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The most random atomic arrangement, that of a 

gas, was well understood in the 1800s as discussed in 

Chapter 21. In a crystalline solid, the atoms are not ran-

domly arranged; rather, they form a regular array. The 

symmetry of the arrangement of atoms both stimulated 

and allowed rapid progress in the field of solid-state 

physics in the 20th century. Recently, our understand-

ing of liquids and amorphous solids has advanced. (In an 

amorphous solid such as glass or paraffin, the atoms do 

not form a regular array.) The recent interest in the phys-

ics of low-cost amorphous materials has been driven by 

their use in such devices as solar cells, memory elements, 

and fiber-optic waveguides.

 We begin this chapter by studying the aggregates of 

atoms known as molecules. We describe the bonding mechanisms in molecules, the vari-

ous modes of molecular excitation, and the radiation emitted or absorbed by molecules. 

Next, we show how molecules combine to form solids. Then, by examining their energy-

level structure, we explain the differences between insulating, conducting, semiconduct-

ing, and superconducting materials. The chapter also includes discussions of semicon-

ducting junctions and several semiconductor devices.

chapter 43
Molecules and Solids

This photograph relates to two topics discussed in this chapter. 
The diamond in the ring is a form of carbon. The ring gives a sense 
of scale for the pile below it, which contains thousands of tiny 
integrated circuits. In this chapter, we discuss arrangements of 
atoms in a crystal, such as the tetrahedral structure of diamond, 
and the development of integrated circuits for use in electronic 
devices. (Copyright 2009 © National Semiconductor Corporation)
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43.1 Molecular Bonds
The bonding mechanisms in a molecule are fundamentally due to electric forces 
between atoms (or ions). The forces between atoms in the system of a molecule are 
related to a potential energy function. A stable molecule is expected at a configu-
ration for which the potential energy function for the molecule has its minimum 
value. (See Section 7.9.)
 A potential energy function that can be used to model a molecule should account 
for two known features of molecular bonding:

 1. The force between atoms is repulsive at very small separation distances. 
When two atoms are brought close to each other, some of their electron 
shells overlap, resulting in repulsion between the shells. This repulsion is 
partly electrostatic in origin and partly the result of the exclusion principle. 
Because all electrons must obey the exclusion principle, some electrons in 
the overlapping shells are forced into higher energy states and the system 
energy increases as if a repulsive force existed between the atoms.

 2. At somewhat larger separations, the force between atoms is attractive. If 
that were not true, the atoms in a molecule would not be bound together.

 Taking into account these two features, the potential energy for a system of two 
atoms can be represented by an expression of the form

 U 1r 2 5 2
A
r n 1

B
r m  (43.1)

where r is the internuclear separation distance between the two atoms and n and 
m are small integers. The parameter A is associated with the attractive force and B 
with the repulsive force. Example 7.9 gives one common model for such a potential 
energy function, the Lennard–Jones potential.
 Potential energy versus internuclear separation distance for a two-atom system 
is graphed in Figure 43.1. At large separation distances between the two atoms, 
the slope of the curve is positive, corresponding to a net attractive force. At the 
equilibrium separation distance, the attractive and repulsive forces just balance. At 
this point, the potential energy has its minimum value and the slope of the curve is 
zero.
 A complete description of the bonding mechanisms in molecules is highly com-
plex because bonding involves the mutual interactions of many particles. In this 
section, we discuss only some simplified models.

Ionic Bonding

When two atoms combine in such a way that one or more outer electrons are trans-
ferred from one atom to the other, the bond formed is called an ionic bond. Ionic 
bonds are fundamentally caused by the Coulomb attraction between oppositely 
charged ions.
 A familiar example of an ionically bonded solid is sodium chloride, NaCl, which 
is common table salt. Sodium, which has the electronic configuration 1s22s22p 63s1, 
is ionized relatively easily, giving up its 3s electron to form a Na1 ion. The energy 
required to ionize the atom to form Na1 is 5.1 eV. Chlorine, which has the electronic 
configuration 1s22s22p 5, is one electron short of the filled-shell structure of argon. 
If we compare the energy of a system of a free electron and a Cl atom with one in 
which the electron joins the atom to make the Cl2 ion, we find that the energy 
of the ion is lower. When the electron makes a transition from the E 5 0 state to 
the negative energy state associated with the available shell in the atom, energy 
is released. This amount of energy is called the electron affinity of the atom. For 
chlorine, the electron affinity is 3.6 eV. Therefore, the energy required to form Na1 
and Cl2 from isolated atoms is 5.1 2 3.6 5 1.5 eV. It costs 5.1 eV to remove the elec-
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Figure 43.1  Total potential energy 
as a function of internuclear sepa-
ration distance for a system of two 
atoms.
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tron from the Na atom, but 3.6 eV of it is gained back when that electron is allowed 
to join with the Cl atom.
 Now imagine that these two charged ions interact with one another to form a 
NaCl “molecule.”1 The total energy of the NaCl molecule versus internuclear sepa-
ration distance is graphed in Figure 43.2. At very large separation distances, the 
energy of the system of ions is 1.5 eV as calculated above. The total energy has a 
minimum value of 24.2 eV at the equilibrium separation distance, which is approx-
imately 0.24 nm. Hence, the energy required to break the Na12Cl2 bond and form 
neutral sodium and chlorine atoms, called the dissociation energy, is 4.2 eV. The 
energy of the molecule is lower than that of the system of two neutral atoms. Conse-
quently, it is energetically favorable for the molecule to form: if a lower energy 
state of a system exists, the system tends to emit energy to achieve this lower energy 
state. The system of neutral sodium and chlorine atoms can reduce its total 
energy by transferring energy out of the system (by electromagnetic radiation, for 
example) and forming the NaCl molecule.

Covalent Bonding

A covalent bond between two atoms is one in which electrons supplied by either 
one or both atoms are shared by the two atoms. Many diatomic molecules—such 
as H2, F2, and CO—owe their stability to covalent bonds. The bond between two 
hydrogen atoms can be described by using atomic wave functions. The ground-
state wave function for a hydrogen atom (Chapter 42) is

c1s 1r 2 5
1

"pa0
3
 e2r/a0

 This wave function is graphed in Active Figure 43.3a for two hydrogen atoms 
that are far apart. There is very little overlap of the wave functions c1(r) for atom 
1, located at r 5 0, and c2(r) for atom 2, located some distance away. Suppose now 
the two atoms are brought close together. As that happens, their wave functions 
overlap and form the compound wave function c1(r) 1 c2(r) shown in Active Fig-
ure 43.3b. Notice that the probability amplitude is larger between the atoms than it 
is on either side of the combination of atoms. As a result, the probability is higher 
that the electrons associated with the atoms will be located between the atoms than 
on the outer regions of the system. Consequently, the average position of negative 
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Figure 43.2  Total energy versus 
internuclear separation distance for 
Na1 and Cl2 ions.

