the net work done on the object is zero, which is consistent because it is not moving
at the 2.0-cm point.

Earlier, we indicated that work can be considered as a mechanism for transfer-
ring energy into a system. Equation 7.17 is a mathematical statement of this con-
cept. When work W,__, is done on a system, the result is a transfer of energy across
the boundary of the system. The result on the system, in the case of Equation 7.17,
is a change AKin kinetic energy. In the next section, we investigate another type of
energy that can be stored in a system as a result of doing work on the system.

. spring in by a distance x. For the next loading, the spring is compressed a dis-
. tance 2x. How much faster does the second dart leave the gun compared with
the first? (a) four times as fast (b) two times as fast (¢) the same (d) half as fast
& (e) one-fourth as fast

Example 7.6 A Block Pulled on a Frictionless Surface LU
A 6.0-kg block initially at rest is pulled to the right along a frictionless, horizontal “H 7
surface by a constant horizontal force of magnitude 12 N. Find the block’s speed _—
after it has moved through a horizontal distance of 3.0 m. 7

@ —> [ ]
SOLUTION
Conceptualize Figure 7.13 illustrates this situation. Imagine pulling a toy car Vo B \
across a table with a horizontal rubber band attached to the front of the car. The "g
force is maintained constant by ensuring that the stretched rubber band always has Figure 7.13 (Example 7.6) A

block pulled to the right on a fric-
tionless surface by a constant hori-

Categorize We could apply the equations of kinematics to determine the answer, zontal force.

but let us practice the energy approach. The block is the system, and three exter-

nal forces act on the system. The normal force balances the gravitational force on the block, and neither of these verti-

cally acting forces does work on the block because their points of application are horizontally displaced.

Analyze The net external force acting on the block is the horizontal 12-N force.

Use the work—kinetic energy theorem for the block, not- Wee = AK=K;— K, = %mvf —-0= 3§mvf2
ing that its initial kinetic energy is zero:

2Wey FA
Solve for vfagd use Equation 7.1 for the work done on v = \/—t = \/2 &
the block by F: " "

2(12N)(3.0
Substitute numerical values: vy = M = 3bm/s

6.0 kg

Finalize You should solve this problem again by modeling the block as a particle under a net force to find its acceleration
and then as a particle under constant acceleration to find its final velocity. In Chapter 8, we will see that the energy proce-
dure followed above is an example of the analysis model of the nonisolated system.

UWIEENEIES  Suppose the magnitude of the force in this example is doubled to I' = 2F. The 6.0-kg block accelerates to
3.5 m/s due to this applied force while moving through a displacement Ax". How does the displacement Ax’ compare
with the original displacement Ax?
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Answer If we pull harder, the block should accelerate to a given speed in a shorter distance, so we expect that
Ax" < Ax. In both cases, the block experiences the same change in kinetic energy AK. Mathematically, from the work—
kinetic energy theorem, we find that

W = F'Ax’ = AK= FAx
F F

Ax' = —Ax=— Ax =5 Ax
' 2F

and the distance is shorter as suggested by our conceptual argument.

B
Conceptual Example 7.7

A man wishes to load a refrigerator onto a truck using

Does the Ramp Lessen the Work Required?

a ramp at angle 0 as shown in Figure 7.14. He claims
that less work would be required to load the truck if the
length L of the ramp were increased. Is his claim valid?

SOLUTION

No. Suppose the refrigerator is wheeled on a hand

truck up the ramp at constant speed. In this case, for
the system of the refrigerator and the hand truck, AK =

0. The normal force exerted by the ramp on the system
is directed at 90° to the displacement of its point of
application and so does no work on the system. Because
AK = 0, the work—kinetic energy theorem gives

Figure 7.14 (Conceptual Example 7.7) A refrigerator attached to
a frictionless, wheeled hand truck is moved up a ramp at constant
speed.

VVext = Wby man + Wby gravity =4

The work done by the gravitational force equals the product of the weight mg of the system, the distance L through
which the refrigerator is displaced, and cos (6 + 90°). Therefore,

Vbe man

- Wby gravity == ( 1ng) (L) [COS (0 + 900) ]

= mgL sin 0 = mgh

where i = Lsin 0 is the height of the ramp. Therefore, the man must do the same amount of work mgh on the system
regardless of the length of the ramp. The work depends only on the height of the ramp. Although less force is required
with a longer ramp, the point of application of that force moves through a greater displacement.

Potential Energy of a System

So far in this chapter, we have defined a system in general, but have focused our
attention primarily on single particles or objects under the influence of external
forces. Let us now consider systems of two or more particles or objects interacting
via a force that is inlernal to the system. The kinetic energy of such a system is the
algebraic sum of the kinetic energies of all members of the system. There may be
systems, however, in which one object is so massive that it can be modeled as sta-
tionary and its kinetic energy can be neglected. For example, if we consider a ball-
Earth system as the ball falls to the Earth, the kinetic energy of the system can be
considered as just the kinetic energy of the ball. The Earth moves so slowly in this
process that we can ignore its kinetic energy. On the other hand, the kinetic energy
of a system of two electrons must include the kinetic energies of both particles.
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The work done by
the agent on the
book-Earth system is

mgy, — mgy;.
A? F'Al)p
Yy
o
mg
Yi

Figure 7.15 An external agent
lifts a book slowly from a height y,
to a height y,.

Pitfall Prevention 7.7

Potential Energy The phrase
potential energy does not refer to
something that has the poten-
tial to become energy. Potential
energy is energy.

Pitfall Prevention 7.8

Potential Energy Belongs to a
System Potential energy is always
associated with a system of two or
more interacting objects. When

a small object moves near the
surface of the Earth under the
influence of gravity, we may some-
times refer to the potential energy
“associated with the object” rather
than the more proper “associ-
ated with the system” because the
Earth does not move significantly.
We will not, however, refer to the
potential energy “of the object”
because this wording ignores the
role of the Earth.

Gravitational p
potential energy

Let us imagine a system consisting of a book and the Earth, interacting via the
gravitational force. We do some work on the system by lifting the book slowly from
rest through a vertical displacement AT = (y,— y,)j as in Figure 7.15. According
to our discussion of work as an energy transfer, this work done on the system must
appear as an increase in energy of the system. The book is at rest before we perform
the work and is at rest after we perform the work. Therefore, there is no change in
the kinetic energy of the system.

Because the energy change of the system is not in the form of kinetic energy,
the work-kinetic energy theorem does not apply here and the energy change must
appear as some form of energy storage other than kinetic energy. After lifting the
book, we could release it and let it fall back to the position y,. Notice that the book
(and therefore, the system) now has kinetic energy and that its source is in the work
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was
allowed to fall. Therefore, we call the energy storage mechanism before the book
is released potential energy. We will find that the potential energy of a system can
only be associated with specific types of forces acting between members of a system.
The amount of potential energy in the system is determined by the configuration of
the system. Moving members of the system to different positions or rotating them
may change the configuration of the system and therefore its potential energy.

Letus now derive an expression for the potential energy associated with an object
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height y, above the ground to a final height
yyas in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the
applied force from the agent is equal in magnitude to the gravitational force on the
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the
object undergoes this upward displacement is given by the product of the upward

applied force EPP and the upward displacement of this force, AT = Ayj:

We = (Fopp) AT = (mg)) - [(y,— 3)j1 = mgy, — mgy; (7.18)

where this result is the net work done on the system because the applied force is the
only force on the system from the environment. (Remember that the gravitational
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in
form. In Equation 7.18, the work represents a transfer of energy into the system and
the system energy appears in a different form, which we have called potential energy.

Therefore, we can identify the quantity mgy as the gravitational potential
energy U, of the system of an object of mass m and the Earth:

U, = mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth,
where gis approximately constant.?

Using our definition of gravitational potential energy, Equation 7.18 can now be
rewritten as

Wew = AU, (7.20)

which mathematically describes that the net external work done on the system in
this situation appears as a change in the gravitational potential energy of the system.

Equation 7.20 is similar in form to the work—kinetic energy theorem, Equation
7.17. In Equation 7.17, work is done on a system and energy appears in the system as

’The assumption that gis constant is valid as long as the vertical displacement of the object is small compared with
the Earth’s radius.
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kinetic energy, representing motion of the members of the system. In Equation 7.20,
work is done on the system and energy appears in the system as potential energy,
representing a change in the configuration of the members of the system.

Gravitational potential energy depends only on the vertical height of the object
above the surface of the Earth. The same amount of work must be done on an
object—Earth system whether the object is lifted vertically from the Earth or is
pushed starting from the same point up a frictionless incline, ending up at the
same height. We verified this statement for a specific situation of rolling a refrigera-
tor up a ramp in Conceptual Example 7.7. This statement can be shown to be true
in general by calculating the work done on an object by an agent moving the object
through a displacement having both vertical and horizontal components:

Wew = (Fopp) - AT = (mg)) - [(x,— )1 + Oy — )1 = mgy, — mgy,
where there is no term involving x in the final result because j-i = 0.

