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G Extending the Particle in Uniform

Circular Motion Model

In Section 4.4, we discussed the analysis model of a particle in uniform circular
motion, in which a particle moves with constant speed v in a circular path having a
radius » The particle experiences an acceleration that has a magnitude
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Figure 6.1 An overhead view of a
puck moving in a circular path in a

Figure 6.2 The string holding the

horizontal plane. puck in its circular path breaks.

The acceleration is called centripetal acceleration because @, is directed toward
the center of the circle. Furthermore, @, is always perpendicular to V. (If there
were a component of acceleration parallel to V, the particle’s speed would be
changing.)

Let us now extend the particle in uniform circular motion model from Section
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied
to a string of length r and moves at constant speed in a horizontal, circular path
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the
string is anchored to a peg at the center of the circular path of the puck. Why does
the puck move in a circle? According to Newton’s first law, the puck would move
in a straight line if there were no force on it; the string, hovL(eV'el‘, prevents motion
along a straight line by exerting on the puck a radial force F, that makes it follow
the circular path. This force is directed along the string toward the center of the
circle as shown in Figure 6.1.

If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

2

EFZ ma, = mvT (6.1)

A force causing a centripetal acceleration acts toward the center of the circular
path and causes a change in the direction of the velocity vector. If that force
should vanish, the object would no longer move in its circular path; instead, it
would move along a straight-line path tangent to the circle. This idea is illustrated
in Figure 6.2 for the puck moving in a circular path at the end of a string in a
horizontal plane. If the string breaks at some instant, the puck moves along the
straight-line path that is tangent to the circle at the position of the puck at this
instant.

uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you
from the seat when you are at the top of the wheel? (a) upward (b) downward

. (c) impossible to determine (ii) From the same choices, what is the direction of
4 the net force on you when you are at the top of the wheel?

< Force causing centripetal
acceleration

Pitfall Prevention 6.1

Direction of Travel When

the String Is Cut Study Figure

6.2 very carefully. Many students
(wrongly) think that the puck will
move radially away from the center
of the circle when the string is cut.
The velocity of the puck is tangent
to the circle. By Newton’s first law,
the puck continues to move in

the same direction in which it is
moving just as the force from the
string disappears.
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PGPS OLEE  Particle in Uniform Circular Motion (Extension)

Imagine a moving object that can be mod- Examples
eled as a particle. If it moves in a circular
path of radius rat a constant speed v, it
experiences a centripetal acceleration.
Because the particle is accelerating, there
must be a net force acting on the particle.
That force is directed toward the center of
the circular path and is given by

e the tension in a string of constant length
acting on a rock twirled in a circle

¢ the gravitational force acting on a planet
traveling around the Sun in a perfectly
circular orbit (Chapter 13)

¢ the magnetic force acting on a charged
particle moving in a uniform magnetic field (Chapter 29)

e the electric force acting on an electron in orbit around a
nucleus in the Bohr model of the hydrogen atom (Chapter 42)

o2
EF = ma, = m7 (6.1)

Example 6.1 The Conical Pendulum LAY

I

A small ball of mass m is suspended from a string of length L. The ball revolves
with constant speed v in a horizontal circle of radius r as shown in Figure 6.3.

(Because the string sweeps out the surface of a cone, the system is known as a . 9: T cos 9//
conical pendulum.) Find an expression for v in terms of the geometry in Figure 6.3. T I 0/

12 g y g A /

L.y (i
SOLUTION - | J/
S~ b7 T'sin 6

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your- l ! i
self that the string sweeps out a cone and that the ball moves in a horizontal circle. mg mg
Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we
model it as a particle in equilibrium in the vertical direction. It experiences a cen- Figure 6.3 (Example 6.1) (a) A
tripetal acceleration in the horizontal direction, so it is modeled as a particle in conical pendulum. The path of the
uniform circular motion in this direction. ball is a horizontal circle. (b) The

........................................................................................... forces acting on the ball.

Analyze Let 6 represent the angle between the string and the vertical. In the dia-

gram of forces acting on the ball in Figure 6.3b, the force T exerted by the string on the ball is resolved into a vertical
component 7 cos 6 and a horizontal component 7'sin 6 acting toward the center of the circular path.

Apply the particle in equilibrium model in the vertical 2 Iy =Tcos0 —mg=0
direction: (1) Tcosd = mg

. S . . . mu
Use Equation 6.1 from the particle in uniform circular Q) E I,=Tsin 0 = ma, = ——
motion model in the horizontal direction:

2

Divide Equation (2) by Equation (1) and use tan 6 = <

sin 6/cos 6 = tan 0: &

Solve for v: v = \/rg tan 0
Incorporate r = Lsin 6 from the geometry in Figure 6.3a: v= "V Lgsin 0 tan 0

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when 6 goes to 90° so
that the string is horizontal. Because the tangent of 90° is infinite, the speed v is 1nf1n1te which tells us the string can-
not possibly be horizontal. If it were, there would be no vertical component of the force T to balance the gravitational
force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by
a frictionless table.
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Example 6.2 How Fast Can It Spin?

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can
move before the cord breaks? Assume the string remains horizontal during the motion.

SOLUTION

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

Analyze Incorporate the tension and the centripetal acceler- 1'= m—
ation into Newton’s second law as described by Equation 6.1:

T
Solve for v: 1) v=4 /J
m

. . ) T (50.0N)(1.50 m)
Find the maximum speed the puck can have, which corre- Upax = = 0500 Kk = 122 m/s
sponds to the maximum tension the string can withstand: ’ 5

Finalize Equation (1) shows that v increases with 7and decreases with larger m, as we expected from our conceptual-
ization of the problem.

WERNEIES  Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string
is less likely to break when the puck travels in a circle of larger radius.

]
What Is the Maximum Speed of the Car? AM

A 1500-kg car moving on a flat, horizontal road negotiates a curve as shown s\

|

-

in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static
friction between the tires and dry pavement is 0.523, find the maximum speed
the car can have and still make the turn successfully.

SOLUTION

Conceptualize Imagine that the curved roadway is part of a large circle so
that the car is moving in a circular path. a

Categorize Based on the Conceptualize step of the problem, we model the car
as a particle in uniform circular motion in the horizontal direction. The car is not
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical
direction. f,

_——

Analyze Figure 6.4b shows the forces on the car. The force that enables the
car to remain in its circular path is the force of static friction. (It is static mg
because no slipping occurs at the point of contact between road and tires. If b}

this force of static friction were zero—for example, if the car were on an icy
road—the car would continue in a straight line and slide off the curved road.) ¢ co o o ted toward the center
The maximum speed v,,,. the car can have around the curve is the speed at  of the curve keeps the car moving in a cir-
which it is on the verge of skidding outward. At this point, the friction force  cular path. (b) The forces acting on the car.
has its maximum value f .. = #n. continued

Figure 6.4 (Example 6.3) (a) The force
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> 6.3
2
max

Apply Equation 6.1 from the particle in uniform circular motion (1) f,.xc = gn = m
model in the radial direction for the maximum speed condition:

Apply the particle in equilibrium model to the car in the verti- E EFE=0 > n—mg=0 - n=mg
cal direction:

m

[ snr m
Solve Equation (1) for the maximum speed and substitute for n: (2) Vpux = MT Y L V w,gr

Substitute numerical values: U = V(0.523)(9.80 m/s%)(85.0 m) = 13.4m/s
Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h,
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various
masses of vehicles using the road.

WSS Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet
road than a dry road.

To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

2
Unnax

s = or

Substituting the numerical values gives

2 8.00 2
My = Do _ ( :n/S) = 0.187
ar (9.80 m/s?)(35.0 m)

which is indeed smaller than the coefficient of 0.523 for the dry road.

Example 6.4 The Banked Roadway

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way
that a car will not have to rely on friction to round the curve without skidding. In
other words, a car moving at the designated speed can negotiate the curve even when
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and
the radius of the curve is 35.0 m. At what angle should the curve be banked?

SOLUTION

Conceptualize The difference between this example and Example 6.3 is that the ‘

car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, /,15/ .

with the center of the circular path of the car far to the left of the figure. Notice I R

that the horizontal component of the normal force participates in causing the car’s  /

centripetal acceleration. Figure 6.5 (Example 6.4) A car
Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in moves into the page and is round-
the vertical direction and a particle in uniform circular motion in the horizontal ing a curve on 2 road banked atan
direction. angle 0 to the horizontal. When

friction is neglected, the force that

. causes the centripetal accelera-
Analyze On alevel (unbanked) road, the force that causes the centripetal accelera- tion and keeps the car moving in

tion is the force of static friction between tires and the road as we saw in the pre- its circular path is the horizontal
ceding example. If the road is banked at an angle 6 as in Figure 6.5, however, the component of the normal force.
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D 6.4

normal force 1 has a horizontal component toward the center of the curve. Because the road is to be designed so that
the force of static friction is zero, the component n, = nsin 0 is the only force that causes the centripetal acceleration.
2

Write Newton’s second law for the car in the radial direc- (1) 2 F,= nsin 0 = .
tion, which is the x direction: !
Apply the particle in equilibrium model to the car in the > F,=mncos —mg=20
vertical direction: (@) ncos6 = mg
2
Divide Equation (1) by Equation (2): (3) tan = —
g
13.4 2
Solve for the angle 6: 0 = tan™! ( m/s) 27.6°

(35.0m)(9.80 m/s2) |
Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force,
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

WSS Imagine that this same roadway were built on Mars in the future to connect different colony centers.
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.

Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of gfor a roadway
of fixed radius rbanked at a fixed angle 0. Therefore, if gis smaller, as it is on Mars, the speed v with which the roadway
can be safely traveled is also smaller.

Example 6.5 Riding the Ferris Wheel P Top
A%
A child of mass m rides on a Ferris wheel as shown ‘ l%»

in Figure 6.6a. The child moves in a vertical circle of 3 X
radius 10.0 m at a constant speed of 3.00 m/s. % @

(A) Determine the force exerted by the seat on the ,/R' \ ° \ o

child at the bottom of the ride. Express your answer in
terms of the weight of the child, mg. §

N
6

N
Diop

SOLUTION ;
7

Conceptualize Look carefully at Figure 6.6a. Based

on experiences you may have had on a Ferris wheel or Bottom
driving over small hills on a roadway, you would expect a b ] C |
to feel lighter at the top of the path. Similarly, you
would expect to feel heavier at the bottom of the path.
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite
directions. The vector sum of these two forces gives a
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.

Y mg \ 2

Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel.
(b) The forces acting on the child at the bottom of the path.
(c) The forces acting on the child at the top of the path.

continued
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b 6.5

Categorize Because the speed of the child is constant, we can categorize this problem as one involving a particle (the
child) in uniform circular motion, complicated by the gravitational force acting at all times on the child.