1NaCl does not tend to form as an isolated molecule at room temperature. In the solid state, NaCl forms a crystalline 
array of ions as described in Section 43.3. In the liquid state or in solution with water, the Na1 and Cl2 ions dissociate 
and are free to move relative to each other.

Pitfall Prevention 43.1
Ionic and Covalent Bonds
In practice, these descriptions of 
ionic and covalent bonds represent 
extreme ends of a spectrum of bonds 
involving electron transfer. In a 
real bond, the electron may not be 
completely transferred as in an ionic 
bond or equally shared as in a cova-
lent bond. Therefore, real bonds lie 
somewhere between these extremes.
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The probability amplitude for 
an electron to be between the 
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Ground-state wave functions c1(r) 
and c2(r) for two atoms making a 
covalent bond. (a) The atoms are far 
apart, and their wave functions over-
lap minimally. (b) The atoms are 
close together, forming a composite 
wave function c1(r) 1 c2(r) for the 
system.

ACTIVE FIGURE 43.3
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charge in the system is halfway between the atoms. This scenario can be modeled 
as if there were a fixed negative charge between the atoms, exerting attractive Cou-
lomb forces on both nuclei. Therefore, there is an overall attractive force between 
the atoms, resulting in a covalent bond.
 Because of the exclusion principle, the two electrons in the ground state of H2 
must have antiparallel spins. Also because of the exclusion principle, if a third H 
atom is brought near the H2 molecule, the third electron would have to occupy a 
higher energy level, which is not an energetically favorable situation. For this rea-
son, the H3 molecule is not stable and does not form.

Van der Waals Bonding

Ionic and covalent bonds occur between atoms to form molecules or ionic solids, 
so they can be described as bonds within molecules. Two additional types of bonds, 
van der Waals bonds and hydrogen bonds, can occur between molecules.
 You might think that two neutral molecules would not interact by means of the 
electric force because they each have zero net charge. They are attracted to each 
other, however, by weak electrostatic forces called van der Waals forces. Likewise, 
atoms that do not form ionic or covalent bonds are attracted to each other by van der 
Waals forces. Noble gas atoms, for example, because of their filled shell structure, 
do not generally form molecules or bond to each other to form a liquid. Because 
of van der Waals forces, however, at sufficiently low temperatures at which thermal 
excitations are negligible, noble gases first condense to liquids and then solidify. 
(The exception is helium, which does not solidify at atmospheric pressure.)
 The van der Waals force results from the following situation. While being elec-
trically neutral, a molecule has a charge distribution with positive and negative 
centers at different positions in the molecule. As a result, the molecule may act as 
an electric dipole. (See Section 23.4.) Because of the dipole electric fields, two mol-
ecules can interact such that there is an attractive force between them.
 There are three types of van der Waals forces. The first type, called the dipole–
dipole force, is an interaction between two molecules each having a permanent elec-
tric dipole moment. For example, polar molecules such as HCl have permanent 
electric dipole moments and attract other polar molecules.
 The second type, the dipole–induced dipole force, results when a polar molecule 
having a permanent electric dipole moment induces a dipole moment in a non-
polar molecule. In this case, the electric field of the polar molecule creates the 
dipole moment in the nonpolar molecule, which then results in an attractive force 
between the molecules.
 The third type is called the dispersion force, an attractive force that occurs between 
two nonpolar molecules. In this case, although the average dipole moment of a 
nonpolar molecule is zero, the average of the square of the dipole moment is non-
zero because of charge fluctuations. Two nonpolar molecules near each other tend 
to have dipole moments that are correlated in time so as to produce an attractive 
van der Waals force.

Hydrogen Bonding

Because hydrogen has only one electron, it is expected to form a covalent bond with 
only one other atom within a molecule. A hydrogen atom in a given molecule can 
also form a second type of bond between molecules called a hydrogen bond. Let’s 
use the water molecule H2O as an example. In the two covalent bonds in this mol-
ecule, the electrons from the hydrogen atoms are more likely to be found near the 
oxygen atom than near the hydrogen atoms, leaving essentially bare protons at the 
positions of the hydrogen atoms. This unshielded positive charge can be attracted 
to the negative end of another polar molecule. Because the proton is unshielded 
by electrons, the negative end of the other molecule can come very close to the 
proton to form a bond strong enough to form a solid crystalline structure, such as 
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that of ordinary ice. The bonds within a water molecule are covalent, but the bonds 
between water molecules in ice are hydrogen bonds.
 The hydrogen bond is relatively weak compared with other chemical bonds 
and can be broken with an input energy of approximately 0.1 eV. Because of this 
weakness, ice melts at the low temperature of 0°C. Even though this bond is weak, 
however, hydrogen bonding is a critical mechanism responsible for the linking of 
biological molecules and polymers. For example, in the case of the DNA (deoxy-
ribonucleic acid) molecule, which has a double-helix structure (Fig. 43.4), hydro-
gen bonds formed by the sharing of a proton between two atoms create linkages 
between the turns of the helix.

Quick Quiz 43.1  For each of the following atoms or molecules, identify the 
most likely type of bonding that occurs between the atoms or between the 
molecules. Choose from the following list: ionic, covalent, van der Waals, 
hydrogen. (a) atoms of krypton (b) potassium and chlorine atoms (c) hydro-
gen fluoride (HF) molecules (d) chlorine and oxygen atoms in a hypochlo-
rite ion (ClO2)

43.2 Energy States and Spectra of Molecules
Consider an individual molecule in the gaseous phase of a substance. The energy 
E of the molecule can be divided into four categories: (1) electronic energy, due 
to the interactions between the molecule’s electrons and nuclei; (2) translational 
energy, due to the motion of the molecule’s center of mass through space; (3) rota-
tional energy, due to the rotation of the molecule about its center of mass; and 
(4) vibrational energy, due to the vibration of the molecule’s constituent atoms:

E 5 Eel 1 Etrans 1 Erot 1 Evib

We explored the roles of translational, rotational, and vibrational energy of mol-
ecules in determining the molar specific heats of gases in Sections 21.2 and 21.4. 
Because the translational energy is unrelated to internal structure, this molecular 
energy is unimportant in interpreting molecular spectra. The electronic energy 
of a molecule is very complex because it involves the interaction of many charged 
particles, but various techniques have been developed to approximate its values. 
Although the electronic energies can be studied, significant information about a 
molecule can be determined by analyzing its quantized rotational and vibrational 
energy states. Transitions between these states give spectral lines in the microwave 
and infrared regions of the electromagnetic spectrum, respectively.