In solving problems, you must choose a reference configuration for which the
gravitational potential energy of the system is set equal to some reference value,
which is normally zero. The choice of reference configuration is completely arbi-
trary because the important quantity is the difference in potential energy, and this
difference is independent of the choice of reference configuration.

It is often convenient to choose as the reference configuration for zero gravita-
tional potential energy the configuration in which an object is at the surface of the
Earth, but this choice is not essential. Often, the statement of the problem suggests
a convenient configuration to use.

%‘f@uick Quiz 7.6 Choose the correct answer. The gravitational potential energy of a

o system (a) is always positive (b) is always negative (c) can be negative or positive

Example 7.8 The Proud Athlete and the Sore Toe

A trophy being shown off by a careless athlete slips from the athlete’s hands and drops on his foot. Choosing floor
level as the y = 0 point of your coordinate system, estimate the change in gravitational potential energy of the
trophy-Earth system as the trophy falls. Repeat the calculation, using the top of the athlete’s head as the origin of
coordinates.

SOLUTION

Conceptualize The trophy changes its vertical position with respect to the surface of the Earth. Associated with this
change in position is a change in the gravitational potential energy of the trophy—Earth system.

Categorize We evaluate a change in gravitational potential energy defined in this section, so we categorize this exam-
ple as a substitution problem. Because there are no numbers provided in the problem statement, it is also an estima-
tion problem.

The problem statement tells us that the reference configuration of the trophy—Earth system corresponding to zero
potential energy is when the bottom of the trophy is at the floor. To find the change in potential energy for the system,
we need to estimate a few values. Let’s say the trophy has a mass of approximately 2 kg, and the top of a person’s foot is
about 0.05 m above the floor. Also, let’s assume the trophy falls from a height of 1.4 m.

Calculate the gravitational potential energy of the U, = mgy, = (2kg)(9.80 m/s*)(1.4m) = 27.4]
trophy-Earth system just before the trophy is released:

Calculate the gravitational potential energy of the U, = mgy, = (2kg)(9.80 m/s*)(0.05 m) = 0.98 ]
trophy—Earth system when the trophy reaches the ath-

lete’s foot:

Evaluate the change in gravitational potential energy of AU, = 098] —274] = —26.4]

the trophy—Earth system:

conlinued
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We should probably keep only two digits because of the roughness of our estimates; therefore, we estimate that the
change in gravitational potential energyis —26] . The system had about 27 J of gravitational potential energy before
the trophy began its fall and approximately 1 J of potential energy as the trophy reaches the top of the foot.

The second case presented indicates that the reference configuration of the system for zero potential energy is cho-
sen to be when the trophy is on the athlete’s head (even though the trophy is never at this position in its motion). We
estimate this position to be 2.0 m above the floor).

Calculate the gravitational potential energy of the U, = mgy;, = (2kg)(9.80 m/s?)(—0.6 m) = —11.8]
trophy—Earth system just before the trophy is released
from its position 0.6 m below the athlete’s head:

Calculate the gravitational potential energy of the Uy = mgy;= (2kg)(9.80 m/s*)(—1.95m) = —38.2]
trophy—Earth system when the trophy reaches the ath-
lete’s foot located 1.95 m below its initial position:

Evaluate the change in gravitational potential energy of AU, = —382] — (—11.8]) = —26.4] =~ —26]
the trophy—Earth system:

This value is the same as before, as it must be. The change in potential energy is independent of the choice of configu-
ration of the system representing the zero of potential energy. If we wanted to keep only one digit in our estimates, we
could write the final result as 3 X 10! J.

Elastic Potential Energy

Because members of a system can interact with one another by means of different
types of forces, it is possible that there are different types of potential energy in a
system. We have just become familiar with gravitational potential energy of a sys-
tem in which members interact via the gravitational force. Let us explore a second
type of potential energy that a system can possess.

Consider a system consisting of a block and a spring as shown in Figure 7.16.
In Section 7.4, we identified only the block as the system. Now we include both the
block and the spring in the system and recognize that the spring force is the inter-
action between the two members of the system. The force that the spring exerts on
the block is given by F, = —kx (Eq. 7.9). The external work done by an applied force

F,,, on the block-spring system is given by Equation 7.13:

W,

ext

= ghx? — ghx,” (7.21)

In this situation, the initial and final x coordinates of the block are measured from
its equilibrium position, x = 0. Again (as in the gravitational case, Eq. 7.18) the
work done on the system is equal to the difference between the initial and final
values of an expression related to the system’s configuration. The elastic potential
energy function associated with the block-spring system is defined by

Elastic potential energy P U = %ka (7.22)

Equation 7.21 can be expressed as
Wexe = AU, (7.23)

Compare this equation to Equations 7.17 and 7.20. In all three situations, external
work is done on a system and a form of energy storage in the system changes as a
result.

The elastic potential energy of the system can be thought of as the energy stored
in the deformed spring (one that is either compressed or stretched from its equilib-
rium position). The elastic potential energy stored in a spring is zero whenever the
spring is undeformed (x = 0). Energy is stored in the spring only when the spring is
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Figure 7.16 A spring on a frictionless, horizontal surface is compressed a distance x,,,, when a

block of mass m is pushed against it. The block is then released and the spring pushes it to the right,
where the block eventually loses contact with the spring. Parts (a) through (e) show various instants in
the process. Energy bar charts on the right of each part of the figure help keep track of the energy in
the system.

either stretched or compressed. Because the elastic potential energy is proportional
to x%, we see that U, is always positive in a deformed spring. Everyday examples of
the storage of elastic potential energy can be found in old-style clocks or watches
that operate from a wound-up spring and small wind-up toys for children.

Consider Figure 7.16 once again, which shows a spring on a frictionless, hori-
zontal surface. When a block is pushed against the spring by an external agent, the
elastic potential energy and the total energy of the system increase as indicated
in Figure 7.16b. When the spring is compressed a distance x,,. (Fig. 7.16¢), the
elastic potential energy stored in the spring is $kx?2,.. When the block is released
from rest, the spring exerts a force on the block and pushes the block to the right.
The elastic potential energy of the system decreases, whereas the kinetic energy
increases and the total energy remains fixed (Fig. 7.16d). When the spring returns
to its original length, the stored elastic potential energy is completely transformed
into kinetic energy of the block (Fig. 7.16e).

Work is done by the hand
on the spring—block
system, so the total energy
of the system increases.

No work is done on the
spring—block system from
the surroundings, so the
total energy of the system
stays constant.
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Figure 7.17 (Quick Quiz 7.7)

A ball connected to a massless
spring suspended vertically. What
forms of potential energy are asso-
ciated with the system when the
ball is displaced downward?
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Figure 7.18 (a) A bookssliding
to the right on a horizontal sur-
face slows down in the presence of
a force of kinetic friction acting to
the left. (b) An energy bar chart
showing the energy in the system
of the book and the surface at the
initial instant of time. The energy
of the system is all kinetic energy.
(c) While the book is sliding,

the kinetic energy of the system
decreases as it is transformed to
internal energy. (d) After the
book has stopped, the energy of
the system is all internal energy.

Chapter 7 Energy of a System

uick Quiz 7.7 A ball is connected to a light spring suspended vertically as
shown in Figure 7.17. When pulled downward from its equilibrium position and
released, the ball oscillates up and down. (i) In the system of the ball, the spring,
and the Earth, what forms of energy are there during the motion? (a) kinetic and
elastic potential (b) kinetic and gravitational potential (c) kinetic, elastic poten-
tial, and gravitational potential (d) elastic potential and gravitational potential
. (ii) In the system of the ball and the spring, what forms of energy are there during
& the motion? Choose from the same possibilities (a) through (d).

Energy Bar Charts

Figure 7.16 shows an important graphical representation of information related
to energy of systems called an energy bar chart. The vertical axis represents the
amount of energy of a given type in the system. The horizontal axis shows the
types of energy in the system. The bar chart in Figure 7.16a shows that the system
contains zero energy because the spring is relaxed and the block is not moving.
Between Figure 7.16a and Figure 7.16¢, the hand does work on the system, com-
pressing the spring and storing elastic potential energy in the system. In Figure
7.16d, the block has been released and is moving to the right while still in contact
with the spring. The height of the bar for the elastic potential energy of the system
decreases, the kinetic energy bar increases, and the total energy bar remains fixed.
In Figure 7.16e, the spring has returned to its relaxed length and the system now
contains only kinetic energy associated with the moving block.

Energy bar charts can be a very useful representation for keeping track of the
various types of energy in a system. For practice, try making energy bar charts for
the book-Earth system in Figure 7.15 when the book is dropped from the higher
position. Figure 7.17 associated with Quick Quiz 7.7 shows another system for which
drawing an energy bar chart would be a good exercise. We will show energy bar
charts in some figures in this chapter. Some figures will not show a bar chart in the
text but will include one in animated versions that appear in Enhanced WebAssign.