Analyze We draw a diagram of forces acting on the child at tile bottom of the ride as shown in Figure 6.6b. The only
forces acting on him are the downward gravitational force F, = mg and the upward force n,,, exerted by the seat.
The net upward force on the child that provides his centripetal acceleration has a magnitude n,,, — mg

2
v

Using the particle in uniform circular motion model, E F=ny—mg=m .
apply Newton’s second law to the child in the radial
direction when he is at the bottom of the ride:

v? v?
Solve for the force exerted by the seat on the child: Npoy = Mg+ m— = mg(l + 7)

7 rg

3.00 §

Substitute numerical values given for the speed and Nyyor = mg{l + ( m/s) 5 }
radius: : (10.0 m)(9.80 m/s?)

= 1.09mg

Hence, the magnitude of the force T, exerted by the seat on the child is greater than the weight of the child by a factor
of 1.09. So, the child experiences an apparent weight that is greater than his true weight by a factor of 1.09.

(B) Determine the force exerted by the seat on the child at the top of the ride.

SOLUTION

Analyze The diagram of forces acting on the child at the top of the ride is shown in Figure 6.6¢c. The net downward
force that provides the centripetal acceleration has a magnitude mg — #

Yop-
2
4
Apply Newton’s second law to the child at this position: 2 F=mg—mng=m .
. v? v?
Solve for the force exerted by the seat on the child: Migp = Mg = M=~ = mg 1— Tgr

Substitute numerical values:

(3.00 m/s)? }
10.0 m)(9.80 m/s?)

= 0.908 mg

ntop = mg|:1 - (

In this case, the magnitude of the force exerted by the seat on the child is less than his true weight by a factor of 0.908,
and the child feels lighter.

Finalize The variations in the normal force are consistent with our prediction in the Conceptualize step of the problem.

WLTNRES  Suppose a defect in the Ferris wheel mechanism causes the speed of the child to increase to 10.0 m/s.
What does the child experience at the top of the ride in this case?

Answer If the calculation above is performed with v = 10.0 m/s, the magnitude of the normal force at the top of the
ride is negative, which is impossible. We interpret it to mean that the required centripetal acceleration of the child is
larger than that due to gravity. As a result, the child will lose contact with the seat and will only stay in his circular path
if there is a safety bar or a seat belt that provides a downward force on him to keep him in his seat. At the bottom of the
ride, the normal force is 2.02 mg, which would be uncomfortable.

WA Nonuniform Circular Motion

In Chapter 4, we found that if a particle moves with varying speed in a circular
path, there is, in addition to the radial component of acceleration, a tangential
component having magnitude |dv/di|. Therefore, the force acting on the particle
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Figure 6.7 When the net force acting on a par-
ticle moving in a circular path has a tangential
component X F,, the particle’s speed changes.

The net force exerted on
the particle is the vector
sum of the radial force

and the tangential force.

must also have a tangentlal and a radial component. Because the total accelera-
tion is @ = a, + &, the total force exerted on the particle is > F=3 F + X F
as shown in Figure 6.7. (We express the radial and tangential forces as net forces
with the summation notation because each force could consist of multiple forces
that combine.) The vector X F is directed toward the center of the circle and is
responsible for the centripetal acceleration. The vector > F, tangent to the circle is
responsible for the tangential acceleration, which represents a change in the par-

ticle’s speed with time. ®

Juick Quiz 6.2 A bead slides at constant speed along a curved wire lying on a J
horizontal surface as shown in Figure 6.8. (a) Draw the vectors representing the
force exerted by the wire on the bead at points ®, ®, and ©. (b) Suppose the

bead in Figure 6.8 speeds up with constant tangential acceleration as it moves ©
toward the right. Draw the vectors representing the force on the bead at points Figure 6.8 (Quick Quiz6.2) A
] @ ®, and ©. bead slides along a curved wire.
Keep Your Eye on the Ball
A small sphere of mass mis attached to the end of a cord of length N
R and set into motion in a vertical circle about a fixed point O as ‘V“’f L
illustrated in Figure 6.9. Determine the tangential acceleration ////f l Tl
of the sphere and the tension in the cord at any instant when the 4 B N
speed of the sphere is v and the cord makes an angle 6 with the ///\ ng \\\
vertical. / R %
/ \ \
' .
! 0 |
Conceptualize Compare the motion of the sphere in Figure 6.9 \ 4 /'l
with that of the child in Figure 6.6a associated with Example \ O AToo i
6.5. Both objects travel in a circular path. Unlike the child in P4
Example 6.5, however, the speed of the sphere is nof uniform in ///
this example because, at most points along the path, a tangen- ol
tial component of acceleration arises from the gravitational force -é»
exerted on the sphere. mg cos 8 ¥
Categorize We model the sphere as a particle under a net force and R
moving in a circular path, but it is not a particle in uniform circu- vy e
lar motion. We need to use the techniques discussed in this sec- Figure 6.9 (Example 6.6) The forces acting on a
tion on nonuniform circular motion. sphere of mass m connected to a cord of length Rand
....................................................................... ey o el el senverd ar @ s apfy
Analyze From the force diagram in Figure 6.9, we see that the on the sphere are shown when the sphere is at the top

only forces acting on the sphere are the gravitational force and bottom of the circle and at an arbitrary location.
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) 6.6
= N = = : .
F, = mg exerted by the Earth and the force T exerted by the cord. We resolve F, into a tangential component mgsin 6
and a radial component mg cos 0.
From the particle under a net force model, apply Newton’s >\ F, = mgsin 0 = ma,
second law to the sphere in the tangential direction: a,= gsin 0
mo®

Apply Newton’s second law to the forces acting on the sphere EF,. =T— mgcosf = ——
. e . = N R
in the radial direction, noting that both T and 4, are

: ; ; 2
directed toward O. As noted in Section 4.5, we can use Equa- _ v

: . . . T= mg| — + cosf
tion 4.14 for the centripetal acceleration of a particle even £

when it moves in a circular path in nonuniform motion:

Finalize Let us evaluate this result at the top and bottom of the circular path (Fig. 6.9):

v2 2
top Ubot
Lo = mg< Re — 1> Toor = mg< Re + 1)

S &

These results have similar mathematical forms as those for the normal forces n,,, and n,, on the child in Example

top

6.5, which is consistent with the normal force on the child playing a similar physical role in Example 6.5 as the ten-
sion in the string plays in this exampLe. Keep in mind, however, that the normal force n on the child in Example 6.5
is always upward, whereas the force T in this example changes direction because it must always point inward along
the string. Also note that v in the expressions above varies for different positions of the sphere, as indicated by the
subscripts, whereas vin Example 6.5 is constant.

WEPNEEES  What if the ball is set in motion with a slower speed?

(A) What speed would the ball have as it passes over the top of the circle if the tension in the cord goes to zero

instantaneously at this point?

Answer Let us set the tension equal to zero in the expression for T, :

top*

g,
0= mg(};; — 1> - Viop = V gR

&

(B) What if the ball is set in motion such that the speed at the top is less than this value? What happens?

Answer In this case, the ball never reaches the top of the circle. At some point on the way up, the tension in the string
goes to zero and the ball becomes a projectile. It follows a segment of a parabolic path over the top of its motion,
rejoining the circular path on the other side when the tension becomes nonzero again.

W Motion in Accelerated Frames

Newton’s laws of motion, which we introduced in Chapter 5, describe observations
that are made in an inertial frame of reference. In this section, we analyze how
Newton’s laws are applied by an observer in a noninertial frame of reference, that
is, one that is accelerating. For example, recall the discussion of the air hockey
table on a train in Section 5.2. The train moving at constant velocity represents an
inertial frame. An observer on the train sees the puck at rest remain at rest, and
Newton’s first law appears to be obeyed. The accelerating train is not an inertial
frame. According to you as the observer on this train, there appears to be no force
on the puck, yet it accelerates from rest toward the back of the train, appearing to
violate Newton’s first law. This property is a general property of observations made
in noninertial frames: there appear to be unexplained accelerations of objects that
are not “fastened” to the frame. Newton’s first law is not violated, of course. It only
appears to be violated because of observations made from a noninertial frame.

On the accelerating train, as you watch the puck accelerating toward the back
of the train, you might conclude based on your belief in Newton’s second law that a



6.3 Motion in Accelerated Frames

force has acted on the puck to cause it to accelerate. We call an apparent force such
as this one a fictitious force because it is not a real force and is due only to observa-
tions made in an accelerated reference frame. A fictitious force appears to act on an
object in the same way as a real force. Real forces are always interactions between
two objects, however, and you cannot identify a second object for a fictitious force.
(What second object is interacting with the puck to cause it to accelerate?) In gen-
eral, simple fictitious forces appear to act in the direction opposite that of the acceler-
ation of the noninertial frame. For example, the train accelerates forward and there
appears to be a fictitious force causing the puck to slide toward the back of the train.

The train example describes a fictitious force due to a change in the train’s
speed. Another fictitious force is due to the change in the direction of the veloc-
ity vector. To understand the motion of a system that is noninertial because of a
change in direction, consider a car traveling along a highway at a high speed and
approaching a curved exit ramp on the left as shown in Figure 6.10a. As the car
takes the sharp left turn on the ramp, a person sitting in the passenger seat leans or
slides to the right and hits the door. At that point the force exerted by the door on
the passenger keeps her from being ejected from the car. What causes her to move
toward the door? A popular but incorrect explanation is that a force acting toward
the right in Figure 6.10b pushes the passenger outward from the center of the cir-
cular path. Although often called the “centrifugal force,” it is a fictitious force. The
car represents a noninertial reference frame that has a centripetal acceleration
toward the center of its circular path. As a result, the passenger feels an apparent
force which is outward from the center of the circular path, or to the right in Figure
6.10Db, in the direction opposite that of the acceleration.

Let us address this phenomenon in terms of Newton’s laws. Before the car enters
the ramp, the passenger is moving in a straight-line path. As the car enters the
ramp and travels a curved path, the passenger tends to move along the original
straight-line path, which is in accordance with Newton’s first law: the natural ten-
dency of an object is to continue moving in a straight line. If a sufficiently large
force (toward the center of curvature) acts on the passenger as in Figure 6.10c,
however, she moves in a curved path along with the car. This force is the force of
friction between her and the car seat. If this friction force is not large enough, the
seat follows a curved path while the passenger tends to continue in the straight-line
path of the car before the car began the turn. Therefore, from the point of view of
an observer in the car, the passenger leans or slides to the right relative to the seat.
Eventually, she encounters the door, which provides a force large enough to enable
her to follow the same curved path as the car.