Rotational Motion of Molecules

Let’s consider the rotation of a molecule around its center of mass, confining our dis-
cussion to the diatomic molecule (Active Fig. 43.5a on page 1300) but noting that the 
same ideas can be extended to polyatomic molecules. A diatomic molecule aligned 
along a y axis has only two rotational degrees of freedom, corresponding to rotations 
about the x and z axes passing through the molecule’s center of mass. We discussed 
the rotation of such a molecule and its contribution to the specific heat of a gas in 
Section 21.4. If v is the angular frequency of rotation about one of these axes, the 
rotational kinetic energy of the molecule about that axis can be expressed as

 E rot 5
1
2Iv

2  (43.2)

In this equation, I is the moment of inertia of the molecule about its center of mass, 
given by

 I 5 a m1 m2

m1 1 m2
br 2 5 mr 2  (43.3)

Total energy of a molecule 

 Moment of inertia  
for a diatomic molecule

Figure 43.4  DNA molecules are 
held together by hydrogen bonds.
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where m1 and m2 are the masses of the atoms that form the molecule, r is the atomic 
separation, and m is the reduced mass of the molecule (see Example 41.5 and Prob-
lem 40 in Chapter 41):

 m 5
m1 m2

m1 1 m2
 (43.4)

 The magnitude of the molecule’s angular momentum about its center of mass is 
L 5 Iv, which classically can have any value. Quantum mechanics, however, restricts 
the molecule to certain quantized rotational frequencies such that the angular 
momentum of the molecule has the values2

 L 5 "J 1 J 1 1 2  U  J 5 0, 1, 2, c  (43.5)

where J is an integer called the rotational quantum number. Combining Equa-
tions 43.5 and 43.2, we obtain an expression for the allowed values of the rotational 
kinetic energy of the molecule:

E rot 5
1
2Iv2 5

1
2I
1Iv 2 2 5 L2

2I
5
1 "J 1 J 1 1 2  U 2 2

2I

 E rot 5 EJ 5
U2

2I
 J 1 J 1 1 2   J 5 0, 1, 2, c  (43.6)

The allowed rotational energies of a diatomic molecule are plotted in Active Figure 
43.5b. As the quantum number J goes up, the states become farther apart as dis-
played earlier for rotational energy levels in Figure 21.8.
 For most molecules, transitions between adjacent rotational energy levels result 
in radiation that lies in the microwave range of frequencies ( f , 1011 Hz). When a 
molecule absorbs a microwave photon, the molecule jumps from a lower rotational 
energy level to a higher one. The allowed rotational transitions of linear molecules 
are regulated by the selection rule DJ 5 61. Given this selection rule, all absorption 
lines in the spectrum of a linear molecule correspond to energy separations equal 
to EJ 2 EJ21, where J 5 1, 2, 3,. . . . From Equation 43.6, we see that the energies of 
the absorbed photons are given by

 Ephoton 5 DE rot 5 EJ 2 EJ21 5
U2

2I
3 J 1 J 1 1 2 2 1 J 2 1 2 J 4

 Ephoton 5
U2

I
 J 5

h2

4p 2I
 J  J 5 1, 2, 3, c  (43.7)

Reduced mass of a  
diatomic molecule

Allowed values of rotational 
 angular momentum

Allowed values of  
rotational energy

Energy of a photon absorbed  
in a transition between 

adjacent rotational levels
2Equation 43.5 is similar to Equation 42.27 for orbital angular momentum in an atom. The relationship between the 
magnitude of the angular momentum of a system and the associated quantum number is the same as it is in these 
equations for any system that exhibits rotation as long as the potential energy function for the system is spherically 
symmetric.
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where J is the rotational quantum number of the higher energy state. Because 
Ephoton 5 hf, where f is the frequency of the absorbed photon, we see that the allowed 
frequency for the transition J 5 0 to J 5 1 is f1 5 h/4p2I. The frequency correspond-
ing to the J 5 1 to J 5 2 transition is 2f1, and so on. These predictions are in excel-
lent agreement with the observed frequencies.

Quick Quiz 43.2  A gas of identical diatomic molecules absorbs electro-
magnetic radiation over a wide range of frequencies. Molecule 1 is in the 
J 5 0 rotation state and makes a transition to the J 5 1 state. Molecule 2 is 
in the J 5 2 state and makes a transition to the J 5 3 state. Is the ratio of 
the frequency of the photon that excited molecule 2 to that of the photon 
that excited molecule 1 equal to (a) 1, (b) 2, (c) 3, (d) 4, or (e) impossible 
to determine?

Example 43.1 Rotation of the CO Molecule

The J 5 0 to J 5 1 rotational transition of the CO molecule occurs at a frequency of 1.15 3 1011 Hz.

(A)  Use this information to calculate the moment of inertia of the molecule.

SOLUTION

Conceptualize  Imagine that the two atoms in Active Figure 43.5a are carbon and oxygen. The center of mass of the mol-
ecule is not midway between the atoms because of the difference in masses of the C and O atoms.

Categorize  The statement of the problem tells us to categorize this example as one involving a quantum-mechanical 
treatment and to restrict our investigation to the rotational motion of a diatomic molecule.

Analyze  Use Equation 43.7 to find the energy of a pho-
ton that excites the molecule from the J 5 0 to the J 5 1 
rotational level:

Ephoton 5
h2

4p 2I
11 2 5 h2

4p 2I

Equate this energy to E 5 hf for the absorbed photon 
and solve for I:

h2

4p 2I
5 hf   S  I 5

h
4p 2f

Substitute the frequency given in the problem statement: I 5
6.626 3 10234 J ? s

4p 2 11.15 3 1011 s21 2 5 1.46 3 10246 kg ? m2

(B)  Calculate the bond length of the molecule.