B Conservative and Nonconservative Forces

We now introduce a third type of energy that a system can possess. Imagine that
the book in Figure 7.18a has been accelerated by your hand and is now sliding to
the right on the surface of a heavy table and slowing down due to the friction force.
Suppose the surface is the system. Then the friction force from the sliding book
does work on the surface. The force on the surface is to the right and the displace-
ment of the point of application of the force is to the right because the book has
moved to the right. The work done on the surface is therefore positive, but the
surface is not moving after the book has stopped. Positive work has been done on
the surface, yet there is no increase in the surface’s kinetic energy or the potential
energy of any system. So where is the energy?

From your everyday experience with sliding over surfaces with friction, you can
probably guess that the surface will be warmer after the book slides over it. The
work that was done on the surface has gone into warming the surface rather than
increasing its speed or changing the configuration of a system. We call the energy
associated with the temperature of a system its internal energy, symbolized E, ,.
(We will define internal energy more generally in Chapter 20.) In this case, the
work done on the surface does indeed represent energy transferred into the sys-
tem, but it appears in the system as internal energy rather than kinetic or potential
energy.

Now consider the book and the surface in Figure 7.18a together as a system. Ini-
tially, the system has kinetic energy because the book is moving. While the book is
sliding, the internal energy of the system increases: the book and the surface are
warmer than before. When the book stops, the kinetic energy has been completely
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transformed to internal energy. We can consider the nonconservative force within
the system—that is, between the book and the surface—as a transformation mecha-
nism for energy. This nonconservative force transforms the kinetic energy of the sys-
tem into internal energy. Rub your hands together briskly to experience this effect!

Figures 7.18b through 7.18d show energy bar charts for the situation in Figure
7.18a. In Figure 7.18b, the bar chart shows that the system contains kinetic energy
at the instant the book is released by your hand. We define the reference amount of
internal energy in the system as zero at this instant. Figure 7.18c shows the kinetic
energy transforming to internal energy as the book slows down due to the friction
force. In Figure 7.18d, after the book has stopped sliding, the kinetic energy is zero,
and the system now contains only internal energy I . Notice that the total energy
bar in red has not changed during the process. The amount of internal energy in
the system after the book has stopped is equal to the amount of kinetic energy in
the system at the initial instant. This equality is described by an important prin-
ciple called conservation of energy. We will explore this principle in Chapter 8.

Now consider in more detail an object moving downward near the surface of the
Earth. The work done by the gravitational force on the object does not depend on
whether it falls vertically or slides down a sloping incline with friction. All that mat-
ters is the change in the object’s elevation. The energy transformation to internal
energy due to friction on that incline, however, depends very much on the distance
the object slides. The longer the incline, the more potential energy is transformed
to internal energy. In other words, the path makes no difference when we consider
the work done by the gravitational force, but it does make a difference when we
consider the energy transformation due to friction forces. We can use this varying
dependence on path to classify forces as either conservative or nonconservative. Of the
two forces just mentioned, the gravitational force is conservative and the friction
force is nonconservative.

Conservative Forces

Conservative forces have these two equivalent properties:

1. The work done by a conservative force on a particle moving between any
two points is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any
closed path is zero. (A closed path is one for which the beginning point and
the endpoint are identical.)

The gravitational force is one example of a conservative force; the force that
an ideal spring exerts on any object attached to the spring is another. The work
done by the gravitational force on an object moving between any two points near
the Earth’s surface is W, = —mgj- [(y — y)j] = mgy, — mgy,. From this equation,
notice that W, depends only on the initial and final y coordinates of the object and
hence is independent of the path. Furthermore, W, is zero when the object moves
over any closed path (where y, = y/).

For the case of the object-spring system, the work W, done by the spring force is
given by W, = 1kx,> — ékxf2 (Eq. 7.12). We see that the spring force is conservative
because W, depends only on the initial and final x coordinates of the object and is
zero for any closed path.

We can associate a potential energy for a system with a force acting between
members of the system, but we can do so only if the force is conservative. In gen-
eral, the work W, , done by a conservative force on an object that is a member of
a system as the system changes from one configuration to another is equal to the
initial value of the potential energy of the system minus the final value:

Wi = Uy — U= —AU (7.24)

The subscript “int” in Equation 7.24 reminds us that the work we are discussing is
done by one member of the system on another member and is therefore internal to

< Properties of conservative
forces

Pitfall Prevention 7.9

Similar Equation Warning Com-
pare Equation 7.24 with Equation
7.20. These equations are similar
except for the negative sign, which
is a common source of confusion.
Equation 7.20 tells us that posi-
tive work done by an outside agent
on a system causes an increase in
the potential energy of the system
(with no change in the kinetic or
internal energy). Equation 7.24
states that positive work done on
a component of a system by a con-
servative force internal to the system
causes a decrease in the potential
energy of the system.
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The work done in moving the
book is greater along the brown
path than along the blue path.

Figure 7.19 The work done
against the force of kinetic fric-
tion depends on the path taken as
the book is moved from ® to ®.

the system. It is different from the work W, done on the system as a whole by an
external agent. As an example, compare Equation 7.24 with the equation for the
work done by an external agent on a block-spring system (Eq. 7.23) as the exten-
sion of the spring changes.

Nonconservative Forces

A force is nonconservative if it does not satisfy properties 1 and 2 above. The work
done by a nonconservative force is path-dependent. We define the sum of the
kinetic and potential energies of a system as the mechanical energy of the system:

L =K+U (7.25)

mech

where K includes the kinetic energy of all moving members of the system and U
includes all types of potential energy in the system. For a book falling under the
action of the gravitational force, the mechanical energy of the book-Earth system
remains fixed; gravitational potential energy transforms to kinetic energy, and
the total energy of the system remains constant. Nonconservative forces acting
within a system, however, cause a change in the mechanical energy of the system.
For example, for a book sent sliding on a horizontal surface that is not frictionless
(Fig. 7.18a), the mechanical energy of the book-surface system is transformed to
internal energy as we discussed earlier. Only part of the book’s kinetic energy is
transformed to internal energy in the book. The rest appears as internal energy
in the surface. (When you trip and slide across a gymnasium floor, not only does
the skin on your knees warm up, so does the floor!) Because the force of kinetic
friction transforms the mechanical energy of a system into internal energy, it is a
nonconservative force.

As an example of the path dependence of the work for a nonconservative force,
consider Figure 7.19. Suppose you displace a book between two points on a table. If
the book is displaced in a straight line along the blue path between points ® and
in Figure 7.19, you do a certain amount of work against the kinetic friction force
to keep the book moving at a constant speed. Now, imagine that you push the book
along the brown semicircular path in Figure 7.19. You perform more work against
friction along this curved path than along the straight path because the curved
path is longer. The work done on the book depends on the path, so the friction
force cannot be conservative.

Relationship Between Conservative
Forces and Potential Energy

In the preceding section, we found that the work done on a member of a system by
a conservative force between the members of the system does not depend on the
path taken by the moving member. The work depends only on the initial and final
coordinates. For such a system, we can define a potential energy function U such
that the work done within the system by the conservative force equals the negative of
the change in the potential energy of the system according to Equation 7.24. Let us
imagine a system of particles in which a conservative force F acts between the par-
ticles. Imagine also that the configuration of the system changes due to the motion
of one particle along the xaxis. Then we can evaluate the internal work done by this
force as the particle moves along the xaxis* using Equations 7.7 and 7.24:

Wine

&'
= J F dx = —AU (7.26)

X

‘For a general displacement, the work done in two or three dimensions also equals —AU, where U = Ul(x, y, z). We
write this equation formally as W, = f{ F-d¥ =U— U.
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s
where F is the component of F in the direction of the displacement. We can also
express Equation 7.26 as

%
AU=U,~- U, = —f F, dx (7.27)

X
Therefore, AU is negative when F, and dx are in the same direction, as when an
object is lowered in a gravitational field or when a spring pushes an object toward
equilibrium.
It is often convenient to establish some particular location x; of one member of a
system as representing a reference configuration and measure all potential energy
differences with respect to it. We can then define the potential energy function as

*r
U(x) = —J F. dx+ U, (7.28)
The value of U, is often taken to be zero for the reference configuration. It does not
matter what value we assign to U, because any nonzero value merely shifts U/(x) by
a constant amount and only the changein potential energy is physically meaningful.
If the point of application of the force undergoes an infinitesimal displacement dx,
we can express the infinitesimal change in the potential energy of the system dUas

dU= —F, dx

Therefore, the conservative force is related to the potential energy function
through the relationship®

dUu
F, =—— (7.29) <« Relation of force between
dx members of a system to
. . . i the potential energy of
That is, the x component of a conservative force acting on a member within a the system

system equals the negative derivative of the potential energy of the system with respect
to x.

We can easily check Equation 7.29 for the two examples already discussed. In the
case of the deformed spring, U, = 3kx% therefore,

aw, 4

1.2
. = ——(kx?) = —k
s dx dx(Q x) X

which corresponds to the restoring force in the spring (Hooke’s law). Because the
gravitational potential energy function is U, = mgy, it follows from Equation 7.29
that £, = —mgwhen we differentiate U, with brespect to yinstead of x.