Another interesting fictitious force is the “Coriolis force.” It is an apparent force
caused by changing the radial position of an object in a rotating coordinate system.

For example, suppose you and a friend are on opposite sides of a rotating circular
platform and you decide to throw a baseball to your friend. Figure 6.11a on page
160 represents what an observer would see if the ball is viewed while the observer is
hovering at rest above the rotating platform. According to this observer, who is in an
inertial frame, the ball follows a straight line as it must according to Newton’s first
law. At ¢ = 0 you throw the ball toward your friend, but by the time ¢, when the ball
has crossed the platform, your friend has moved to a new position and can’t catch
the ball. Now, however, consider the situation from your friend’s viewpoint. Your
friend is in a noninertial reference frame because he is undergoing a centripetal
acceleration relative to the inertial frame of the Earth’s surface. He starts off seeing
the baseball coming toward him, but as it crosses the platform, it veers to one side
as shown in Figure 6.11b. Therefore, your friend on the rotating platform states that
the ball does not obey Newton’s first law and claims that a sideways force is causing
the ball to follow a curved path. This fictitious force is called the Coriolis force.

Fictitious forces may not be real forces, but they can have real effects. An object
on your dashboard really slides off if you press the accelerator of your car. As you
ride on a merry-go-round, you feel pushed toward the outside as if due to the ficti-
tious “centrifugal force.” You are likely to fall over and injure yourself due to the
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From the passenger’s frame of
reference, a force appears to push
her toward the right door, but it is
a fictitious force.

Fictitious
force

Relative to the reference frame of
the Earth, the car seat applies a
real force (friction) toward the
left on the passenger, causing her
to change direction along with
the rest of the car.

Real
force

Figure 6.10 (a) A car approach-
ing a curved exit ramp. What
causes a passenger in the front
seat to move toward the right-
hand door? (b) Passenger’s frame
of reference. (c) Reference frame
of the Earth.
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By the time /; that the ball arrives at the other side From your friend’s point of view, the ball veers to
of the platform, your friend is no longer there to one side during its flight. Your friend introduces a
catch it. According to this observer, the ball follows fictitious force to explain this deviation from the
a straight-line path, consistent with Newton’s laws. expected path.

Friend at

=1 Friend at ?illtal
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v \ ™
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E= You at Ball at
t=0 t=0

Figure 6.11 You and your friend stand at the edge of a rotating circular platform. You throw the
ball at = 0 in the direction of your friend. (a) Overhead view observed by someone in an inertial ref-
erence frame attached to the Earth. The ground appears stationary, and the platform rotates clock-
wise. (b) Overhead view observed by someone in an inertial reference frame attached to the platform.
The platform appears stationary, and the ground rotates counterclockwise.

Pitfall Prevention 6.2
Centrifugal Force The commonly Coriolis force if you walk along a radial line while a merry-go-round rotates. (One

heard phrase *centrifugal force of the authors did so and suffered a separation of the ligaments from his ribs when

is described as a force pulling s : s 5
e e he fell over.) The Coriolis force due to the rotation of the Earth is responsible for

circular path. If you are feeling a rotations of hurricanes and for large-scale ocean currents.

“centrifugal force” on a rotating S o ) ) ) ) .

carnival ride, what is the other (®Duick Quiz 6.3 Consider the passenger in the car making a left turn in Figure 6.10.
object with which you are interact- . Which of the following is correct about forces in the horizontal direction if she
ing? You cannot identify another . is making contact with the right-hand door? (a) The passenger is in equilibrium

object because it is a fictitious
force that occurs when you are in
a noninertial reference frame.

between real forces acting to the right and real forces acting to the left. (b) The
. passenger is subject only to real forces acting to the right. (c) The passenger is sub-
& ject only to real forces acting to the left. (d) None of those statements is true.

Example 6.7 Fictitious Forces in Linear Motion LUl

A small sphere of mass m hangs by a cord from the ceiling of a boxcar that is accelerating to the right as shown in Fig-
ure 6.12. Both the inertial observer on the ground in Figure 6.12a and the noninertial observer on the train in Figure
6.12b agree that the cord makes an angle 6 with respect to the vertical. The noninertial observer claims that a force,
which we know to be fictitious, causes the observed deviation of the cord from the vertical. How is the magnitude of
this force related to the boxcar’s acceleration measured by the inertial observer in Figure 6.12a?

SOLUTION

Conceptualize Place yourself in the role of each of the two observers in Figure 6.12. As the inertial observer on the
ground, you see the boxcar accelerating and know that the deviation of the cord is due to this acceleration. As the
noninertial observer on the boxcar, imagine that you ignore any effects of the car’s motion so that you are not aware of
its acceleration. Because you are unaware of this acceleration, you claim that a force is pushing sideways on the sphere
to cause the deviation of the cord from the vertical. To make the conceptualization more real, try running from rest
while holding a hanging object on a string and notice that the string is at an angle to the vertical while you are acceler-
ating, as if a force is pushing the object backward.
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b 6.7

A noninertial observer riding in the car says that the net
force on the sphere is zero and that the deflection of the
-
cord from the vertical is due to a fictitious force Fg iious
=
that balances the horizontal component of T.

An inertial observer at rest outside the car claims that the

acceleration of the sphere is provided by the horizontal
—

component of T.

Inertial

Noninertial
T‘9| observer

observer

a8

Figure 6.12 (Example 6.7) A small sphere suspended from the ceiling of a boxcar accelerating to the right is deflected as shown.

Categorize For the inertial observer, we model the sphere as a particle under a net force in the horizontal direction and
a particle in equilibrium in the vertical direction. For the noninertial observer, the sphere is modeled as a particle in equi-
librium in both directions.

5
Analyze According to the inertial observer at rest (Fig. 6.12a), the forces on the sphere are the force T exerted by the
cord and the gravitational force. The inertial observer concludes that the sphere’_s) acceleration is the same as that of
the boxcar and that this acceleration is provided by the horizontal component of T.

(1) D F,= Tsin6 = ma
For this observer, apply the particle under a net force Inertial observer
and particle in equilibrium models: @ X Iy=Tcos§ —mg=0

According to the noninertial observer riding in the car (Fig. 6.12b), the cord also makes an angle 6 with the verti-
cal; to that observer, however, the sphere is at rest and so its acceleration is zero. Therefore, the noninertial observer
igtroduces a force (which we know to be fictitious) in the horizontal direction to balance the horizontal component of
T and claims that the net force on the sphere is zero.

[ S FL=T5in6 ~ Frogiou = 0
Apply the particle in equilibrium model for this observer Noninertial observer

in both directions: i > F)=Tcosb — mg=0

These expressions are equivalent to Equations (1) and (2) if Fj ;0us = Ma , where ais the acceleration according to
the inertial observer.

Finalize If we make this substitution in the equation for 2 F; above, we obtain the same mathematical results as the
inertial observer. The physical interpretation of the cord’s deflection, however, differs in the two frames of reference.

WP EIE]  Suppose the inertial observer wants to measure the acceleration of the train by means of the pendulum
(the sphere hanging from the cord). How could she do so?

Answer Our intuition tells us that the angle 6 the cord makes with the vertical should increase as the acceleration
increases. By solving Equations (1) and (2) simultaneously for a, we find that ¢ = gtan 6. Therefore, the inertial observer
can determine the magnitude of the car’s acceleration by measuring the angle 6 and using that relationship. Because the
deflection of the cord from the vertical serves as a measure of acceleration, a simple pendulum can be used as an accelerometer.

W:® Motion in the Presence of Resistive Forces

In Chapter 5, we described the force of kinetic friction exerted on an object moving
on some surface. We completely ignored any interaction between the object and the
medium through which it moves. Now consider the effect of that medium, which
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Figure 6.13 (a) A small sphere
falling through a liquid. (b) A
motion diagram of the sphere as
it falls. Velocity vectors (red) and
acceleration vectors (violet) are
shown for each image after the
first one. (c) A speed-time graph
for the sphere.

can be either a liquid or a gas. The medium exerts a resistive force R on the object
moving through it. Some examples are the air resistance associated with moving
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R depends on factors such as the speed of
the object, and the direction of R is always opposite the direction of the object’s
motion relative to the medium. This direction may or may not be in the direction
opposite the object’s velocity according to the observer. For example, if a marble
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the
moment at which there is no wind and you are looking at a flag hanging limply on
a flagpole. When a breeze begins to blow toward the right, the flag moves toward
the right. In this case, the drag force on the flag from the moving air is to the right
and the motion of the flag in response is also to the right, the same direction as
the drag force. Because the air moves toward the right with respect to the flag, the
flag moves to the left relative to the air. Therefore, the direction of the drag force
is indeed opposite to the direction of the motion of the flag with respect to the air!

The magnitude of the resistive force can depend on speed in a complex way,
and here we consider only two simplified models. In the first model, we assume
the resistive force is proportional to the velocity of the moving object; this model is
valid for objects falling slowly through a liquid and for very small objects, such as
dust particles, moving through air. In the second model, we assume a resistive force
that is proportional to the square of the speed of the moving object; large objects,
such as skydivers moving through air in free fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity

If we model the resistive force acting on an object moving through a liquid or gas as
proportional to the object’s velocity, the resistive force can be expressed as

R = - (6.2)

where b is a constant whose value depends on the properties of the medium and on
the shape and dimensions of the object and ¥V is the velocity of the object 1elat1\e to
the medium. The negative sign indicates that R is in the opposite direction to V.
Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a.
Assuming the only forces acting on the sphere are the resistive force R = —iand
the gravitational force F let us describe its motion.! We model the sphere as a par-

v=0a=g
) * The sphere approaches a
* maximum (or terminal)
: * * speed vup.
A\ 0 . * * v
fl—i 1 ‘ Ll et
v
v=or | 0.63%vp b
mg’ a=0 ‘ :
|
Kﬁ |
|
‘ .
L t
T

The time constant 7 is the
time at which the sphere
reaches a speed of 0.632v;.