SOLUTION

Find the reduced mass m of the CO molecule: m 5
m 1 m2

m1 1 m2
5
112 u 2 116 u 2
12 u 1 16 u

5 6.86 u

5 16.86 u 2 a1.66 3 10227 kg

1 u
b 5 1.14 3 10226 kg

Solve Equation 43.3 for r and substitute for the reduced 
mass and the moment of inertia from part (A):

r 5 Å
I
m
5 Å

1.46 3 10246 kg ? m2

1.14 3 10226 kg
 

5 1.13 3 10210 m 5 0.113 nm

Finalize  The moment of inertia of the molecule and the separation distance between the atoms are both very small, as 
expected for a microscopic system.

WHAT IF? What if another photon of frequency 1.15 3 1011 Hz is incident on the CO molecule while that molecule is 
in the J 5 1 state? What happens?

continued
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43.1 cont.

Answer  Because the rotational quantum states are not equally spaced in energy, the J 5 1 to J 5 2 transition does not 
have the same energy as the J 5 0 to J 5 1 transition. Therefore, the molecule will not be excited to the J 5 2 state. Two 
possibilities exist. The photon could pass by the molecule with no interaction, or the photon could induce a stimulated 
emission, similar to that for atoms and discussed in Section 42.9. In this case, the molecule makes a transition back to 
the J 5 0 state and the original photon and a second identical photon leave the scene of the interaction.

Vibrational Motion of Molecules

If we consider a molecule to be a flexible structure in which the atoms are bonded 
together by “effective springs” as shown in Active Figure 43.6a, we can model the 
molecule as a simple harmonic oscillator as long as the atoms in the molecule are 
not too far from their equilibrium positions. Recall from Section 15.3 that the 
potential energy function for a simple harmonic oscillator is parabolic, varying as 
the square of the displacement from equilibrium. (See Eq. 15.20 and Active Fig. 
15.9b.) Active Figure 43.6b shows a plot of potential energy versus atomic separa-
tion for a diatomic molecule, where r0 is the equilibrium atomic separation. For 
separations close to r0, the shape of the potential energy curve closely resembles a 
parabola.
 According to classical mechanics, the frequency of vibration for the system 
shown in Active Figure 43.6a is given by Equation 15.14:

 f 5
1

2pÅ
k
m

 (43.8)

where k is the effective spring constant and m is the reduced mass given by Equation 
43.4. In Section 21.4, we studied the contribution of a molecule’s vibration to the 
specific heats of gases.
 Quantum mechanics predicts that a molecule vibrates in quantized states as 
described in Section 41.7. The vibrational motion and quantized vibrational energy 
can be altered if the molecule acquires energy of the proper value to cause a transi-
tion between quantized vibrational states. As discussed in Section 41.7, the allowed 
vibrational energies are

 E vib 5 1v 1 1
2 2hf  v 5 0, 1, 2, c  (43.9)

where v is an integer called the vibrational quantum number. (We used n in Sec-
tion 41.7 for a general harmonic oscillator, but v is often used for the quantum 
number when discussing molecular vibrations.) If the system is in the lowest vibra-
tional state, for which v 5 0, its ground-state energy is 12hf. In the first excited vibra-
tional state, v 5 1 and the energy is 32hf, and so on.

k

r

r
r 0

U(r)

a b

The vibration of the 
molecule is along 
the molecular axis.

The distance r0 is the 
equilibrium separation 
distance of the atoms.

m1

m2
(a) Effective-spring model of a 
diatomic molecule. (b) Plot of the 
potential energy of a diatomic mol-
ecule versus atomic separation dis-
tance. Compare with Figure 15.11.

ACTIVE FIGURE 43.6
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 Substituting Equation 43.8 into Equation 43.9 gives the following expression for 
the allowed vibrational energies:

 E vib 5 1v 1 1
2 2  

h
2p

 Å
k
m

  v 5 0, 1, 2, c  (43.10)

The selection rule for the allowed vibrational transitions is Dv 5 61. Transitions 
between vibrational levels are caused by absorption of photons in the infrared 
region of the spectrum. The energy of an absorbed photon is equal to the energy 
difference between any two successive vibrational levels. Therefore, the photon 
energy is given by

 Ephoton 5 DE vib 5
h

2p
 Å

k
m

 (43.11)

 The vibrational energies of a diatomic molecule are plotted in Active Figure 43.7. 
At ordinary temperatures, most molecules have vibrational energies corresponding 
to the v 5 0 state because the spacing between vibrational states is much greater 
than kBT, where kB is Boltzmann’s constant and T is the temperature.

Quick Quiz 43.3  A gas of identical diatomic molecules absorbs electromag-
netic radiation over a wide range of frequencies. Molecule 1, initially in the 
v 5 0 vibrational state, makes a transition to the v 5 1 state. Molecule 2, 
initially in the v 5 2 state, makes a transition to the v 5 3 state. What is the 
ratio of the frequency of the photon that excited molecule 2 to that of the 
photon that excited molecule 1? (a) 1   (b) 2   (c) 3   (d) 4   (e) impossible to 
determine

 Allowed values of  
vibrational energy

Vibrational
energyv

5 hf11
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4 hf9
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3 hf7
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2 hf5
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1 hf3
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The spacings between 
adjacent vibrational 
levels are equal if the 
molecule behaves as a 
harmonic oscillator.

Allowed vibrational energies of a 
diatomic molecule, where f is the fre-
quency of vibration of the molecule, 
given by Equation 43.8.

ACTIVE FIGURE 43.7

Example 43.2 Vibration of the CO Molecule

The frequency of the photon that causes the v 5 0 to v 5 1 transition in the CO molecule is 6.42 3 1013 Hz. We ignore 
any changes in the rotational energy for this example.

(A)  Calculate the force constant k for this molecule.

SOLUTION

Conceptualize  Imagine that the two atoms in Active Figure 43.6a are carbon and oxygen. As the molecule vibrates, a 
given point on the imaginary spring is at rest. This point is not midway between the atoms because of the difference in 
masses of the C and O atoms.

Categorize  The statement of the problem tells us to categorize this example as one involving a quantum-mechanical 
treatment and to restrict our investigation to the vibrational motion of a diatomic molecule. continued
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43.2 cont.