We now see that U1is an important function because a conservative force can be
derived from it. Furthermore, Equation 7.29 should clarify that adding a constant
to the potential energy is unimportant because the derivative of a constant is zero.

M

ick Quiz 7.8 What does the slope of a graph of U(x) versus x represent? (a) the

magnitude of the force on the object (b) the negative of the magnitude of the
force on the object (c) the x component of the force on the object (d) the nega-
» tive of the x component of the force on the object

Energy Diagrams and Equilibrium of a System

The motion of a system can often be understood qualitatively through a graph of its
potential energyversus the position of amember of the system. Consider the potential

5In three dimensions, the expression is

. U, U,
F=-1-2-2%

dx 6_\"] dz

e
where (0U/dx) and so forth are partial derivatives. In the language of vector calculus, F equals the negative of the
gradient of the scalar quantity U(x, y, z).
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The restoring force exerted by the
spring always acts toward x = 0,
the position of stable equilibrium.
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Figure 7.20 (a) Potential energy
as a function of x for the friction-
less block—spring system shown in
(b). For a given energy I of the sys-
tem, the block oscillates between
the turning points, which have the

i = +
coordinates x = *x, ..

Pitfall Prevention 7.10

Energy Diagrams A common
mistake is to think that potential
energy on the graph in an energy
diagram represents the height of
some object. For example, that

is not the case in Figure 7.20,
where the block is only moving
horizontally.

Energy of a System

energy function for a block-spring system, given by U, = skx®. This function is
plotted versus x in Figure 7.20a, where x is the position of the block. The force F,
exerted by the spring on the block is related to U, through Equation 7.29:

F du
* dx
As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U-versus-x curve. When the block is placed at rest at the
equilibrium position of the spring (x = 0), where F, = 0, it will remain there unless
some external force F.  acts on it. If this external force stretches the spring from
equilibrium, «x is positive and the slope dU/dx is positive; therefore, the force F,
exerted by the spring is negative and the block accelerates back toward x = 0 when
released. If the external force compresses the spring, x is negative and the slope is
negative; therefore, F, is positive and again the mass accelerates toward x = 0 upon
release.

From this analysis, we conclude that the x = 0 position for a block-spring sys-
tem is one of stable equilibrium. That is, any movement away from this position
results in a force directed back toward x = 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a
minimum.

If the block in Figure 7.20 is moved to an initial position x,,,, and then released
from rest, its total energy initially is the potential energy skx?,, stored in the spring.
As the block starts to move, the system acquires kinetic energy and loses potential
energy. The block oscillates (moves back and forth) between the two points x =
X and x = +x,_ ., called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between —x_ ., and
+x,,. forever. (We will discuss these oscillations further in Chapter 15.)

Another simple mechanical system with a configuration of stable equilibrium is
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its
lowest position, it tends to return to that position when released.

Now consider a particle moving along the x axis under the influence of a conser-
vative force F,, where the U-versus-x curve is as shown in Figure 7.21. Once again,
F,= 0 at x = 0, and so the particle is in equilibrium at this point. This position,
however, is one of unstable equilibrium for the following reason. Suppose the
particle is displaced to the right (x > 0). Because the slope is negative for x > 0,
F, = —dU/dx is positive and the particle accelerates away from x = 0. If instead the
particle is at x = 0 and is displaced to the left (x < 0), the force is negative because
the slope is positive for x < 0 and the particle again accelerates away from the equi-
librium position. The position x = 0 in this situation is one of unstable equilibrium
because for any displacement from this point, the force pushes the particle farther
away from equilibrium and toward a position of lower potential energy. A pencil
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely
fall over. In general, configurations of a system in unstable equilibrium correspond
to those for which U(x) for the system is a maximum.

Finally, a configuration called neutral equilibrium arises when U is constant
over some region. Small displacements of an object from a position in this region
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal
surface is an example of an object in neutral equilibrium.

—kx

max

LT
Figure 7.21 A plot of Uversus
xfor a particle that has a position
of unstable equilibrium located
at x = 0. For any finite displace-
ment of the particle, the force on
the particle is directed away from
x=0. 0

Positive slope
x<0

Negative slope
x>0
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Example 7.9 Force and Energy on an Atomic Scale

The potential energy associated with the force between two neutral atoms in a molecule can be modeled by the

Lennard-Jones potential energy function:
12 6
v =)~ (5)]
5 &

where x is the separation of the atoms. The function U(x) contains two parameters o and e that are determined from
experiments. Sample values for the interaction between two atoms in a molecule are o = 0.263 nm and € = 1.51 X
10722]. Using a spreadsheet or similar tool, graph this function and find the most likely distance between the two atoms.

SOLUTION

Conceptualize We identify the two atoms in the molecule as a system. Based on our understanding that stable mol-
ecules exist, we expect to find stable equilibrium when the two atoms are separated by some equilibrium distance.

Categorize Because a potential energy function exists, we categorize the force between the atoms as conservative. For
a conservative force, Equation 7.29 describes the relationship between the force and the potential energy function.

Analyze Stable equilibrium exists for a separation distance at which the potential energy of the system of two atoms
(the molecule) is a minimum.

AUl d 12 6 —19¢'2  6g°

Take the derivative of the function U(x): (x) = 4e 7[(2) - (g> } = 4e [# + 0: }
dx dx|[ \ x X X x’

o . o o -12¢"  60° ”

Minimize the function U(x) by setting its derivative el —(—+——=|=0 Xeq = (2)"°0

equal to zero: Xeq Yeq

Evaluate x,,, the equilibrium separation of the two Xeq = (2)"/°(0.263 nm) = 2.95 X 107" m

atoms in the molecule:

We graph the Lennard—Jones function on both sides of U (107 ])

this critical value to create our energy diagram as shown _\

: : ] ] ] ) x (10710

e N [ . e

atoms are very close together, is a minimum when the  -10
atoms are at their critical separation, and then increases

again as the atoms move apart. When U(x) is a minimum, ool
the atoms are in stable equilibrium, indicating that the

most likely separation between them occurs at this point.  Figure 7.22 (Example 7.9) Potential energy curve associated
with a molecule. The distance xis the separation between the two
atoms making up the molecule.

|
Finalize Notice that U(x) is extremely large when the :
|
|
|

Summary
Definitions
A system is most often a single parti- Thg work Wdone on a system by an agent exerting a constant

cle, a collection of particles, or a region force F on the system is the product of the magnitude Arof the dis-
of space, and may vary in size and shape. placement of the point of application of the force and the component
A system boundary separates the system F cos 0 of the force along the direction of the displacement AT:
fi h i .

rom the environment W= FArcos 6 (7.1)

continued
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If a varying force does work on a particle as the particle The s_c)alar p{)oduct (dot product) of two
moves along the xaxis from «; to x;, the work done by the vectors A and B is defined by the relationship
force on the particle is given b
= s / A-B = ABcos (7.2)
”f
W= J F, dx (7.7) where the result is a scalar quantity and 6 is the
% angle between the two vectors. The scalar product
where F, is the component of force in the x direction. obeys the commutative and distributive laws.
The kinetic energy of a particle of If a particle of mass m is at a distance yabove the Earth’s surface, the
mass m moving with a speed v is gravitational potential energy of the particle-Earth system is
= Lms? (7.16) U, = mgy (7.19)
The elastic potential energy stored in a spring of force constant k is
U, = shx? (7.22)
A force is conservative if the work it does on a particle that is a member The total mechanical energy of
of the system as the particle moves between two points is independent of a system is defined as the sum of
the path the particle takes between the two points. Furthermore, a force the kinetic energy and the potential
is conservative if the work it does on a particle is zero when the particle energy:
moves through an arbitrary closed path and returns to its initial position. E.. =K+U (7.25)

A force that does not meet these criteria is said to be nonconservative.

Concepts and Principles

The work—kinetic energy theorem states that A potential energy function U can be ass_(gciated only with
if work is done on a system by external forces and a conservative force. If a conservative force F acts between
the only change in the system is in its speed, members of a system while one member moves along the x

axis from «; to x;, the change in the potential energy of the

e K K = AR =Ll 2 12
Wou = Ky = K = AK = ymuf — 3mv?® (715, 7.17) system equals the negative of the work done by that force:

%
U— U= —J F, dx (7.27)
%;

Systems can be in three types of equilibrium con- Configurations of Neutral equilibrium
figurations when the net force on a member of the unstable equilibrium arises when Uis constant
system is zero. Configurations of stable equilibrium correspond to those for as a member of the system
correspond to those for which U(x) is a minimum. which U(x) is a maximum. moves over some region.
Objective Questions denotes answer available in Student Solutions Manual/Study Guide
1. Alex and John are loading identical cabinets onto ments is necessarily true because the force of friction

a truck. Alex lifts his cabinet straight up from the is unknown. (e) None of those statements is necessar-

ground to the bed of the truck, whereas John slides ily true because the angle of the incline is unknown.

his cabinet up a rough ramp to the truck. Which state- 2
ment is correct about the work done on the cabinet-
Earth system? (a) Alex and John do the same amount
of work. (b) Alex does more work than John. (c) John
does more work than Alex. (d) None of those state-

. If the net work done by external forces on a particle is
zero, which of the following statements about the par-
ticle must be true? (a) Its velocity is zero. (b) Its veloc-
ity is decreased. (c) Its velocity is unchanged. (d) Its
speed is unchanged. (e) More information is needed.