A buoyant forceis also acting on the submerged object. This force is constant, and its magnitude is equal to the weight
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.
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ticle under a net force. Applying Newton’s second law to the vertical motion of the
sphere and choosing the downward direction to be positive, we obtain

EFy=ma — mg— bu=ma (6.3)

where the acceleration of the sphere is downward. Noting that the acceleration ais
equal to dv/dt gives

D2 (6.4)
a & m” )

This equation is called a differential equation, and the methods of solving it may not
be familiar to you as yet. Notice, however, that initially when v = 0, the magnitude
of the resistive force is also zero and the acceleration of the sphere is simply g
As tincreases, the magnitude of the resistive force increases and the acceleration
decreases. The acceleration approaches zero when the magnitude of the resistive
force approaches the sphere’s weight so that the net force on the sphere is zero. In

this situation, the speed of the sphere approaches its terminal speed v,. <« Terminal speed
The terminal speed is obtained from Equation 6.4 by setting dv/dt = 0, which gives
m,
mg — buy =0 or vTZTg (6.5)

Because you may not be familiar with differential equations yet, we won’t show
the details of the process that gives the expression for vforall times . If v =0at¢=0,
this expression is

v= %(1 — ) = v (1 =) (6.6)

This function is plotted in Figure 6.13c. The symbol ¢ represents the base of the

natural logarithm and is also called Euler’s number: ¢ = 2.718 28. The time constant

7 = m/b (Greek letter tau) is the time at which the sphere released from rest at ¢ =

0 reaches 63.2% of its terminal speed; when ¢ = 7, Equation 6.6 yields v = 0.632v;.
(The number 0.6321is 1 — ¢71)

We can check that Equation 6.6 is a solution to Equation 6.4 by direct

differentiation:
dv _ d|mg w/ mg b ., o
— = —=(1 - bt/ m =200+ — bt/m ) — bt/ m
di dt[ p e )} b ( m g

(See Appendix Table B.4 for the derivative of eraised to some power.) Substituting
into Equation 6.4 both this expression for dv/dt and the expression for v given by
Equation 6.6 shows that our solution satisfies the differential equation.

Example 6.8 Sphere Falling in Oil

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil, where it experiences a resistive force
proportional to its speed. The sphere reaches a terminal speed of 5.00 cm/s. Determine the time constant 7 and the
time at which the sphere reaches 90.0% of its terminal speed.

SOLUTION

Conceptualize With the help of Figure 6.13, imagine dropping the sphere into the oil and watching it sink to the bot-
tom of the vessel. If you have some thick shampoo in a clear container, drop a marble in it and observe the motion of
the marble.

Categorize We model the sphere as a particle under a net force, with one of the forces being a resistive force that depends
on the speed of the sphere. This model leads to the result in Equation 6.5.

conlinued
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) 6.8

Evaluate the time constant 7:

Substitute numerical values:

Find the time ¢at which the sphere reaches a speed
0f 0.900v, by setting v = 0.900v,in Equation 6.6 and

solving for ¢:

m <v> v,
T=—=m [
b mg g

5.00 cm/s
T=E=——
980 cm /s>

=510 X 10735
0.900v, = v (1 — 77
1—¢""=0.900
7 =0.100
— = 1n (0.100) = ~2.30
1=2.307 = 2.30(5.10 X 1073s) = 11.7 X 10735
= 11.7 ms

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.

mg Y mg

Figure 6.14  (a) An object
falling through air experiences
a resistive force K and a gravi-
tational force F, = mg. (b) The
object reaches terminal speed
when the net force icting on it is
zero, that is, when R = — Fg or
R = mg.

Model 2: Resistive Force Proportional to Object Speed Squared

For objects moving at high speeds through air, such as airplanes, skydivers, cars,
and baseballs, the resistive force is reasonably well modeled as proportional to the
square of the speed. In these situations, the magnitude of the resistive force can be
expressed as

R = §DpAv* (6.7)

where D is a dimensionless empirical quantity called the drag coefficient, p is the
density of air, and A is the cross-sectional area of the moving object measured in a
plane perpendicular to its velocity. The drag coefficient has a value of about 0.5 for
spherical objects but can have a value as great as 2 for irregularly shaped objects.

Let us analyze the motion of a falling object subject to an upward air resistive
force of magnitude R = §DpAv®. Suppose an object of mass m is released from rest.
As Figure 6.14 shows, the object experiences two external fgrces:2 the downward
gravitational force F, = mg and the upward resistive force R. Hence, the magni-
tude of the net force is

EF = mg — %DpAvQ (6.8)

where we have taken downward to be the positive vertical direction. Modeling the
object as a particle under a net force, with the net force given by Equation 6.8, we
find that the object has a downward acceleration of magnitude

a=g-— <D2€j>v2 (6.9)

We can calculate the terminal speed v, by noticing that when the gravitational
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting « = 0 in Equation 6.9 gives

DpAY
£ 2m vr =0

2As with Model 1, there is also an upward buoyant force that we neglect.
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1IELSGEHES  Terminal Speed for Various Objects Falling Through Air

Mass Cross-Sectional Area ur
Object (kg) (m?) (m/s)
Skydiver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 492 %1073 43
Golf ball (radius 2.1 cm) 0.046 1.4 X 1073 144
Hailstone (radius 0.50 cm) 4.8 X 107* 7.9 X 107 14
Raindrop (radius 0.20 cm) 3.4 X107 1.3 X 1073 9.0

[ 2mg
= —_— 6. 0
Uy DpA (6.10)

Table 6.1 lists the terminal speeds for several objects falling through air.

@ulck Quiz 6.4 A baseball and a basketball, having the same mass, are dropped
. through air from rest such that their bottoms are initially at the same height
f above the ground, on the order of 1 m or more. Which one strikes the ground
: : first? (a) The baseball strikes the ground first. (b) The basketball strikes the
® ground first. (c) Both strike the ground at the same time.

Conceptual Example 6.9 The Skysurfer

Consider a skysurfer (Fig. 6.15) who jumps from a plane with his feet attached
firmly to his surfboard, does some tricks, and then opens his parachute.
Describe the forces acting on him during these maneuvers.

SOLUTION

When the surfer first steps out of the plane, he has no vertical velocity. The
downward gravitational force causes him to accelerate toward the ground. As
his downward speed increases, so does the upward resistive force exerted by the
air on his body and the board. This upward force reduces their acceleration,
and so their speed increases more slowly. Eventually, they are going so fast that
the upward resistive force matches the downward gravitational force. Now the
net force is zero and they no longer accelerate, but instead reach their terminal
speed. At some point after reaching terminal speed, he opens his parachute,
resulting in a drastic increase in the upward resistive force. The net force (and
therefore the acceleration) is now upward, in the direction opposite the direc-
tion of the velocity. The downward velocity therefore decreases rapidly, and the
resistive force on the parachute also decreases. Eventually, the upward resistive
force and the downward gravitational force balance each other again and a
much smaller terminal speed is reached, permitting a safe landing.

(Contrary to popular belief, the velocity vector of a skydiver never points upward. You may have seen a video in
which a skydiver appears to “rocket” upward once the parachute opens. In fact, what happens is that the skydiver slows
down but the person holding the camera continues falling at high speed.)

Oliver Furrer/Jupiter Images

Figure 6.15 (Conceptual Example
6.9) A skysurfer.

Example 6.10 Falling Coffee Filters

The dependence of resistive force on the square of the speed is a simplification model. Let’s test the model for a specific
situation. Imagine an experiment in which we drop a series of bowl-shaped, pleated coffee filters and measure their termi-
nal speeds. Table 6.2 on page 166 presents typical terminal speed data from a real experiment using these coffee filters as

conlinued
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D 6.10

they fall through the air. The time constant 7 is small, so a dropped filter quickly reaches terminal speed. Each filter has a
mass of 1.64 g. When the filters are nested together, they combine in such a way that the front-facing surface area does not
increase. Determine the relationship between the resistive force exerted by the air and the speed of the falling filters.

SOLUTION

Conceptualize Imagine dropping the coffee filters through the air. (If you have some coffee filters, try dropping
them.) Because of the relatively small mass of the coffee filter, you probably won’t notice the time interval during
which there is an acceleration. The filters will appear to fall at constant velocity immediately upon leaving your hand.

Categorize Because a filter moves at constant velocity, we model it as a particle in equilibrium.

Analyze At terminal speed, the upward resistive force on the filter balances the downward gravitational force so that
R = mg

1kg
1000g

Likewise, two filters nested together experience 0.032 2 N of resis- Table 6.2 Terminal Speed and

tive force, and so forth. These values of resistive force are shown in

the far right column of Table 6.2. A graph of the resistive force on Resistive Force for Nested Coffee Filters
the filters as a function of terminal speed is shown in Figure 6.16a.  Number of

A straight line is not a good fit, indicating that the resistive force is Filters vy (m/s)* R(N)

Evaluate the magnitude of the resistive force: R = mg= (164 g)( )(9.80 m/s?) = 0.016 1 N

not proportional to the speed. The behavior is more clearly seen in 1 1.01 0.016 1
Figure 6.16b, in which the resistive force is plotted as a function of 2 1.40 0.0322
the square of the terminal speed. This graph indicates that the resis- 3 1.63 0.048 3
tive force is proportional to the square of the speed as suggested by g ;gg ggggg
Equation 6.7. 6 9.40 0.096 6
R RN EIEREE ; 057 01127
Finalize Here is a good opportunity for you to take some actual data 8 9.80 0.198 8
at home on real coffee filters and see if you can reproduce the results 9 3.05 0.144 9
shown in Figure 6.16. If you have shampoo and a marble as mentioned 10 3.22 0.161 0

in Example 6.8, take data on that system too and see if the resistive

. . . . 2All values of imate.
force is appropriately modeled as being proportional to the speed. values of vpare approximate

0.18 0.18

0.16 [ The data points do not lie 0.16
Z 0.14 | along a straight line, but Z 0.14}
g 012 instead suggest a curve. g 012
S 010 g o010 The fit of the straight line
2 0.08 - £ 0.08F to the data points indicates
Z 0.06 Z 0.06F that the resistive force is
g'é 0.04 - 2 0.04F proportional to the terminal

0.02 0.02 speed squared.

0.00 1 J 0.00 1 ] ] 1 1 ]

0 1 2 3 4 0 2 4 6 8 10 12
Terminal speed (m/s) Terminal speed squared (m/s)?
a (b]

Figure 6.16 (Example 6.10) (a) Relationship between the resistive force acting on falling coffee filters and their terminal speed.
(b) Graph relating the resistive force to the square of the terminal speed.

]
Example 6.11 Resistive Force Exerted on a Baseball

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s (= 90 mi/h). Find the resistive force acting on the ball at
this speed.
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SOLUTION

Conceptualize This example is different from the previous ones in that the object is now moving horizontally through
the air instead of moving vertically under the influence of gravity and the resistive force. The resistive force causes the
ball to slow down, and gravity causes its trajectory to curve downward. We simplify the situation by assuming the veloc-
ity vector is exactly horizontal at the instant it is traveling at 40.2 m/s.