Molecular Spectra

In general, a molecule vibrates and rotates simultaneously. To a first approxima-
tion, these motions are independent of each other, so the total energy of the mol-
ecule for these motions is the sum of Equations 43.6 and 43.9:

 E 5 1v 1 1
2 2hf 1

U2

2I
 J 1 J 1 1 2  (43.12)

The energy levels of any molecule can be calculated from this expression, and each 
level is indexed by the two quantum numbers v and J. From these calculations, an 
energy-level diagram like the one shown in Active Figure 43.8a can be constructed. 
For each allowed value of the vibrational quantum number v, there is a complete 
set of rotational levels corresponding to J 5 0, 1, 2, . . . . The energy separation 
between successive rotational levels is much smaller than the separation between 
successive vibrational levels. As noted earlier, most molecules at ordinary tempera-
tures are in the v 5 0 vibrational state; these molecules can be in various rotational 
states as Active Figure 43.8a shows.
 When a molecule absorbs a photon with the appropriate energy, the vibrational 
quantum number v increases by one unit while the rotational quantum number 
J either increases or decreases by one unit as can be seen in Active Figure 43.8. 
Therefore, the molecular absorption spectrum in Active Figure 43.8b consists of 
two groups of lines: one group to the right of center and satisfying the selection 
rules DJ 5 11 and Dv 5 11, and the other group to the left of center and satisfying 
the selection rules DJ 5 21 and Dv 5 11.
 The energies of the absorbed photons can be calculated from Equation 43.12:

 Ephoton 5 DE 5 hf 1
U2

I
 1 J 1 1 2   J 5 0, 1, 2, c 1DJ 5 11 2  (43.13)

 Ephoton 5 DE 5 hf 2
U2

I
 J  J 5 1, 2, 3, c 1DJ 5 21 2  (43.14)

Substitute the frequency given in the prob-
lem statement and the reduced mass from 
Example 43.1:

k 5 4p 2 11.14 3 10226 kg 2 16.42 3 1013 s21 22 5 1.85 3 103 N/m

Analyze  Set Equation 43.11 equal to the pho-
ton energy hf and solve for the force constant:

h
2p

 Å
k
m
5 hf   S   k 5 4p 2mf 2

(B)  What is the classical amplitude A of vibration for this molecule in the v 5 0 vibrational state?

SOLUTION

Substitute the value for k from part (A) and 
the value for m: A 5 Å

6.626 3 10234 J ? s

2p
  c 1
11.14 3 10226 kg 2 11.85 3 103 N/m 2 d

1/4

5 4.79 3 10212 m 5 0.004 79 nm

Equate the maximum elastic potential energy 
1
2 kA2 in the molecule (Eq. 15.21) to the vibra-
tional energy given by Equation 43.10 with 
v 5 0 and solve for A:

1
2kA2 5

h
4p

 Å
k
m

   S   A 5 Å
h

2p
a 1
mk
b

1/4

Finalize  Comparing this result with the bond length of 0.113 nm we calculated in Example 43.1 shows that the classical 
amplitude of vibration is approximately 4% of the bond length.
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where J is the rotational quantum number of the initial state. Equation 43.13 gener-
ates the series of equally spaced lines higher than the frequency f, whereas Equation 
43.14 generates the series lower than this frequency. Adjacent lines are separated in 
frequency by the fundamental unit "/2pI. Active Figure 43.8b shows the expected 
frequencies in the absorption spectrum of the molecule; these same frequencies 
appear in the emission spectrum.
 The experimental absorption spectrum of the HCl molecule shown in Figure 
43.9 on page 1306 follows this pattern very well and reinforces our model. One 
peculiarity is apparent, however: each line is split into a doublet. This doubling 
occurs because two chlorine isotopes (see Section 44.1) were present in the sample 
used to obtain this spectrum. Because the isotopes have different masses, the two 
HCl molecules have different values of I.
 The intensity of the spectral lines in Figure 43.9 follows an interesting pattern, 
rising first as one moves away from the central gap (located at about 8.65 3 1013 Hz, 
corresponding to the forbidden J 5 0 to J 5 0 transition) and then falling. This 
intensity is determined by a product of two functions of J. The first function cor-
responds to the number of available states for a given value of J. This function is 
2J 1 1, corresponding to the number of values of mJ, the molecular rotation ana-
log to m, for atomic states. For example, the J 5 2 state has five substates with five 
values of mJ (mJ 5 22, 21, 0, 1, 2), whereas the J 5 1 state has only three substates 
(mJ 5 21, 0, 1). Therefore, on average and without regard for the second function 
described below, five-thirds as many molecules make the transition from the J 5 2 
state as from the J 5 1 state.

Photon frequency

J � 4
J � 3
J � 2
J � 1
J � 0

v � 1

J � 4
J � 3
J � 2
J � 1
J � 0

v � 0

J � �1� J � �1�

�/2  Ip

E
N

E
R

G
Y

a

b

The transitions obey the selection 
rule �J � �1 and fall into two 
sequences, those for �J � �1 and 
those for �J � �1.

The lines to the right of the center 
mark correspond to transitions in 
which J changes by �1; the lines to the 
left of the center mark correspond to 
transitions for which J changes by �1.

(a) Absorptive transitions between 
the v 5 0 and v 5 1 vibrational states 
of a diatomic molecule. Compare 
the energy levels in this figure with 
those in Figure 21.8. (b) Expected 
lines in the absorption spectrum of 
a molecule. These same lines appear 
in the emission spectrum.

ACTIVE FIGURE 43.8
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 The second function determining the envelope of the intensity of the spectral 
lines is the Boltzmann factor, introduced in Section 21.5. The number of molecules 
in an excited rotational state is given by

n 5 n 0e
2U2J 1 J112/12I kBT 2

where n0 is the number of molecules in the J 5 0 state.
 Multiplying these factors together indicates that the intensity of spectral lines 
should be described by a function of J as follows:

 I ~ 12J 1 1 2e2U2J 1 J112/12IkBT 2  (43.15)