3. A worker pushes a wheelbarrow with a horizontal

force of 50 N on level ground over a distance of 5.0 m.
If a friction force of 43 N acts on the wheelbarrow
in a direction opposite that of the worker, what work
is done on the wheelbarrow by the worker? (a) 250 J
(b) 215 (c) 35 ] (d) 10 ] (e) None of those answers is
correct.

4. A cart is set rolling across a level table, at the same

speed on every trial. If it runs into a patch of sand, the
cart exerts on the sand an average horizontal force of
6 N and travels a distance of 6 cm through the sand as
it comes to a stop. If instead the cart runs into a patch
of gravel on which the cart exerts an average horizon-
tal force of 9 N, how far into the gravel will the cart roll
before stopping? (@) 9 cm (b) 6 cm (¢) 4 cm (d) 3 cm
(e) none of those answers

. Let N represent the direction horizontally north,
NE represent northeast (halfway between north and
east), and so on. Each direction specification can be
thought of as a unit vector. Rank from the largest to
the smallest the following dot products. Note that zero
is larger than a negative number. If two quantities
are equal, display that fact in your ranking. (a) NN
(b) N-NE (c) N-§ (d) N-E (e) SE-S

. Is the work required to be done by an external force
on an object on a frictionless, horizontal surface to
accelerate it from a speed v to a speed 2v (a) equal to
the work required to accelerate the object from v = 0
to v, (b) twice the work required to accelerate the
objectfrom v = 0to v, (c) three times the work required
to accelerate the object from v = 0 to v, (d) four
times the work required to accelerate the object from
0 to v, or (e) not known without knowledge of the
acceleration?

7. A block of mass m is dropped from the fourth floor of

an office building and hits the sidewalk below at speed
v. From what floor should the block be dropped to
double that impact speed? (a) the sixth floor (b) the
eighth floor (c) the tenth floor (d) the twelfth floor
(e) the sixteenth floor

As a simple pendulum swings back and forth, the

forces acting on the suspended object are (a) the gravi-
tational force, (b) the tension in the supporting cord,
and (c) air resistance. (i) Which of these forces, if any,
does no work on the pendulum at any time? (ii) Which
of these forces does negative work on the pendulum at
all times during its motion?

Bullet 2 has twice the mass of bullet 1. Both are fired so

that they have the same speed. If the kinetic energy of
bullet 1 is K, is the kinetic energy of bullet 2 (a) 0.25K,
(b) 0.5K, (c) 0.71K, (d) K, or (e) 2K?

10. Figure OQ7.10 shows a light extended spring exerting

a force I to the left on a block. (i) Does the block exert
a force on the spring? Choose every correct answer.
(a) No, it doesn’t. (b) Yes, it does, to the left. (c) Yes,
it does, to the right. (d) Yes, it does, and its magni-
tude is larger than F. (e) Yes, it does, and its magni-
tude is equal to F,. (ii) Does the spring exert a force
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Figure 0Q7.10

X

on the wall? Choose your answers from the same list
(a) through (e).

If the speed of a particle is doubled, what happens to

12.

13.

its kinetic energy? (a) It becomes four times larger.
(b) It becomes two times larger. (c) It becomes V9
times larger. (d) It is unchanged. (e) It becomes half
as large.

Mark and David are loading identical cement blocks
onto David’s pickup truck. Mark lifts his block straight
up from the ground to the truck, whereas David slides
his block up a ramp containing frictionless rollers.
Which statement is true about the work done on the
block-Earth system? (a) Mark does more work than
David. (b) Mark and David do the same amount of
work. (c) David does more work than Mark. (d) None
of those statements is necessarily true because the
angle of the incline is unknown. (e) None of those
statements is necessarily true because the mass of one
block is not given.

(i) Rank the gravitational accelerations you would mea-
sure for the following falling objects: (a) a 2-kg object
5 cm above the floor, (b) a 2-kg object 120 cm above
the floor, (c) a 3-kg object 120 cm above the floor, and
(d) a 3-kg object 80 cm above the floor. List the one
with the largest magnitude of acceleration first. If any
are equal, show their equality in your list. (ii) Rank the
gravitational forces on the same four objects, listing
the one with the largest magnitude first. (iii) Rank the
gravitational potential energies (of the object-Earth
system) for the same four objects, largest first, taking
y = 0 at the floor.

[14] A certain spring that obeys Hooke’s law is stretched

15.

16.

by an external agent. The work done in stretching the
spring by 10 cm is 4 J. How much additional work is
required to stretch the spring an additional 10 cm?

(@) 2] (b) 4] (© 8] (d) 12] (¢) 16]

A cart is set rolling across a level table, at the same
speed on every trial. If it runs into a patch of sand, the
cart exerts on the sand an average horizontal force of
6 N and travels a distance of 6 cm through the sand as
it comes to a stop. If instead the cart runs into a patch
of flour, it rolls an average of 18 cm before stopping.
What is the average magnitude of the horizontal force
the cart exerts on the flour? (a) 2 N (b) 3 N (c) 6 N
(d) 18 N (e) none of those answers

An ice cube has been given a push and slides without
friction on a level table. Which is correct? (a) It is in sta-
ble equilibrium. (b) Itis in unstable equilibrium. (c) It
is in neutral equilibrium. (d) Itis not in equilibrium.
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Conceptual Questions

denotes answer available in Student Solutions Manual/Study Guide

. Can a normal force do work? If not, why not? If so, give 8. If only one external force acts on a particle, does it nec-
an example. essarily change the particle’s (a) kinetic energy? (b) Its
. Object 1 pushes on object 2 as the objects move velocity?
together, like a bulldozer pushing a stone. Assume 9. Preparing to clean them, you pop all the removable

object 1 does 15.0 J of work on object 2. Does object 2
do work on object 1?7 Explain your answer. If possible,
determine how much work and explain your reasoning.

. A student has the idea that the total work done on an
objectis equal to its final kinetic energy. Is this idea true
always, sometimes, or never? If it is sometimes true,
under what circumstances? If it is always or never
true, explain why.

. (a) For what values of the angle 6 between two vectors
is their scalar product positive? (b) For what values of 6
is their scalar product negative?

10.

keys off a computer keyboard. Each key has the shape
of a tiny box with one side open. By accident, you spill
the keys onto the floor. Explain why many more keys
land letter-side down than land open-side down.

You are reshelving books in a library. You lift a book
from the floor to the top shelf. The kinetic energy of
the book on the floor was zero and the kinetic energy
of the book on the top shelf is zero, so no change
occurs in the kinetic energy, yet you did some work in
lifting the book. Is the work-kinetic energy theorem
violated? Explain.

Can Kinetic energy be negative? Explain. 11. A certai'n 111.1iform 'spring has spril}g constant .k. qu

6. Discuss the work done by a pitcher throwing a baseball. {)he sprlnkg 1sd Cﬁt . .half. What 1ks’ t}fle r«;:llatlonlshlp
What is the approximate distance through which the etween kand the spring constant & ob cach resulting
force acts as the ball is thrown? smaller spring? Explain your reasoning.

7. Discuss whether any work is being done by each of the 12. :?211: ;}Sgipii‘zoril;;geo%r;gi;fl g(;l?illsilgiiﬁl;?e Hapar
following agents and, if so, whether the work is posi- o ) ’
tive or negative. (a) a chicken scratching the ground 13. Does the kinetic energy Qf an ObJeC.t depend on the
(b) a person studying (c) a crane lifting a bucket of fram.e of reference in which its motion is measured?
concrete (d) the gravitational force on the bucket in Provide an example to prove this point.
part (c) (e) the leg muscles of a person in the act of  14. Cite two examples in which a force is exerted on an

sitting down

e anced . The problems found in this
WebAssign

chapter may be assigned

object without doing any work on the object.

Analysis Model tutorial available in
Enhanced WebAssign

online in Enhanced WebAssign [E13 Guided Problem

Y1 Master It tutorial available in Enhanced
WebAssign

Watch It video solution available in

1. straightforward; 2. intermediate;
3. challenging

full solution available in the Student

Solutions Manual/Study Guide

Section 7.2 Work Done by a Constant Force

1. A shopper in a supermarket pushes a cart with a

force of 35.0 N directed at an angle of 25.0° below
the horizontal. The force is just sufficient to bal-
ance various friction forces, so the cart moves at con-
stant speed. (a) Find the work done by the shopper
on the cart as she moves down a 50.0-m-long aisle.
(b) The shopper goesdown the nextaisle, pushing hor-
izontally and maintaining the same speed as before.
If the friction force doesn’t change, would the shop-
per’s applied force be larger, smaller, or the same?
(c) What about the work done on the cart by the
shopper?