Categorize In general, the ball is a particle under a net force. Because we are considering only one instant of time, how-
ever, we are not concerned about acceleration, so the problem involves only finding the value of one of the forces.

2m,
Analyze To determine the drag coefficient D, imagine D=— £
that we drop the baseball and allow it to reach terminal vrpA
speed. Solve Equation 6.10 for D:
. . . . . 1 . 1/ 2mg . v\2

Use this expression for D in Equation 6.7 to find an R = 3DpAv* = o\ ooy pAv® = mg| —
expression for the magnitude of the resistive force: vrP Ur

. . . . o 40.2m/s 2
Substitute numerical values, using the terminal speed R = (0.145 kg)(9.80 m/s?) WBm/s =12N

' m/s

from Table 6.1:

Finalize The magnitude of the resistive force is similar in magnitude to the weight of the baseball, which is about
1.4 N. Therefore, air resistance plays a major role in the motion of the ball, as evidenced by the variety of curve balls,
floaters, sinkers, and the like thrown by baseball pitchers.

Summary
Concepts and Principles

A particle moving in uniform circular motion An object moving through a liquid or gas experiences a
has a centripetal acceleration; this acceleration speed-dependent resistive force. This resistive force is in a
must be provided by a net force directed toward the direction opposite that of the velocity of the object relative
center of the circular path. to the medium and generally increases with speed. The

magnitude of the resistive force depends on the object’s size
and shape and on the properties of the medium through

An observer in a noninertial (accelerating) which the object is moving. In the limiting case for a falling
frame of reference introduces fictitious forces object, when the magnitude of the resistive force equals the
when applying Newton’s second law in that frame. object’s weight, the object reaches its terminal speed.

Analysis Model for Problem-Solving

Particle in Uniform Circular Motion (Extension) With our new knowledge of forces, we can
extend the model of a particle in uniform circular motion, first introduced in Chapter 4. New-
ton’s second law applied to a particle moving in uniform circular motion states that the net force /
causing the particle to undergo a centripetal acceleration (Eq. 4.14) is related to the accelera- {\
tion according to

2

2F= ma, = mv? (6.1)
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Objective Questions

[LJA child is practicing

denotes answer available in Student Solutions Manual/Study Guide

direction of its total acceleration

for a BMX race. His B
speed remains con- . e

stant as he goes coun- °A
terclockwise  around C® W—é—»E
&=

a level track with two

S
o : ° °
straight sections 'and D 7
two nearly semicircu-
lar ion hown in .
arsections as sho Figure 0Q6.1

the aerial view of Fig-
ure OQ6.1. (a) Rank
the magnitudes of his acceleration at the points A, B,
C, D, and £ from largest to smallest. If his acceleration
is the same size at two points, display that fact in your
ranking. If his acceleration is zero, display that fact.
(b) What are the directions of his velocity at points A,
B, and C? For each point, choose one: north, south,
east, west, or nonexistent. (c) What are the directions
of his acceleration at points A, B, and C?

. Consider a skydiver who has stepped from a helicopter
and is falling through air. Before she reaches terminal
speed and long before she opens her parachute, does
herspeed (a) increase, (b) decrease, or (c) stay constant?

3. A door in a hospital has a pneumatic closer that pulls

the door shut such that the doorknob moves with con-
stant speed over most of its path. In this part of its
motion, (a) does the doorknob experience a centrip-
etal acceleration? (b) Does it experience a tangential
acceleration?

4. A pendulum consists of a small object called a bob

hanging from a light cord of fixed length, with the top
end of the cord fixed, as represented in Figure OQ6.4.
The bob moves without friction, swinging equally
high on both sides. It moves from its turning point A
through point B and reaches its maximum speed at
point C. (a) Of these points, is there a point where
the bob has nonzero radial acceleration and zero tan-
gential acceleration? If so, which point? What is the

at this point? (b) Of these points,

is there a point where the bob

has nonzero tangential accel-

eration and zero radial accelera-

tion? If so, which point? What is

the direction of its total accelera- ?Q o o
tion at this point? (c) Is there a B C

point where the bob has no accel-
eration? If so, which point? (d) Is
there a point where the bob has
both nonzero tangential and radial acceleration? If
so, which point? What is the direction of its total accel-
eration at this point?

Figure 0Q6.4

5. As a raindrop falls through the atmosphere, its speed

initially changes as it falls toward the Earth. Before
the raindrop reaches its terminal speed, does the mag-
nitude of its acceleration (a) increase, (b) decrease,
(c) stay constant at zero, (d) stay constant at 9.80 m/s?,
or (e) stay constant at some other value?

6. An office door is given a sharp push and swings open

against a pneumatic device that slows the door down
and then reverses its motion. At the moment the door
is open the widest, (a) does the doorknob have a cen-
tripetal acceleration? (b) Does it have a tangential
acceleration?

. Before takeoff on an airplane, an inquisitive student

on the plane dangles an iPod by its earphone wire.
It hangs straight down as the plane is at rest waiting
to take off. The plane then gains speed rapidly as it
moves down the runway. (i) Relative to the student’s
hand, does the iPod (a) shift toward the front of the
plane, (b) continue to hang straight down, or (c) shift
toward the back of the plane? (ii) The speed of the
plane increases at a constant rate over a time interval
of several seconds. During this interval, does the angle
the earphone wire makes with the vertical (a) increase,
(b) stay constant, or (c) decrease?

Conceptual Questions denotes answer available in Student Solutions Manual/Study Guide

1. What forces cause (a) an automobile, (b) a propeller-
driven airplane, and (c) a rowboat to move?

tion is constant in magnitude at all times and parallel
to the velocity.

A falling skydiver reaches terminal speed with her 5. The observer in the accelerating elevator of Example

parachute closed. After the parachute is opened, what
parameters change to decrease this terminal speed?

. An object executes circular motion with constant
speed whenever a net force of constant magnitude acts
perpendicular to the velocity. What happens to the
speed if the force is not perpendicular to the velocity?

. Describe the path of a moving body in the event that
(a) its acceleration is constant in magnitude at all times
and perpendicular to the velocity, and (b) its accelera-

5.8 would claim that the “weight” of the fish is 7, the
scale reading, but this answer is obviously wrong. Why
does this observation differ from that of a person out-
side the elevator, at rest with respect to the Earth?

. If someone told you that astronauts are weightless in

orbit because they are beyond the pull of gravity, would
you accept the statement? Explain.

7./1t has been suggested that rotating cylinders about
88 g cy

20 km in length and 8 km in diameter be placed in
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space and used as colonies. The purpose of the rota-  10. A pail of water can be whirled in a vertical path such

tion is to simulate gravity for the inhabitants. Explain

this concept for producing an effective imitation of

gravity. 11
8. Consider a small raindrop and a large raindrop fall-

ing through the atmosphere. (a) Compare their termi-

nal speeds. (b) What are their accelerations when they

reach terminal speed?

Why does a pilot tend to black out when pulling out of
a steep dive?

that no water is spilled. Why does the water stay in the
pail, even when the pail is above your head?

. “If the current position and velocity of every par-

ticle in the Universe were known, together with the
laws describing the forces that particles exert on one
another, the whole future of the Universe could be cal-
culated. The future is determinate and preordained.
Free will is an illusion.” Do you agree with this thesis?
Argue for or against it.

The problems found in this Analysis Model tutorial available in

WebAssi ;
9" chapter may be assigned Enhanced WebAssign
online in Enhanced WebAssign [E13 Guided Problem
1. straightforward; 2. intermediate; Y1 Master It tutorial available in Enhanced
3. challenging WebAssign
full solution available in the Student Watch It video solution available in
Solutions Manual/Study Guide Enhanced WebAssign

Section 6.1 Extending the Particle in Uniform Circular
Motion Model

[LJA light string can
support a station-
[l ary hanging load
of 25.0 kg before
breaking. An object
of mass m = 3.00 kg
attached to the string
rotates on a friction-
less, horizontal table
in a circle of radius
r = 0.800 m, and
the other end of the
string is held fixed
as in Figure P6.1. What range of speeds can the object
have before the string breaks?

Figure P6.1

2. Whenever two Apollo astronauts were on the surface of
the Moon, a third astronaut orbited the Moon. Assume
the orbit to be circular and 100 km above the surface
of the Moon, where the acceleration due to gravity is
1.52 m/s?. The radius of the Moon is 1.70 X 10% m.
Determine (a) the astronaut’s orbital speed and (b) the

6.
M eastward turns north by

What is the total horizontal force on the driver if the
speed on the same curve is 18.0 m/s instead?

. In a cyclotron (one type of particle accelerator), a

deuteron (of mass 2.00 u) reaches a final speed of
10.0% of the speed of light while moving in a circular
path of radius 0.480 m. What magnitude of magnetic
force is required to maintain the deuteron in a circu-
lar path?

A car initially traveling y

traveling in a circular
path at uniform speed
as shown in Figure P6.6. 0 35.0° TC
The length of the arc /
ABC is 235 m, and the /B
car completes the turn 7

in 36.0 s. (a) What is the Ay
acceleration when the
car is at B loca‘ted at an Figure P6.6

angle of 35.0°? Express A .

your answer in terms of the unit vectors i and j. Deter-
mine (b) the car’s average speed and (c) its average
acceleration during the 36.0-s interval.

period of the orbit. 7. A space station, in the form of a wheel 120 m in

3. In the Bohr model of the hydrogen atom, an electron
moves in a circular path around a proton. The speed
of the electron is approximately 2.20 X 10% m/s. Find
(a) the force acting on the electron as it revolves in a
circular orbit of radius 0.529 X 107! m and (b) the

centripetal acceleration of the electron. 8.

diameter, rotates to provide an “artificial gravity” of
3.00 m/s? for persons who walk around on the inner
wall of the outer rim. Find the rate of the wheel’s
rotation in revolutions per minute that will produce
this effect.

Consider a conical pendulum (Fig. P6.8) with a bob

4. A curve in a road forms part of a horizontal circle. As a of mass m = 80.0 kg on a string of length . = 10.0 m

car goes around it at constant speed 14.0 m/s, the total
horizontal force on the driver has magnitude 130 N.

that makes an angle of @ = 5.00° with the vertical. Deter-
mine (a) the horizontal and vertical components of the
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force exerted by the string on the pen-
dulum and (b) the radial acceleration of

[
the bob. |

L

A coin placed 30.0 cm from the center /|
[ of a rotating, horizontal turntable slips 0

when its speed is 50.0 cm/s. (a) What 1n¢:“,\
force causes the centripetal acceleration
when the coin is stationary relative to
the turntable? (b) What is the coeffi-
cient of static friction between coin and turntable?