The factor (2J 1 1) increases with J while the exponential second factor decreases. 
The product of the two factors gives a behavior that closely describes the envelope 
of the spectral lines in Figure 43.9.
 The excitation of rotational and vibrational energy levels is an important consid-
eration in current models of global warming. Most of the absorption lines for CO2 
are in the infrared portion of the spectrum. Therefore, visible light from the Sun 
is not absorbed by atmospheric CO2 but instead strikes the Earth’s surface, warm-
ing it. In turn, the surface of the Earth, being at a much lower temperature than 
the Sun, emits thermal radiation that peaks in the infrared portion of the electro-
magnetic spectrum (Section 40.1). This infrared radiation is absorbed by the CO2 
molecules in the air instead of radiating out into space. Atmospheric CO2 acts like 
a one-way valve for energy from the Sun and is responsible, along with some other 
atmospheric molecules, for raising the temperature of the Earth’s surface above 
its value in the absence of an atmosphere. This phenomenon is commonly called 
the “greenhouse effect.” The burning of fossil fuels in today’s industrialized society 
adds more CO2 to the atmosphere. This addition of CO2 increases the absorption 
of infrared radiation, raising the Earth’s temperature further. In turn, this increase 
in temperature causes substantial climatic changes. The increased temperature 
also results in melting of ice from polar regions, raising sea levels worldwide and 
endangering coastal population centers. In February 2007, the Intergovernmental 
Panel on Climate Change of the United Nations issued “Climate Change 2007: The 
Physical Science Basis.” This survey, based on the work of more than 2 500 scientists 
from more than 130 countries, contains chilling statements that global warming is 
clearly linked to human activity and that the global warming issue is no longer a 
matter of debate. Solving the global warming problem is extremely important but 
will be difficult because of the worldwide contributions to the problem. Agreement 
among nations to address this problem will involve political, economic, and social 
issues that will necessitate international discussion and cooperation.

Intensity variation in the 
 vibration–rotation spectrum 

of a molecule

8.0 8.2 8.4 8.6 8.8 9.0 9.2 
Frequency (� 1013 Hz)

In
te

ns
ity

Each line is split into a doublet because the sample 
contains two chlorine isotopes that have different 
masses and therefore different moments of inertia.

Figure 43.9  Experimental absorp-
tion spectrum of the HCl molecule.
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Conceptual Example 43.3 Comparing Figures 43.8 and 43.9

In Active Figure 43.8a, the transitions indicated correspond to spectral lines that are equally spaced as shown in Active 
Figure 43.8b. The actual spectrum in Figure 43.9, however, shows lines that move closer together as the frequency 
increases. Why does the spacing of the actual spectral lines differ from the diagram in Active Figure 43.8?

SOLUTION
In Active Figure 43.8, we modeled the rotating diatomic molecule as a rigid object (Chapter 10). In reality, however, as the 
molecule rotates faster and faster, the effective spring in Active Figure 43.6a stretches and provides the increased force 
associated with the larger centripetal acceleration of each atom. As the molecule stretches along its length, its moment of 
inertia I increases. Therefore, the rotational part of the energy expression in Equation 43.12 has an extra dependence on 
J in the moment of inertia I. Because the increasing moment of inertia is in the denominator, as J increases, the energies 
do not increase as rapidly with J as indicated in Equation 43.12. With each higher energy level being lower than indicated 
by Equation 43.12, the energy associated with a transition to that level is smaller, as is the frequency of the absorbed pho-
ton, destroying the even spacing of the spectral lines and giving the uneven spacing seen in Figure 43.9.

43.3 Bonding in Solids
A crystalline solid consists of a large number of atoms arranged in a regular array, 
forming a periodic structure. The ions in the NaCl crystal are ionically bonded, 
as already noted, and the carbon atoms in diamond form covalent bonds with one 
another. The metallic bond described at the end of this section is responsible for 
the cohesion of copper, silver, sodium, and other solid metals.

Ionic Solids

Many crystals are formed by ionic bonding, in which the dominant interaction 
between ions is the Coulomb force. Consider a portion of the NaCl crystal shown in 
Figure 43.10a. The red spheres are sodium ions, and the blue spheres are chlorine 
ions. As shown in Figure 43.10b, each Na1 ion has six nearest-neighbor Cl2 ions. 
Similarly, in Figure 43.10c, we see that each Cl2 ion has six nearest-neighbor Na1 
ions. Each Na1 ion is attracted to its six Cl2 neighbors. The corresponding poten-
tial energy is 26kee2/r, where ke is the Coulomb constant and r is the separation dis-
tance between each Na1 and Cl2. In addition, there are 12 next-nearest-neighbor 
Na1 ions at a distance of !2r  from the Na1 ion, and these 12 positive ions exert 
weaker repulsive forces on the central Na1. Furthermore, beyond these 12 Na1 ions 

Na� Cl �

a b c

The blue spheres represent 
Cl� ions, and the red spheres 
represent Na� ions.

Figure 43.10  (a) Crystalline 
structure of NaCl. (b) Each posi-
tive sodium ion is surrounded by 
six negative chlorine ions. (c) Each 
chlorine ion is surrounded by six 
sodium ions.
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are more Cl2 ions that exert an attractive force, and so on. The net effect of all 
these interactions is a resultant negative electric potential energy

 Uattractive 5 2ak e 
e2

r
 (43.16)

where a is a dimensionless number known as the Madelung constant. The value 
of a depends only on the particular crystalline structure of the solid. For exam-
ple, a 5 1.747 6 for the NaCl structure. When the constituent ions of a crystal are 
brought close together, a repulsive force exists because of electrostatic forces and 
the exclusion principle as discussed in Section 43.1. The potential energy term 
B/r m in Equation 43.1 accounts for this repulsive force. We do not include neighbors 
other than nearest neighbors here because the repulsive forces occur only for ions 
that are very close together. (Electron shells must overlap for exclusion- principle 
effects to become important.) Therefore, we can express the total potential energy 
of the crystal as

 Utotal 5 2ak e 
e2

r
1

B
r m  (43.17)

where m in this expression is some small integer.
 A plot of total potential energy versus ion separation distance is shown in Figure 
43.11. The potential energy has its minimum value U0 at the equilibrium separa-
tion, when r 5 r0. It is left as a problem (Problem 59) to show that

 U0 5 2ak e 
e2

r0
a1 2

1
mb  (43.18)

This minimum energy U0 is called the ionic cohesive energy of the solid, and its 
absolute value represents the energy required to separate the solid into a collection 
of isolated positive and negative ions. Its value for NaCl is 27.84 eV per ion pair.
 To calculate the atomic cohesive energy, which is the binding energy relative to 
the energy of the neutral atoms, 5.14 eV must be added to the ionic cohesive energy 
value to account for the transition from Na1 to Na and 3.62 eV must be subtracted 
to account for the conversion of Cl2 to Cl. Therefore, the atomic cohesive energy of 
NaCl is

27.84 eV 1 5.14 eV 2 3.62 eV 5 26.32 eV

In other words, 6.32 eV of energy per ion pair is needed to separate the solid into 
isolated neutral atoms of Na and Cl.
 Ionic crystals form relatively stable, hard crystals. They are poor electrical con-
ductors because they contain no free electrons; each electron in the solid is bound 
tightly to one of the ions, so it is not sufficiently mobile to carry current. Ionic 
crystals have high melting points; for example, the melting point of NaCl is 801°C. 
Ionic crystals are transparent to visible radiation because the shells formed by the 
electrons in ionic solids are so tightly bound that visible radiation does not possess 
sufficient energy to promote electrons to the next allowed shell. Infrared radiation 
is absorbed strongly because the vibrations of the ions have natural resonant fre-
quencies in the low-energy infrared region.