Enhanced WebAssign

100 m, what is the work done on the raindrop (a) by
the gravitational force and (b) by air resistance?

. In 1990, Walter Arfeuille of Belgium lifted a 281.5-kg

object through a distance of 17.1 cm using only his
teeth. (a) How much work was done on the object by
Arfeuille in this lift, assuming the object was lifted at
constant speed? (b) What total force was exerted on
Arfeuille’s teeth during the lift?

. The record number of boat lifts, including the boat

and its ten crew members, was achieved by Sami Hei-
nonen and Juha Résdnen of Sweden in 2000. They
lifted a total mass of 653.2 kg approximately 4 in. off
the ground a total of 24 times. Estimate the total work

done by the two men on the boat in this record lift,
ignoring the negative work done by the men when they
lowered the boat back to the ground.

2. A raindrop of mass 3.35 X 107° kg falls vertically at
] constant speed under the influence of gravity and
air resistance. Model the drop as a particle. As it falls



A block of mass m =
2.50 kg is pushed a dis-
tance d = 2.20 m along
a frictionless, horizontal
table by a constant applied
force of magnitude F =
16.0 N directed at an angle

= 25.0° below the hori-
zontal as shown in Figure P7.5. Determine the work
done on the block by (a) the applied force, (b) the
normal force exerted by the table, (c) the gravitational
force, and (d) the net force on the block.

¥
h\_s

m

‘4; d——>

Figure P7.5

Spiderman, whose mass is 80.0 kg, is dangling on the

[} free end of a 12.0-m-long rope, the other end of which
is fixed to a tree limb above. By repeatedly bending at
the waist, he is able to get the rope in motion, even-
tually getting it to swing enough that he can reach a
ledge when the rope makes a 60.0° angle with the ver-
tical. How much work was done by the gravitational
force on Spiderman in this maneuver?

Section 7.3 The Scalar Product of Two Vectors

7. For any two vectors A and B, show that A B = A.B
AyB, + A.B.. Suggestions: Write A and B in unit- vector
form and use Equations 7.4 and 7.5.

8. Vector A hasa magnitude of 5.00 units, and vector B
has a magnitude of 9.00 units. The two, vectors make
an angle of 50.0° with each other. Find A-B.

Note: In Problems 9 through 12, calculate numerical
answers to three significant figures as usual.

9.For A =3{+j—k B =-i+2j+5k and C =
[2j — 3k find C- (A — B).

iwi

10. Find the scalar product of the vectors in Figure P7.10.

y

o

lv//—

X
%ST

32.8 N

17.3 cm

Figure P7.10

[11.] A force F = (6i — QJ) N acts on a particle that under-

[ goesadisplacement AT = (31 + j) m.Find (a) the work
done by the force on the particle and (b) the angle
between F and AT.

12. Using the definition of the scalar product, find the
angles between (a) A = =3i— 2] and B =4i-— 4J,
(b)A— —21 +4J and B —31 —4_] + 9Kk, and(c)A—
1—2_]+2kand B = 3] + 4k.

13. Let B = 5.00 m at 60.0°. Let the vector C have the same
magnitude as A and a direction angle greater than
that of A by 25.0°. Let A-B =30.0m?and B ¢ =
35.0 m?. Find the magnitude and direction of A.
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Section 7.4 Work Done by a Varying Force

14. The force acting on a particle varies as shown in Figure
Ml P7.14. Find the work done by the force on the particle
M as it moves (a) from x = 0 to x = 8.00 m, (b) from x =

8.00m to x = 10.0 m, and (c) from x = 0 to x = 10.0 m.

£ (N)
6
4k
9|

_2 -
Figure P7.14

A particle is subject to a force F, that varies with posi-

M tion as shown in Figure P7.15. Find the work done by

the force on the particle as it moves (a) from x = 0 to

x = 5.00 m, (b) from x = 5.00 m to x = 10.0 m, and

(c) from x = 10.0 m to x = 15.0 m. (d) What is the total

work done by the force over the distance x = 0 to x =
15.0 m?

£ (N)

2

Lol 11 1 1IN ()
10 12 14 16

Figure P7.15 Problems 15 and 34.

16. In a control system, an accelerometer consists of a
4.70-g object sliding on a calibrated horizontal rail. A
low-mass spring attaches the object to a flange at one
end of the rail. Grease on the rail makes static friction
negligible, but rapidly damps out vibrations of the slid-
ing object. When subject to a steady acceleration of
0.800g, the object should be at a location 0.500 cm away
from its equilibrium position. Find the force constant
of the spring required for the calibration to be correct.

When a 4.00-kg object is hung vertically on a cer-

Y tain light spring that obeys Hooke’s law, the spring

Ml stretches 2.50 cm. If the 4.00-kg object is removed,
(a) how far will the spring stretch if a 1.50-kg block
is hung on it? (b) How much work must an external
agent do to stretch the same spring 4.00 cm from its
unstretched position?

18. Hooke’s law describes a certain light spring of
unstretched length 35.0 cm. When one end is attached
to the top of a doorframe and a 7.50-kg object is hung
from the other end, the length of the spring is 41.5 cm.
(a) Find its spring constant. (b) The load and the spring
are taken down. Two people pull in opposite directions
on the ends of the spring, each with a force of 190 N.
Find the length of the spring in this situation.

19. An archer pulls her bowstring back 0.400 m by exerting
a force that increases uniformly from zero to 230 N.
(a) What is the equivalent spring constant of the bow?
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(b) How much work does the archer do on the string in
drawing the bow?

A light spring with spring constant 1 200 N/m is hung
from an elevated support. From its lower end hangs
a second light spring, which has spring constant
1 800 N/m. An object of mass 1.50 kg is hung at rest
from the lower end of the second spring. (a) Find the
total extension distance of the pair of springs. (b) Find
the effective spring constant of the pair of springs as a
system. We describe these springs as in series.

A light spring with spring constant k,; is hung from an

22.

23.

24.

25.

26.

elevated support. From its lower end a second light
spring is hung, which has spring constant k,. An object
of mass m is hung at rest from the lower end of the sec-
ond spring. (a) Find the total extension distance of the
pair of springs. (b) Find the effective spring constant
of the pair of springs as a system.

Express the units of the force constant of a spring in SI
fundamental units.

A cafeteria tray dispenser supports a stack of trays on
a shelf that hangs from four identical spiral springs
under tension, one near each corner of the shelf. Each
tray is rectangular, 45.3 cm by 35.6 cm, 0.450 cm thick,
and with mass 580 g. (a) Demonstrate that the top tray
in the stack can always be at the same height above the
floor, however many trays are in the dispenser. (b) Find
the spring constant each spring should have for the
dispenser to function in this convenient way. (c) Is any
piece of data unnecessary for this determination?

A light spring with force constant 3.85 N/m is com-
pressed by 8.00 cm as it is held between a 0.250-kg block
on the left and a 0.500-kg block on the right, both rest-
ing on a horizontal surface. The spring exerts a force
on each block, tending to push the blocks apart. The
blocks are simultaneously released from rest. Find the
acceleration with which each block starts to move, given
that the coefficient of kinetic friction between each
block and the surface is (a) 0, (b) 0.100, and (c) 0.462.

A small particle of mass ¥
m is pulled to the top <.
of a frictionless half- o
cylinder (of radius R) by R

a light cord that passes

over the top of the cyl- p

inder as illustrated in

Figure P7.25. (a) Assum- Figure P7.25

ing the particle moves at

a constant speed, show that I = mg cos 6. Note: If the
particle moves at constant speed, the component of its
acceleration tangent to the cylinder must be zero at all
times. (b) By directly integrating W= [ F - d ¥, find
the work done in moving the particle at constant speed
from the bottom to the top of the half-cylinder.

The force acting on a particle is I, = (8x — 16), where
I'is in newtons and x is in meters. (a) Make a plot of
this force versus x from x = 0 to x = 3.00 m. (b) From
your graph, find the net work done by this force on the
particle as it moves from x = 0 to x = 3.00 m.

27.

When different loads hang on a spring, the spring
stretches to different lengths as shown in the follow-
ing table. (a) Make a graph of the applied force versus
the extension of the spring. (b) By least-squares fit-
ting, determine the straight line that best fits the data.
(c) To complete part (b), do you want to use all the
data points, or should you ignore some of them?
Explain. (d) From the slope of the best-fit line, find
the spring constant k. (e) If the spring is extended to
105 mm, what force does it exert on the suspended
object?

F (N)

20 40 60 80 10 12 14 16 18 20 22

L(mm) 15 32 49 64 79 98 112 126 149 175 190

28.

29.

A 100-g bullet is fired from a rifle having a barrel
0.600 m long. Choose the origin to be at the location
where the bullet begins to move. Then the force (in
newtons) exerted by the expanding gas on the bullet is
15 000 + 10 000x — 25000x%, where x is in meters.
(a) Determine the work done by the gas on the bullet
as the bullet travels the length of the barrel. (b) What
If? If the barrel is 1.00 m long, how much work is done,
and (c) how does this value compare with the work cal-
culated in part (a)?