Figure P6.8

10. Why is the following situation j}
impossible? The object of mass T
m = 4.00 kg in Figure P6.10 is
attached to a vertical rod by two
strings of length £ = 2.00 m. The { «

strings are attached to the rod  “~-__1 _—-7
at points a distance d = 3.00 m 4
apart. The object rotates in a ‘
horizontal circle at a constant P ﬁd*
speed of v = 3.00 m/s, and the - g
strings remain taut. The rod Figure P6.10

rotates along with the object so
that the strings do not wrap onto the rod. What If?
Could this situation be possible on another planet?

A crate of eggs is located in the middle of the flatbed

of a pickup truck as the truck negotiates a curve in the
flat road. The curve may be regarded as an arc of a
circle of radius 35.0 m. If the coefficient of static fric-
tion between crate and truck is 0.600, how fast can the
truck be moving without the crate sliding?

Section 6.2 Nonuniform Circular Motion

12. A pail of water is rotated in a vertical circle of radius

1.00 m. (a) What two external forces act on the water in
the pail? (b) Which of the two forces is most important
in causing the water to move in a circle? (c) What is
the pail’s minimum speed at the top of the circle if no
water is to spill out? (d) Assume the pail with the speed
found in part (c) were to suddenly disappear at the top
of the circle. Describe the subsequent motion of the
water. Would it differ from the motion of a projectile?

13. A hawk flies in a horizontal arc of radius 12.0 m at con-
stant speed 4.00 m/s. (a) Find its centripetal accelera-
tion. (b) It continues to fly along the same horizontal
arc, but increases its speed at the rate of 1.20 m/s?. Find
the acceleration (magnitude and direction) in this situ-
ation at the moment the hawk’s speed is 4.00 m/s.

A 40.0-kg child swings in a swing supported by two

["1 chains, each 3.00 m long. The tension in each chain at
the lowest point is 350 N. Find (a) the child’s speed at
the lowest point and (b) the force exerted by the seat
on the child at the lowest point. (Ignore the mass of
the seat.)

15. A child of mass m swings in a swing supported by two
chains, each of length R. If the tension in each chain
at the lowest point is 7, find (a) the child’s speed at the
lowest point and (b) the force exerted by the seat on the
child at the lowest point. (Ignore the mass of the seat.)

16.

A roller-coaster car (Fig. P6.16) has a mass of 500 kg

when fully loaded with passengers. The path of the
coaster from its initial point shown in the figure to point

17.

18.

involves only up-and-down motion (as seen by the rid-
ers), with no motion to the left or right. (a) If the vehicle
has a speed of 20.0 m/s at point ®, what is the force
exerted by the track on the car at this point? (b) What is
the maximum speed the vehicle can have at point
and still remain on the track? Assume the roller-coaster
tracks at points ® and ® are parts of vertical circles of
radius r; = 10.0 m and r, = 15.0 m, respectively.

==

drde = /7 \
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Figure P6.16 Problems 16 and 38.

A roller coaster at the Six
Flags Great America amuse-
ment park in Gurnee, Illi-
nois, incorporates some
clever design technology and
some basic physics. Each ver-
tical loop, instead of being
circular, is shaped like a tear-
drop (Fig. P6.17). The cars
ride on the inside of the loop
at the top, and the speeds
are fast enough to ensure the
cars remain on the track.
The biggest loop is 40.0 m high. Suppose the speed at
the top of the loop is 13.0 m/s and the corresponding
centripetal acceleration of the riders is 2g. (a) What is
the radius of the arc of the teardrop at the top? (b) If
the total mass of a car plus the riders is M, what force
does the rail exert on the car at the top? (c) Suppose
the roller coaster had a circular loop of radius 20.0 m.
If the cars have the same speed, 13.0 m/s at the top,
what is the centripetal acceleration of the riders at the
top? (d) Comment on the normal force at the top in
the situation described in part (c) and on the advan-
tages of having teardrop-shaped loops.

Frank Cezus/Getty Images

Figure P6.17

One end of a cord is fixed and a small
0.500-kg object is attached to the !
other end, where it swings in a section |
of a vertical circle of radius 2.00 m as '
shown in Figure P6.18. When 6 = 20.0°, 0
the speed of the object is 8.00 m/s. 0
At this instant, find (a) the tension

in the string, (b) the tangential and  Figure P6.18
radial components of acceleration,

and (c) the total acceleration. (d) Is your answer
changed if the object is swinging down toward its

\«



lowest point instead of swinging up? (e) Explain your
answer to part (d).

[19.]An adventurous archeologist (m = 85.0 kg) tries to cross

ariver by swinging from a vine. The vine is 10.0 m long,
and his speed at the bottom of the swing is 8.00 m/s.
The archeologist doesn’t know that the vine has a
breaking strength of 1 000 N. Does he make it across
the river without falling in?

Section 6.3 Motion in Accelerated Frames

20.

An object of mass m =
71 0.500 kg is suspended

22.

An object of mass m =
5.00 kg, attached to a
spring scale, rests on a
frictionless, horizontal

surface as shown in Fig- i iiy————is
ure P6.20. The spring

scale, attached to the .

front end of a boxcar, Figure P6.20

reads zero when the

car is at rest. (a) Determine the acceleration of the car
if the spring scale has a constant reading of 18.0 N
when the car is in motion. (b) What constant reading
will the spring scale show if the car moves with con-
stant velocity? Describe the forces on the object as
observed (c) by someone in the car and (d) by some-
one at rest outside the car.

from the ceiling of an
accelerating truck as
shown in Figure P6.21.
Taking a = 3.00 m/s?,
find (a) the angle 0 that
the string makes with
the vertical and (b) the
tension 7'in the string.

Figure P6.21

A child lying on her back experiences 55.0 N tension in
the muscles on both sides of her neck when she raises
her head to look past her toes. Later, sliding feet first
down a water slide at terminal speed 5.70 m/s and rid-
ing high on the outside wall of a horizontal curve of
radius 2.40 m, she raises her head again to look for-
ward past her toes. Find the tension in the muscles on
both sides of her neck while she is sliding.

A person stands on a scale in an elevator. As the elevator
Yl starts, the scale has a constant reading of 591 N. As the

24.

elevator later stops, the scale reading is 391 N. Assum-
ing the magnitude of the acceleration is the same
during starting and stopping, determine (a) the weight
of the person, (b) the person’s mass, and (c) the accel-
eration of the elevator.

Review. A student, along with her backpack on the
floor next to her, are in an elevator that is accelerat-
ing upward with acceleration a. The student gives her
backpack a quick kick at ¢ = 0, imparting to it speed
v and causing it to slide across the elevator floor.
At time ¢, the backpack hits the opposite wall a dis-
tance L away from the student. Find the coefficient

25.
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of kinetic friction w, between the backpack and the
elevator floor.

A small container of water is placed on a turntable
inside a microwave oven, at a radius of 12.0 cm from
the center. The turntable rotates steadily, turning one
revolution in each 7.25 s. What angle does the water
surface make with the horizontal?

Section 6.4 Motion in the Presence of Resistive Forces

26.

27.

28.

29.

30.

Review. (a) Estimate the terminal speed of a wooden
sphere (density 0.830 g/cm?) falling through air, tak-
ing its radius as 8.00 cm and its drag coefficient as
0.500. (b) From what height would a freely falling
object reach this speed in the absence of air resistance?

The mass of a sports car is 1 200 kg. The shape of the
body is such that the aerodynamic drag coefficient
is 0.250 and the frontal area is 2.20 m?. Ignoring all
other sources of friction, calculate the initial accelera-
tion the car has if it has been traveling at 100 km/h
and is now shifted into neutral and allowed to coast.

A skydiver of mass 80.0 kg jumps from a slow-moving
aircraft and reaches a terminal speed of 50.0 m/s.
(a) Whatis her acceleration when her speed is 30.0 m/s?
What is the drag force on the skydiver when her speed
is (b) 50.0 m/s and (c) 30.0 m/s?

Calculate the force required to pull a copper ball of
radius 2.00 cm upward through a fluid at the con-
stant speed 9.00 cm/s. Take the drag force to be pro-
portional to the speed, with proportionality constant
0.950 kg/s. Ignore the buoyant force.

A small piece of Styrofoam packing material is dropped

M from a height of 2.00 m above the ground. Until it

reaches terminal speed, the magnitude of its accelera-
tion is given by a = g — Bv. After falling 0.500 m, the
Styrofoam effectively reaches terminal speed and then
takes 5.00 s more to reach the ground. (a) What is the
value of the constant B? (b) What is the acceleration at
t = 0? (c) What is the acceleration when the speed is
0.150 m/s?

31.| A small, spherical bead of mass 3.00 g is released from
P g
Y} rest at £ = 0 from a point under the surface of a vis-

32.

cous liquid. The terminal speed is observed to be v, =
2.00 cm/s. Find (a) the value of the constant b that
appears in Equation 6.2, (b) the time ¢ at which the
bead reaches 0.632v,, and (c) the value of the resistive
force when the bead reaches terminal speed.

At major league baseball games, it is commonplace to
flash on the scoreboard a speed for each pitch. This
speed is determined with a radar gun aimed by an
operator positioned behind home plate. The gun uses
the Doppler shift of microwaves reflected from the
baseball, an effect we will study in Chapter 39. The gun
determines the speed at some particular point on the
baseball’s path, depending on when the operator pulls
the trigger. Because the ball is subject to a drag force
due to air proportional to the square of its speed given
by R = kmv?, it slows as it travels 18.3 m toward the
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plate according to the formula v = v;¢™**. Suppose the
ball leaves the pitcher’s hand at 90.0 mi/h = 40.2 m/s.
Ignore its vertical motion. Use the calculation of R for
baseballs from Example 6.11 to determine the speed of
the pitch when the ball crosses the plate.

Assume the resistive force acting on a speed skater is
proportional to the square of the skater’s speed v and
is given by f = —kmv?, where k is a constant and m is
the skater’s mass. The skater crosses the finish line of
a straight-line race with speed v, and then slows down
by coasting on his skates. Show that the skater’s speed
at any time ¢ after crossing the finish line is v(t) =
v,/(1 + ktv,).

34. Review. A window washer pulls a rubber squeegee
down a very tall vertical window. The squeegee has

mass 160 g and is mounted on the end of a light rod.
The coefficient of kinetic friction between the squee-
gee and the dry glass is 0.900. The window washer
presses it against the window with a force having a
horizontal component of 4.00 N. (a) If she pulls the
squeegee down the window at constant velocity, what
vertical force component must she exert? (b) The win-
dow washer increases the downward force component
by 25.0%, while all other forces remain the same. Find
the squeegee’s acceleration in this situation. (c) The
squeegee is moved into a wet portion of the window,
where its motion is resisted by a fluid drag force R pro-
portional to its velocity according to R = —20.0v, where
Ris in newtons and v is in meters per second. Find the
terminal velocity that the squeegee approaches, assum-
ing the window washer exerts the same force described
in part (b).