Covalent Solids

Solid carbon, in the form of diamond, is a crystal whose atoms are covalently 
bonded. Because atomic carbon has the electronic configuration 1s22s22p2, it is 
four electrons short of filling its n 5 2 shell, which can accommodate eight elec-
trons. Because of this electron structure, two carbon atoms have a strong attraction 
for each other, with a cohesive energy of 7.37 eV. In the diamond structure, each 
carbon atom is covalently bonded to four other carbon atoms located at four cor-
ners of a cube as shown in Figure 43.12a.
 The crystalline structure of diamond is shown in Figure 43.12b. Notice that each 
carbon atom forms covalent bonds with four nearest-neighbor atoms. The basic 

U0

r0

0

Utotal

r

Figure 43.11  Total potential energy 
versus ion separation distance for 
an ionic solid, where U0 is the ionic 
cohesive energy and r0 is the equi-
librium separation distance between 
ions.
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structure of diamond is called tetrahedral (each carbon atom is at the center of 
a regular tetrahedron), and the angle between the bonds is 109.5°. Other crystals 
such as silicon and germanium have the same structure.
 Carbon is interesting in that it can form several different types of structures. 
In addition to the diamond structure, it forms graphite, with completely different 
properties. In this form, the carbon atoms form flat layers with hexagonal arrays of 
atoms. A very weak interaction between the layers allows the layers to be removed 
easily under friction, as occurs in the graphite used in pencil lead.
 Carbon atoms can also form a large hollow structure; in this case, the compound 
is called buckminsterfullerene after the famous architect R. Buckminster Fuller, 
who invented the geodesic dome. The unique shape of this molecule (Fig. 43.13) 
provides a “cage” to hold other atoms or molecules. Related structures, called 
“buckytubes” because of their long, narrow cylindrical arrangements of carbon 
atoms, may provide the basis for extremely strong, yet lightweight, materials.
 The atomic cohesive energies of some covalent solids are given in Table 43.1. The 
large energies account for the hardness of covalent solids. Diamond is particularly 
hard and has an extremely high melting point (about 4 000 K). Covalently bonded 
solids are usually very hard, have high bond energies and high melting points, and 
are good electrical insulators.

Metallic Solids

Metallic bonds are generally weaker than ionic or covalent bonds. The outer elec-
trons in the atoms of a metal are relatively free to move throughout the material, 
and the number of such mobile electrons in a metal is large. The metallic structure 
can be viewed as a “sea” or a “gas” of nearly free electrons surrounding a lattice 
of positive ions (Fig. 43.14, page 1310). The bonding mechanism in a metal is the 
attractive force between the entire collection of positive ions and the electron gas. 
Metals have a cohesive energy in the range of 1 to 3 eV per atom, which is less than 
the cohesive energies of ionic or covalent solids.
 Light interacts strongly with the free electrons in metals. Hence, visible light is 
absorbed and re-emitted quite close to the surface of a metal, which accounts for 
the shiny nature of metal surfaces. In addition to the high electrical conductivity 

a

b

Figure 43.12  (a) Each carbon atom 
in a diamond crystal is covalently 
bonded to four other carbon atoms 
so that a tetrahedral structure is 
formed. (b) The crystal structure of 
diamond, showing the tetrahedral 
bond arrangement.

A cylinder of nearly pure crystalline 
silicon (Si), approximately 25 cm 
long. Such crystals are cut into 
wafers and processed to make vari-
ous semiconductor devices.
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Figure 43.13  Computer render-
ing of a “buckyball,” short for the 
molecule buckminsterfullerene. 
These nearly spherical molecular 
structures that look like soccer balls 
were named for the inventor of the 
geodesic dome. This form of carbon, 
C60, was discovered by astrophysicists 
investigating the carbon gas that 
exists between stars. Scientists are 
actively studying the properties and 
potential uses of buckminsterfuller-
ene and related molecules.
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Atomic Cohesive Energies 
of Some Covalent Solids

Solid Cohesive Energy (eV per ion pair)

C (diamond) 7.37
Si 4.63
Ge 3.85
InAs 5.70
SiC 6.15
ZnS 6.32
CuCl 9.24

TABLE 43.1
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of metals produced by the free electrons, the nondirectional nature of the metal-
lic bond allows many different types of metal atoms to be dissolved in a host metal 
in varying amounts. The resulting solid solutions, or alloys, may be designed to have 
particular properties, such as tensile strength, ductility, electrical and thermal con-
ductivity, and resistance to corrosion.
 Because the bonding in metals is between all the electrons and all the positive 
ions, metals tend to bend when stressed. This bending is in contrast to nonmetallic 
solids, which tend to fracture when stressed. Fracturing results because bonding 
in nonmetallic solids is primarily with nearest-neighbor ions or atoms. When the 
distortion causes sufficient stress between some set of nearest neighbors, fracture 
occurs.