— a a —
A force F = (4xi + 3yj), where F is in newtons and

M x and y are in meters, acts on an object as the object

30.

moves in the x direction from the origin to x =
5.00 m. Find the work

W= fF d¥ doneby u(N)

the force on the object. 8 b

Review. The graph in

Figure P7.30 specifies a

functional relationship 0 | | v (cm)
between the two vari- L /10 20 30
ables wand v. (a) Find a

f udv. (b) Flndf u dv. -4

() Find f v du. Figure P7.30

Section 7.5 Kinetic Energy and the Work-Kinetic
Energy Theorem

31.

A 3.00-kg object has a velocity (6.001 — 2.00j) m/s.

M (2) What is its kinetic energy at this moment? (b) What

32.
speed for 12.0 m along a wood floor does 350 ] of work

33.

is the net work done on the object if its velocity changes
to (8.001 + 4. OOJ) m/sp (Note From the definition of
the dot product, v* = ¥+ ¥ .)

A worker pushing a 35.0-kg wooden crate at a constant

by applying a constant horizontal force of magnitude
Fon the crate. (a) Determine the value of F. (b) If the
worker now applies a force greater than F, describe
the subsequent motion of the crate. (c) Describe what
would happen to the crate if the applied force is less
than F.

A 0.600-kg particle has a speed of 2.00 m/s at point ®

M and kinetic energy of 7.50 J at point ®. What is (a) its

kinetic energy at @, (b) its speed at ®, and (c) the net
work done on the particle by external forces as it moves
from @ to ®?



34.

A 4.00-kg particle is subject to a net force that varies

M with position as shown in Figure P7.15. The particle

starts from rest at x = 0. What is its speed at (a) x =
5.00 m, (b) x =10.0 m, and (c) x = 15.0 m?

A 2100-kg pile driver is used to drive a steel I-beam into
the ground. The pile driver falls 5.00 m before comin
g P g

36.

into contact with the top of the beam, and it drives the
beam 12.0 cm farther into the ground before coming
to rest. Using energy considerations, calculate the aver-
age force the beam exerts on the pile driver while the
pile driver is brought to rest.

Review. In an electron microscope, there is an electron

gun that contains two charged metallic plates 2.80 cm

38.

39.

apart. An electric force accelerates each electron in
the beam from rest to 9.60% of the speed of light over
this distance. (a) Determine the kinetic energy of the
electron as it leaves the electron gun. Electrons carry
this energy to a phosphorescent viewing screen where
the microscope’s image is formed, making it glow. For
an electron passing between the plates in the electron
gun, determine (b) the magnitude of the constant
electric force acting on the electron, (c) the accelera-
tion of the electron, and (d) the time interval the elec-
tron spends between the plates.

Review. You can think of the work-kinetic energy the-
orem as a second theory of motion, parallel to New-
ton’s laws in describing how outside influences affect
the motion of an object. In this problem, solve parts
(@), (b), and (c) separately from parts (d) and (e) so
you can compare the predictions of the two theories.
A 15.0-g bullet is accelerated from rest to a speed of
780 m/s in a rifle barrel of length 72.0 cm. (a) Find
the kinetic energy of the bullet as it leaves the bar-
rel. (b) Use the work-kinetic energy theorem to find
the net work that is done on the bullet. (¢) Use your
result to part (b) to find the magnitude of the average
net force that acted on the bullet while it was in the
barrel. (d) Now model the bullet as a particle under
constant acceleration. Find the constant acceleration
of a bullet that starts from rest and gains a speed of
780 m/s over a distance of 72.0 cm. (e) Modeling the
bullet as a particle under a net force, find the net
force that acted on it during its acceleration. (f) What
conclusion can you draw from comparing your results
of parts (c) and (e)?

Review. A 7.80-g bullet moving at 575 m/s strikes the
hand of a superhero, causing the hand to move 5.50 cm
in the direction of the bullet’s velocity before stopping.
(a) Use work and energy considerations to find the
average force that stops the bullet. (b) Assuming the
force is constant, determine how much time elapses
between the moment the bullet strikes the hand and
the moment it stops moving.

Review. A 5.75-kg object passes through the origin
at time ¢ = 0 such that its x component of velocity is
5.00 m/s and its y component of velocity is —3.00 m/s.
(a) What is the kinetic energy of the object at this time?
(b) At a later time ¢ = 2.00 s, the particle is located at
x = 8.50 m and y = 5.00 m. What constant force acted
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on the object during this time interval? (c) What is the
speed of the particle at ¢ = 2.00 s?

Section 7.6 Potential Energy of a System
A 1 000-kg roller coaster car is initially at the top of a

41.

42,

rise, at point ®. It then moves 135 ft, atan angle of 40.0°
below the horizontal, to a lower point ®. (a) Choose
the car at point ® to be the zero configuration for
gravitational potential energy of the roller coaster—
Earth system. Find the potential energy of the system
when the car is at points ® and ®, and the change
in potential energy as the car moves between these
points. (b) Repeat part (a), setting the zero configura-
tion with the car at point ®.

A 0.20-kg stone is held 1.3 m above the top edge of a
water well and then dropped into it. The well has a
depth of 5.0 m. Relative to the configuration with the
stone at the top edge of the well, what is the gravita-
tional potential energy of the stone—Earth system
(a) before the stone is released and (b) when it reaches
the bottom of the well? (c) What is the change in gravi-
tational potential energy of the system from release to
reaching the bottom of the well?

A 400-N child is in a swing that is attached to a pair

I of ropes 2.00 m long. Find the gravitational potential

energy of the child-Earth system relative to the child’s
lowest position when (a) the ropes are horizontal,
(b) the ropes make a 30.0° angle with the vertical, and
(c) the child is at the bottom of the circular arc.

Section 7.7 Conservative and Nonconservative Forces

A 4.00-kg particle moves
[} from the origin to posi-

44.

y (m)

©

tion ©, having coordi- (5.00, 5.00)

nates x = 5.00 m and y =
5.00 m (Fig. P7.43). One
force on the particle is
the gravitational force
acting in the negative y
direction. Using Equa-
tion 7.3, calculate the
work done by the gravi-
tational force on the
particle as it goes from O
to © along (a) the purple path, (b) the red path, and
(c) the blue path. (d) Your results should all be identi-
cal. Why?

(a) Suppose a constant force acts on an object. The
force does not vary with time or with the position or
the velocity of the object. Start with the general defini-
tion for work done by a force

Figure P7.43
Problems 43 through 46.

J
W= J F-d¥
and show that the force is conservative. (b) As a spe-
cial case, suppose the force F = (31 + 4j) N acts on a
particle that moves from O to © in Figure P7.43. Cal-
culate the work done by F on the particle as it moves
along each one of the three paths shown in the figure
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and show that the work done along the three paths is
identical.

-A force acting on a particle moving in the xy plane is
[l given by F = (2y1 + x _|) where F is in newtons

46

and x and y are in meters. The particle moves from
the origin to a final position having coordinates x =
500 m and y = 5.00 m as shown in Figure P7.43.
Calculate the workdone by F on the particle asit moves
along (a) the purple path, (b) the red path, and
(c) the blue path. (d) Is F conservative or nonconser-
vative? (e) Explain your answer to part (d).

. An object moves in the xy plane in Figure P7.43 and

experiences a friction force with constant magnitude
3.00 N, always acting in the direction opposite the
object’s velocity. Calculate the work that you must do
to slide the object at constant speed against the fric-
tion force as the object moves along (a) the purple
path O to ® followed by a return purple path to O,
(b) the purple path O to © followed by a return blue
path to O, and (c) the blue path O to © followed by a
return blue path to O. (d) Each of your three answers
should be nonzero. What is the significance of this
observation?

Section 7.8 Relationship Between Conservative
Forces and Potential Energy

The potential energy of a system of two particles sepa-

48.

49.

50.

rated by a distance ris given by U(r) = A/, where A
is a constant. Find the radial force F, that each particle
exerts on the other.

Why is the following situation impossible? A librarian lifts a
book from the ground to a high shelf, doing 20.0 J of
work in the lifting process. As he turns his back, the
book falls off the shelf back to the ground. The gravita-
tional force from the Earth on the book does 20.0 J of
work on the book while it falls. Because the work done
was 20.0 ] + 20.0 J = 40.0 J, the book hits the ground
with 40.0 J of kinetic energy.

A potential energy function for a system in which a
two-dimensional force acts is of the form U = 3x%y —
7x. Find the force that acts at the point (x, y).

A single conservzgwe force actlng on a particle within a
system varies as F = (—Ax + Bx)i, where A and Bare
constants, F is in newtons, and xis in meters. (a) Calcu-
late the potential energy function U(x) associated with
this force for the system, taking U = 0 at x = 0. Find
(b) the change in potential energy and (c) the change
in kinetic energy of the system as the particle moves
from x = 2.00 m to x = 3.00 m.