A motorboat cuts its engine when its speed is 10.0 m/s

and then coasts to rest. The equation describing the
motion of the motorboat during this period is v =
v,e””, where v is the speed at time ¢, v, is the initial
speed at £ = 0, and ¢ is a constant. At = 20.0 s, the
speed is 5.00 m/s. (a) Find the constant ¢. (b) What is
the speed at £ = 40.0 s? (c) Differentiate the expression
for v(7) and thus show that the acceleration of the boat
is proportional to the speed at any time.

36. You can feel a force of air drag on your hand if you

stretch your arm out of the open window of a speeding
car. Note: Do not endanger yourself. What is the order
of magnitude of this force? In your solution, state the
quantities you measure or estimate and their values.

Additional Problems

37.

38.

A car travels clockwise at con-

stant speed around a circular Ty
section of a horizontal road as ®
shown in the aerial view of Fig- N

ure P6.37. Find the directions of W E% 5

its velocity and acceleration at (a) @
position ® and (b) position ®. S
The mass of a roller-coaster car, Figure P6.37

including its passengers, is
500 kg. Its speed at the bottom of the track in Figure
P6.16 is 19 m/s. The radius of this section of the track is

39.

40.

41.

42.

43.
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r; = 25 m. Find the force that a seat in the roller-coaster
car exerts on a 50-kg passenger at the lowest point.

A string under a ten-
sion of 50.0 N is used
to whirl a rock in a
horizontal circle of
radius 2.50 m at a
speed of 20.4 m/s on
a frictionless surface
as shown in Figure
P6.39. As the string
is pulled in, the
speed of the rock
increases. When the
string on the table is 1.00 m long and the speed of the
rock is 51.0 m/s, the string breaks. What is the breaking
strength, in newtons, of the string?

Figure P6.39

Disturbed by speeding cars outside his workplace,
Nobel laureate Arthur Holly Compton designed a
speed bump (called the “Holly hump”) and had it
installed. Suppose a 1 800-kg car passes over a hump
in a roadway that follows the arc of a circle of radius
20.4 m as shown in Figure P6.40. (a) If the car travels at
30.0 km/h, what force does the road exert on the car as
the car passes the high-
est point of the hump?
(b) What If? What is
the maximum speed
the car can have with-
out losing contact with
the road as it passes this
highest point?

Figure P6.40
Problems 40 and 41.

A car of mass m passes over a hump in a road that fol-
lows the arc of a circle of radius R as shown in Figure
P6.40. (a) If the car travels at a speed v, what force does
the road exert on the car as the car passes the highest
point of the hump? (b) What If? What is the maximum
speed the car can have without losing contact with the
road as it passes this highest point?

A child’s toy consists of a small
wedge that has an acute angle 6
(Fig. P6.42). The sloping side of
the wedge is frictionless, and an
object of mass m on it remains
at constant height if the wedge
is spun at a certain constant
speed. The wedge is spun by
rotating, as an axis, a vertical

rod that is firmly attached to H

the wedge at the bottom end. .

Show that, when the object sits Figure P6.42

at rest at a point at distance L up along the wedge, the
speed of the object must be v = (gL sin 6)/2.

A seaplane of total mass m lands on a lake with initial
speed v;i. The only horizontal force on it is a resistive
force on its pontoons from the water. The resistive
force is proportional to the velocity of the seaplane:
R = —5v. Newton’s second law applied to the plane
is —vi = m(dv/di)i. From the fundamental theorem



44. An object of mass m; =

of calculus, this differential equation implies that the
speed changes according to

J * dv b J '

—=——|

0 U mJ,
(a) Carry out the integration to determine the speed of
the seaplane as a function of time. (b) Sketch a graph
of the speed as a function of time. (c) Does the sea-

plane come to a complete stop after a finite interval of
time? (d) Does the seaplane travel a finite distance in

stopping?

_my

M 4.00 kg is tied to an e S~
object of mass m, = ,~" Suing 1 ¢ N
3.00 kg with String 1 of v\
length ¢ = 0.500 m. / 7T N \
The / \ \

45.

46.

combination is |
swung in a vertical cir- '
cular path on a second
string, String 2, of
length € = 0.500 m. During the motion, the two strings
are collinear at all times as shown in Figure P6.44.
At the top of its motion, m is traveling at v = 4.00 m/s.
(@) What is the tension in String 1 at this instant?
(b) What is the tension in String 2 at this instant?
(c) Which string will break first if the combination is
rotated faster and faster?

/
String ¢ \
| ® 2. | !

Figure P6.44

A ball of mass m = 0.275 kg swings - ~

in a vertical circular path on a  / N
string L. = 0.850 m long as in Fig- \
ure P6.45. (a) What are the forces { I
acting on the ball at any point on | /
the path? (b) Draw force diagrams N '
for the ball when it is at the bottom S~o_Tm
of the circlle and wh.en it is at the Figure P6.45
top. (c) If its speed is 5.20 m/s at
the top of the circle, what is the
tension in the string there? (d) If the string breaks when
its tension exceeds 22.5 N, what is the maximum speed
the ball can have at the bottom before that happens?
Why is the following situation impossible? A mischievous
child goes to an amusement park with his family. On
one ride, after a severe scolding from his mother, he
slips out of his seat and climbs to the top of the ride’s
structure, which is shaped like a cone with its axis verti-
cal and its sloped sides making an angle of 6 = 20.0°
with the horizontal as shown in Figure P6.46. This part

Figure P6.46

47.

48.

173

Problems

of the structure rotates about the vertical central axis
when the ride operates. The child sits on the sloped
surface at a point d = 5.32 m down the sloped side
from the center of the cone and pouts. The coefficient
of static friction between the boy and the cone is 0.700.
The ride operator does not notice that the child has
slipped away from his seat and so continues to operate
the ride. As a result, the sitting, pouting boy rotates in
a circular path at a speed of 3.75 m/s.

(a) A luggage carousel at an airport has the form of
a section of a large cone, steadily rotating about its
vertical axis. Its metallic surface slopes downward
toward the outside, making an angle of 20.0° with the
horizontal. A piece of luggage having mass 30.0 kg is
placed on the carousel at a position 7.46 m measured
horizontally from the axis of rotation. The travel bag
goes around once in 38.0 s. Calculate the force of static
friction exerted by the carousel on the bag. (b) The
drive motor is shifted to turn the carousel at a higher
constant rate of rotation, and the piece of luggage is
bumped to another position, 7.94 m from the axis of
rotation. Now going around once in every 34.0 s, the
bag is on the verge of slipping down the sloped surface.
Calculate the coefficient of static friction between the
bag and the carousel.

In a home laundry dryer, a cylindrical tub containing
wet clothes is rotated steadily about a horizontal axis
as shown in Figure P6.48. So that the clothes will dry
uniformly, they are made to tumble. The rate of rota-
tion of the smooth-walled tub is chosen so that a small
piece of cloth will lose contact with the tub when the
cloth is at an angle of & = 68.0° above the horizontal. If
the radius of the tub is r = 0.330 m, what rate of revolu-
tion is needed?

q

Figure P6.48

Interpret the graph in Figure 6.16(b), which describes

the results for falling coffee filters discussed in Exam-
ple 6.10. Proceed as follows. (a) Find the slope of the
straight line, including its units. (b) From Equation
6.6, R = $DpAv°, identify the theoretical slope of a
graph of resistive force versus squared speed. (c) Set
the experimental and theoretical slopes equal to each
other and proceed to calculate the drag coefficient of
the filters. Model the cross-sectional area of the filters
as that of a circle of radius 10.5 cm and take the den-
sity of air to be 1.20 kg/m3. (d) Arbitrarily choose the
eighth data point on the graph and find its vertical
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50.

51.

52.

53.

separation from the line of best fit. Express this scatter
as a percentage. (e) In a short paragraph, state what
the graph demonstrates and compare it with the the-
oretical prediction. You will need to make reference
to the quantities plotted on the axes, to the shape of
the graph line, to the data points, and to the results of
parts (c) and (d).

A basin surrounding a drain has the shape of a circular
cone opening upward, having everywhere an angle of
35.0° with the horizontal. A 25.0-g ice cube is set slid-
ing around the cone without friction in a horizontal
circle of radius R. (a) Find the speed the ice cube must
have as a function of R. (b) Is any piece of data unnec-
essary for the solution? Suppose R is made two times
larger. (c) Will the required speed increase, decrease,
or stay constant? If it changes, by what factor? (d) Will
the time required for each revolution increase,
decrease, or stay constant? If it changes, by what factor?
(e) Do the answers to parts (c) and (d) seem contradic-
tory? Explain.

A truck is moving with
constant acceleration
a up a hill that makes
an angle ¢ with the
horizontal as in Figure
P6.51. A small sphere
of mass m is suspended
from the ceiling of the
truck by a light cord. If
the pendulum makes a
constant angle 0 with the perpendicular to the ceiling,
what is a?

Figure P6.51

The pilot of an airplane executes a loop-the-loop
maneuver in a vertical circle. The speed of the airplane
is 300 mi/h at the top of the loop and 450 mi/h at the
bottom, and the radius of the circle is 1 200 ft. (a) What
is the pilot’s apparent weight at the lowest point if his
true weight is 160 1b? (b) What is his apparent weight
at the highest point? (c) What If? Describe how the
pilot could experience weightlessness if both the
radius and the speed can be varied. Note: His apparent
weight is equal to the magnitude of the force exerted
by the seat on his body.

Review. While learning to drive, you are in a 1 200-kg
car moving at 20.0 m/s across a large, vacant, level
parking lot. Suddenly you realize you are heading
straight toward the brick sidewall of a large supermar-
ket and are in danger of running into it. The pavement
can exert a maximum horizontal force of 7000 N on
the car. (a) Explain why you should expect the force to
have a well-defined maximum value. (b) Suppose you
apply the brakes and do not turn the steering wheel.
Find the minimum distance you must be from the wall
to avoid a collision. (c) If you do not brake but instead
maintain constant speed and turn the steering wheel,
what is the minimum distance you must be from the
wall to avoid a collision? (d) Of the two methods in
parts (b) and (c), which is better for avoiding a colli-
sion? Or should you use both the brakes and the steer-
ing wheel, or neither? Explain. (e) Does the conclusion
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in part (d) depend on the numerical values given in
this problem, or is it true in general? Explain.