A single conservative force acts on a 5.00-kg particle
7} within a system due to its interaction with the rest of

the system. The equation I, = 2x + 4 describes the
force, where I, is in newtons and x is in meters. As the
particle moves along the x axis from x = 1.00 m to x =
5.00 m, calculate (a) the work done by this force on the
particle, (b) the change in the potential energy of the
system, and (c) the kinetic energy the particle has at
x = 5.00 m if its speed is 3.00 m/s at x = 1.00 m.
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52.

53.

For the potential U(])
energy curve shown J®
in Figure P7.52, 1 ®

(a) determine whe-

. oL

- o ©
positive, negative, or 0 | | | | I x (m
6 8 | 10 (m)

ther the force F, is

zero at the five 2\ ¢

points  indicated. -2

(b) Indicate points

of stable, unstable, ~*- ©

and neutral equilib- Figure P7.52

rium. (c) Sketch the
curve for I, versus x from x = 0 to x = 9.5 m.

A right circular cone can theoretically be balanced on a
horizontal surface in three different ways. Sketch these
three equilibrium configurations and identify them as
positions of stable, unstable, or neutral equilibrium.

Additional Problems

54.

55.

56.

57.

The potential energy function for a system of particles
is given by U(x) = —x> + 2x% + 3x, where x is the posi-
tion of one particle in the system. (a) Determine the
force I, on the particle as a function of x. (b) For what
values of x is the force equal to zero? (c) Plot U(x) ver-
sus x and F, versus x and indicate points of stable and
unstable equilibrium.

Review. A baseball outfielder throws a 0.150-kg base-
ball at a speed of 40.0 m/s and an initial angle of 30.0°
to the horizontal. What is the kinetic energy of the
baseball at the highest point of its trajectory?

A particle moves along the x axis from x = 12.8 m to
x = 23.7 m under the influence of a force

375

x4 3.75«x
where I'is in newtons and x is in meters. Using numeri-
cal integration, determine the work done by this force
on the particle during this displacement. Your result
should be accurate to within 2%.

Two identical steel balls, each of diameter 25.4 mm
and moving in opposite directions at 5 m/s, run into
each other head-on and bounce apart. Prior to the col-
lision, one of the balls is squeezed in a vise while pre-
cise measurements are made of the resulting amount
of compression. The results show that Hooke’s law is a
fair model of the ball’s elastic behavior. For one datum,
a force of 16 kN exerted by each jaw of the vise results
in a 0.2-mm reduction in the diameter. The diameter
returns to its original value when the force is removed.
(a) Modeling the ball as a spring, find its spring con-
stant. (b) Does the interaction of the balls during the
collision last only for an instant or for a nonzero time
interval? State your evidence. (c) Compute an estimate
for the kinetic energy of each of the balls before they
collide. (d) Compute an estimate for the maximum
amount of compression each ball undergoes when the
balls collide. () Compute an order-of-magnitude esti-
mate for the time interval for which the balls are in



contact. (In Chapter 15, you will learn to calculate the
contact time interval precisely.)

58. When an object is displaced by an amount x from sta-

ble equilibrium, a restoring force acts on it, tending
to return the object to its equilibrium position. The
magnitude of the restoring force can be a complicated
function of x. In such cases, we can generally imag-
ine the force function F(x) to be expressed as a power
series in x as F(x) = —(kx + kox® + kyx® +---). The
first term here is just Hooke’s law, which describes the
force exerted by a simple spring for small displace-
ments. For small excursions from equilibrium, we gen-
erally ignore the higher-order terms, but in some cases
it may be desirable to keep the second term as well.
If we model the restoring force as I = —(kyx + kyx?),
how much work is done on an object in displacing it
from x =0to x = by an applied force —F?

max

59. A 6 000-kg freight car rolls along rails with negligible

friction. The car is brought to rest by a combination of
two coiled springs as illustrated in Figure P7.59. Both
springs are described by Hooke’s law and have spring
constants k;, = 1 600 N/m and k, = 3 400 N/m. After
the first spring compresses a distance of 30.0 cm, the
second spring acts with the first to increase the force as
additional compression occurs as shown in the graph.
The car comes to rest 50.0 cm after first contacting the
two-spring system. Find the car’s initial speed.

2000

1500 pececee e e =

1000

500 e eee=o

Total force (N)

J
50 60

0 10 20 30 40
Distance (cm)

Figure P7.59

60. Why is the following situation impossible? In a new casino,

a supersized pinball machine is introduced. Casino
advertising boasts that a professional basketball player
can lie on top of the machine and his head and feet
will not hang off the edge! The ball launcher in the
machine sends metal balls up one side of the machine
and then into play. The spring in the launcher (Fig.
P7.60) has a force constant of 1.20 N/cm. The sur-
face on which the ball moves is inclined 6 = 10.0°
with respect to the horizontal. The spring is initially
compressed its maximum distance d = 5.00 cm. A

61.

62.

An inclined plane of

64.
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Problems

ball of mass 100 g is projected into play by releasing
the plunger. Casino visitors find the play of the giant
machine quite exciting.

Figure P7.60

Review. Two constant forces act on an object of mass
m = 5.00 kg moving in the xy plane as shown, in
Figure P7.61. Force Fl is 25.0 N at 35.0°, and force Fz is
42.0 N at 150° At time ¢ = 0, the object is at the origin
and has velocity (4. 001 + 2. r)()J) m/s. (a) Express the
two forces in unit-vector notation. Use unit-vector nota-
tion for your other answers. (b) Find the total force
exerted on the object. (c) Find the object’s acceleration.
Now, considering the instant ¢ = 3.00 s, find (d) the
object’s velocity, (e) its
position, (f) its kinetic
energy from gmv/, and
(g) its kinetic energy
from imv + > F AT,
(h) What conclusion
can you draw by com-
paring the answers to
parts (f) and (g)?

Figure P7.61

The spring constant of an automotive suspension
spring increases with increasing load due to a spring
coil that is widest at the bottom, smoothly tapering to a
smaller diameter near the top. The result is a softer
ride on normal road surfaces from the wider coils, but
the car does not bottom out on bumps because when
the lower coils collapse, the stiffer coils near the top
absorb the load. For such springs, the force exerted by
the spring can be empirically found to be given by
F = ax’. For a tapered spiral spring that compresses
12.9 cm with a 1 000-N load and 31.5 cm with a 5 000-N
load, (a) evaluate the constants a and b in the empiri-
cal equation for I"and (b) find the work needed to
compress the spring 25.0 cm.

angle 6 = 20.0° has a
spring of force constant
k = 500 N/m fastened
securely at the bottom
so that the spring is par-
allel to the surface as
shown in Figure P7.63.
A block of mass m =
2.50 kg is placed on the
plane at a distance d = 0.300 m from the spring. From
this position, the block is projected downward toward
the spring with speed v = 0.750 m/s. By what distance
is the spring compressed when the block momentarily
comes to rest?

Figure P7.63
Problems 63 and 64.

An inclined plane of angle 0 has a spring of force
constant k fastened securely at the bottom so that the
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65.

Chapter 7 Energy of a System

spring is parallel to the surface. A block of mass m is
placed on the plane at a distance d from the spring.
From this position, the block is projected downward
toward the spring with speed v as shown in Figure
P7.63. By what distance is the spring compressed when
the block momentarily comes to rest?

(a) Take U= 5 for asystem with a particle at position x =
0 and calculate the potential energy of the system as
a function of the particle position x. The force on the
particle is given by (8¢7%¥) i (b) Explain whether the
force is conservative or nonconservative and how you
can tell.

Challenge Problems

66.

A particle of mass m = 1.18 kg is attached between
two identical springs on a frictionless, horizontal
tabletop. Both springs have spring constant k and
are initially unstressed, and the particle is at x = 0.
(@) The particle is pulled a distance x along a direc-
tion perpendicular to the initial configuration of the
springs as shown in Figure P7.66. Show that the force
exerted by the springs on the particle is

N
F = —2kx<1 -

L )
p— |
Vo + 12

67.|Review. A light spring

(b) Show that the potential energy of the system is
U(x) = kx® + 2kL(L — V% + I?)

(c) Make a plot of U(x)
versus x and identify
all equilibrium points.
Assume L =1.20 m and
k = 40.0 N/m. (d) If
the particle is pulled
0.500 m to the right
and then released,
what is its speed when
it reaches x = 0?

Overhead view

Figure P7.66

has unstressed length

15.5 cm. It is described by Hooke’s law with spring
constant 4.30 N/m. One end of the horizontal spring
is held on a fixed vertical axle, and the other end is
attached to a puck of mass m that can move without
friction over a horizontal surface. The puck is set into
motion in a circle with a period of 1.30 s. (a) Find the
extension of the spring x as it depends on m. Evaluate
x for (b) m = 0.070 0 kg, (c) m = 0.140 kg, (d) m =
0.180 kg, and (e) m = 0.190 kg. (f) Describe the pattern
of variation of xas it depends on m.