A puck of mass m; is tied
to a string and allowed
to revolve in a circle of
radius R on a friction-
less, horizontal table.
The other end of the
string passes through a
small hole in the cen-
ter of the table, and
an object of mass m, is
tied to it (Fig. P6.54).
The suspended object
remains in equilibrium while the puck on the tabletop
revolves. Find symbolic expressions for (a) the tension in
the string, (b) the radial force acting on the puck, and
(c) the speed of the puck. (d) Qualitatively describe what
will happen in the motion of the puck if the value of my
is increased by placing a small additional load on the
puck. (e) Qualitatively describe what will happen in the
motion of the puck if the value of m, is instead decreased
by removing a part of the hanging load.

Figure P6.54

Because the Earth rotates about its axis, a point on
"l the equator experiences a centripetal acceleration of
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Figure P6.57 shows

a photo of a swing
ride at an amusement

0.033 7 m/s?, whereas a point at the poles experiences
no centripetal acceleration. If a person at the equator
has a mass of 75.0 kg, calculate (a) the gravitational
force (true weight) on the person and (b) the normal
force (apparent weight) on the person. (c) Which force
is greater? Assume the Earth is a uniform sphere and
take g = 9.800 m/s>.

Galileo thought about whether acceleration should be
defined as the rate of change of velocity over time or as
the rate of change in velocity over distance. He chose
the former, so let’s use the name “vroomosity” for the
rate of change of velocity over distance. For motion of
a particle on a straight line with constant acceleration,
the equation v = v, + at gives its velocity v as a function
of time. Similarly, for a particle’s linear motion with
constant vroomosity k, the equation v = v; + kx gives
the velocity as a function of the position x if the parti-
cle’s speed is v;at x = 0. (a) Find the law describing the
total force acting on this object of mass m. (b) Describe
an example of such a motion or explain why it is unre-
alistic. Consider (c) the possibility of k positive and
(d) the possibility of k negative.

park. The structure
consists of a horizon-
tal, rotating, circular
platform of diameter
D from which seats
of mass m are sus-
pended at the end
of massless chains
of length d. When
the system rotates at

Stuart Gregory/Getty Images

Figure P6.57



constant speed, the chains swing outward and make
an angle 6 with the vertical. Consider such a ride with
the following parameters: D = 8.00 m, d = 2.50 m,
m = 10.0 kg, and 6 = 28.0° (a) What is the speed of
each seat? (b) Draw a diagram of forces acting on the
combination of a seat and a 40.0-kg child and (c) find
the tension in the chain.

Review. A piece of putty is initially located at point A
on the rim of a grinding wheel rotating at constant
angular speed about a horizontal axis. The putty is
dislodged from point A when the diameter through A
is horizontal. It then rises vertically and returns to A at
the instant the wheel completes one revolution. From
this information, we wish to find the speed v of the
putty when it leaves the wheel and the force holding it
to the wheel. (a) What analysis model is appropriate
for the motion of the putty as it rises and falls? (b) Use
this model to find a symbolic expression for the time
interval between when the putty leaves point A and
when it arrives back at A, in terms of vand g (c¢) What
is the appropriate analysis model to describe point A
on the wheel? (d) Find the period of the motion of
point A in terms of the tangential speed v and the
radius R of the wheel. (e) Set the time interval from
part (b) equal to the period from part (d) and solve
for the speed v of the putty as it leaves the wheel. (f) If
the mass of the putty is m, what is the magnitude of
the force that held it to the wheel before it was
released?

An amusement park ride - | -
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consists of a large vertical
cylinder that spins about
its axis fast enough that
any person inside is held
up against the wall when
the floor drops away (Fig.
P6.59). The coefficient
of static friction between
person and wall is pu,,
and the radius of the cyl-
inder is R. (a) Show that
the maximum period of
revolution necessary to keep the person from falling is
T = 4m*Ru,/g"?. (b) If the rate of revolution of the
cylinder is made to be somewhat larger, what hap-
pens to the magnitude of each one of the forces act-
ing on the person? What happens in the motion of the
person? (c) If the rate of revolution of the cylinder is
instead made to be somewhat smaller, what happens to
the magnitude of each one of the forces acting on the
person? How does the motion of the person change?

Figure P6.59

Members of a skydiving club were given the following
data to use in planning their jumps. In the table, d is
the distance fallen from rest by a skydiver in a “free-
fall stable spread position” versus the time of fall ¢
(a) Convert the distances in feet into meters. (b) Graph
d (in meters) versus /. (c) Determine the value of the
terminal speed v, by finding the slope of the straight
portion of the curve. Use a least-squares fit to deter-
mine this slope.
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t(s) d (ft) t(s) d (ft) t(s) d (ft)
0 0 7 652 14 1831
1 16 8 808 15 2005
2 62 9 971 16 2179
3 138 10 1138 17 2 353
4 242 11 1309 18 2 527
5 366 12 1483 19 2 701
6 504 13 1657 20 2 875

61. A car rounds a banked curve as discussed in Example

6.4 and shown in Figure 6.5. The radius of curvature
of the road is R, the banking angle is 6, and the coef-
ficient of static friction is w,. (a) Determine the range
of speeds the car can have without slipping up or down
the road. (b) Find the minimum value for u, such that
the minimum speed is zero.

62. In Example 6.5, we investigated the forces a child expe-
riences on a Ferris wheel. Assume the data in that exam-

ple applies to this problem. What force (magnitude and
direction) does the seat exert on a 40.0-kg child when
the child is halfway between top and bottom?

63.]A model airplane of mass 0.750 kg flies with a speed of
p g P
"l 35.0 m/s in a horizontal circle at the end of a 60.0-m-long

control wire as shown in Figure P6.63a. The forces
exerted on the airplane are shown in Figure P6.63b: the
tension in the control wire, the gravitational force, and
aerodynamic lift that acts at § = 20.0° inward from the
vertical. Compute the tension in the wire, assuming it
makes a constant angle of 6 = 20.0° with the horizontal.

Circular path F.
.. lift

of airplane |
-~/ 01
N 1

~
\ |

Wire

Figure P6.63

64. A student builds and calibrates an accelerometer and

uses it to determine the speed of her car around a cer-
tain unbanked highway curve. The accelerometer is a
plumb bob with a protractor that she attaches to the
roof of her car. A friend riding in the car with the stu-
dent observes that the plumb bob hangs at an angle
of 15.0° from the vertical when the car has a speed of
23.0 m/s. (a) What is the centripetal acceleration of the
car rounding the curve? (b) What is the radius of the
curve? (c) What is the speed of the car if the plumb
bob deflection is 9.00° while rounding the same curve?

Challenge Problems
65. A 9.00-kg object starting from rest falls through a vis-

cous medium and experiences a resistive force given
by Equation 6.2. The object reaches one half its termi-
nal speed in 5.54 s. (a) Determine the terminal speed.
(b) At what time is the speed of the object three-
fourths the terminal speed? (c) How far has the object
traveled in the first 5.54 s of motion?
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67. A golfer tees off from

66. For t < 0, an object of mass m experiences no force and

moves in the positive x direction with a constant speed
v;. Beginning at ¢ = 0, when the object passes position
x = 0, it experiences a net resistive force proportional
to the square of its speed: F,., = —mkv*i, where kis a
constant. The speed of the object after ¢ = 0 is given by
v=v;/(1 + kv;t). (a) Find the position x of the object as
a function of time. (b) Find the object’s velocity as a
function of position.

North
Pole

Radius of circular
a location precisely at path of tee
¢, = 35.0° north lati-
tude. He hits the ball
due south, with range

285 m. The ball’s ini-
tial velocity is at 48.0°
above the horizontal.
Suppose air resistance

is negligible for the golf =
ball. (a) For how long
is the ball in flight?
The cup is due south

of the golfer’s location, and the golfer would have a
hole-in-one if the Earth were not rotating. The Earth’s
rotation makes the tee move in a circle of radius
Ry cos ¢; = (6.87 X 10° m) cos 35.0° as shown in Fig-
ure P6.67. The tee completes one revolution each day.
(b) Find the eastward speed of the tee relative to the
stars. The hole is also moving east, but it is 285 m
farther south and thus at a slightly lower latitude ¢,.
Because the hole moves in a slightly larger circle, its
speed must be greater than that of the tee. (c) By how
much does the hole’s speed exceed that of the tee?
During the time interval the ball is in flight, it moves
upward and downward as well as southward with the
projectile motion you studied in Chapter 4, but it
also moves eastward with the speed you found in part
(b). The hole moves to the east at a faster speed, how-
ever, pulling ahead of the ball with the relative speed

Tee Golf ball
trajectory
Ry cos ¢; \\/ ) y

Ry \~Hole

bi
«®

)

LEquator

Figure P6.67

68.

69.

70.

Chapter 6  Circular Motion and Other Applications of Newton's Laws

you found in part (c). (d) How far to
the west of the hole does the ball land?

A single bead can slide with negligible

friction on a stiff wire that has been |
bent into a circular loop of radius :9 \t’
15.0 cm as shown in Figure P6.68. The T~
circle is always in a vertical plane and s
rotates steadily about its vertical diam- ¢

eter with a period of 0.450 s. The posi-  Figure P6.68

tion of the bead is described by the

angle 0 that the radial line, from the center of the loop
to the bead, makes with the vertical. (a) At what angle
up from the bottom of the circle can the bead stay
motionless relative to the turning circle? (b) What If?
Repeat the problem, this time taking the period of the
circle’s rotation as 0.850 s. (c) Describe how the solu-
tion to part (b) is different from the solution to part
(a). (d) For any period or loop size, is there always an
angle at which the bead can stand still relative to the
loop? (e) Are there ever more than two angles? Arnold
Arons suggested the idea for this problem.

The expression F = arv + br’v? gives the magnitude of
the resistive force (in newtons) exerted on a sphere of
radius r (in meters) by a stream of air moving at speed
v (in meters per second), where a and b are constants
with appropriate SI units. Their numerical values are
a =310 X 107t and b = 0.870. Using this expression,
find the terminal speed for water droplets falling under
their own weight in air, taking the following values for
the drop radii: (a) 10.0 um, (b) 100 um, (c) 1.00 mm.
For parts (a) and (c), you can obtain accurate answers
without solving a quadratic equation by considering
which of the two contributions to the air resistance is
dominant and ignoring the lesser contribution.

Because of the Earth’s rotation, a plumb bob does not
hang exactly along a line directed to the center of the
Earth. How much does the plumb bob deviate from a
radial line at 35.0° north latitude? Assume the Earth is
spherical.