43.4 Free-Electron Theory of Metals
In Section 27.3, we described a classical free-electron theory of electrical conduc-
tion in metals that led to Ohm’s law. According to this theory, a metal is modeled 
as a classical gas of conduction electrons moving through a fixed lattice of ions. 
Although this theory predicts the correct functional form of Ohm’s law, it does not 
predict the correct values of electrical and thermal conductivities.
 A quantum-based free-electron theory of metals remedies the shortcomings of 
the classical model by taking into account the wave nature of the electrons. In this 
model, the outer-shell electrons are free to move through the metal but are trapped 
within a three-dimensional box formed by the metal surfaces. Therefore, each elec-
tron is represented as a particle in a box. As discussed in Section 41.2, particles in a 
box are restricted to quantized energy levels.
 Statistical physics can be applied to a collection of particles in an effort to relate 
microscopic properties to macroscopic properties as we saw with kinetic theory of 
gases in Chapter 21. In the case of electrons, it is necessary to use quantum statistics, 
with the requirement that each state of the system can be occupied by only two 
electrons (one with spin up and the other with spin down) as a consequence of the 
exclusion principle. The probability that a particular state having energy E is occu-
pied by one of the electrons in a solid is

 f 1E 2 5 1

e 1E2EF2/kBT 1 1
 (43.19)

where f(E) is called the Fermi–Dirac distribution function and EF is called the 
Fermi energy. A plot of f(E) versus E at T 5 0 K is shown in Active Figure 43.15a. 
Notice that f(E) 5 1 for E , E F and f(E) 5 0 for E . E F. That is, at 0 K, all states hav-
ing energies less than the Fermi energy are occupied and all states having energies 
greater than the Fermi energy are vacant. A plot of f(E) versus E at some tempera-
ture T . 0 K is shown in Active Figure 43.15b. This curve shows that as T increases, 
the distribution rounds off slightly. Because of thermal excitation, states near and 
below E F lose population and states near and above EF gain population. The Fermi 
energy E F also depends on temperature, but the dependence is weak in metals.

Fermi–Dirac distribution  
function
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The blue area represents the 
electron gas, and the red spheres 
represent the positive metal ions.

Figure 43.14  Highly schematic dia-
gram of a metal.
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T � 0 K
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E F
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f(E)f(E)

T � 0 K

E
E F

0.5

a b

The energy EF is the Fermi energy.
Plot of the Fermi–Dirac distribu-
tion function f(E) versus energy at 
(a) T 5 0 K and (b) T . 0 K.

ACTIVE FIGURE 43.15
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 Let’s now follow up on our discussion of the particle in a box in Chapter 41 to 
generalize the results to a three-dimensional box. Recall that if a particle of mass m 
is confined to move in a one-dimensional box of length L, the allowed states have 
quantized energy levels given by Equation 41.14:

En 5 a h2

8mL2bn2 5 a U
2p 2

2mL2bn2 n 5 1, 2, 3, c

 Now imagine a piece of metal in the shape of a solid cube of sides L and vol-
ume L3 and focus on one electron that is free to move anywhere in this volume. 
Therefore, the electron is modeled as a particle in a three-dimensional box. In this 
model, we require that c(x, y, z) 5 0 at the boundaries of the metal. It can be shown 
(see Problem 37) that the energy for such an electron is

 E 5
U2p 2

2meL
2
1n x

2 1 n y
2 1 n z

2 2  (43.20)

where me is the mass of the electron and nx, ny, and nz are quantum numbers. As we 
expect, the energies are quantized, and each allowed value of the energy is char-
acterized by this set of three quantum numbers (one for each degree of freedom) 
and the spin quantum number ms. For example, the ground state, corresponding to 
nx 5 ny 5 nz 5 1, has an energy equal to 3"2p2/2meL2 and can be occupied by two 
electrons, corresponding to spin up and spin down.
 Because of the macroscopic size L of the box, the energy levels for the electrons 
are very close together. As a result, we can treat the quantum numbers as continu-
ous variables. Under this assumption, the number of allowed states per unit volume 
that have energies between E and E 1 dE is

 g 1E 2  dE 5
8"2 pme

3/2

h3  E 1/2 dE  (43.21)

(See Example 43.5.) The function g(E) is called the density-of-states function.
 If a metal is in thermal equilibrium, the number of electrons per unit volume 
N(E) dE that have energy between E and E 1 dE is equal to the product of the num-
ber of allowed states and the probability that a state is occupied; that is, N(E) dE 5 
g(E)f(E) dE:

 N 1E 2  dE 5 a8"2 pme
3/2

h3  E 1/2 b a 1

e 1E2EF 2/kBT 1 1
b dE  (43.22)

Plots of N(E) versus E for two temperatures are given in Figure 43.16.
 If ne is the total number of electrons per unit volume, we require that

 n e 5 3
`

0
 N 1E 2  dE 5

8"2 pme
3/2

h3  3
`

0
  

E 1/2 dE

e 1E2EF 2/kBT 1 1
 (43.23)

We can use this condition to calculate the Fermi energy. At T 5 0 K, the Fermi–
Dirac distribution function f(E) 5 1 for E , EF and f(E) 5 0 for E . EF. Therefore, 
at T 5 0 K, Equation 43.23 becomes

 n e 5
8"2 pme

3/2

h3  3
EF

0
 E 1/2 dE 5 2

3 
8"2 pme

3/2

h3  EF
3/2  (43.24)

Solving for the Fermi energy at 0 K gives

 EF 10 2 5 h2

2me
a3n e

8p
b

2/3

 (43.25)

The Fermi energies for metals are in the range of a few electron volts. Representative 
values for various metals are given in Table 43.2 (page 1312). It is left as a problem 
(Problem 39) to show that the average energy of a free electron in a metal at 0 K is

 Eavg 5
3
5 EF  (43.26)

Fermi energy at  T 5 0 K

0 1 2 3
E (eV)

N(E)

T � 0 K

0 1 2 3
E (eV)

N(E)

T � 0 K

kBT at 300 K

T � 300 K

a

b

To provide a sense of scale, 
imagine that the Fermi energy 
EF of the metal is 3 eV.

Figure 43.16  Plot of the electron 
distribution function versus energy 
in a metal at (a) T 5 0 K and (b) T 5 
300 K.
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 In summary, we can consider a metal to be a system comprising a very large num-
ber of energy levels available to the free electrons. These electrons fill the levels in 
accordance with the Pauli exclusion principle, beginning with E 5 0 and ending 
with EF. At T 5 0 K, all levels below the Fermi energy are filled and all levels above 
the Fermi energy are empty. At 300 K, a small fraction of the free electrons are 
excited above the Fermi energy.

Calculated Values of the Fermi Energy for 
Metals at 300 K Based on the Free-Electron Theory

Metal Electron Concentration (m23) Fermi Energy (eV)

Li 4.70 3 1028 4.72
Na 2.65 3 1028 3.23
K 1.40 3 1028 2.12
Cu 8.46 3 1028 7.05
Ag 5.85 3 1028 5.48
Au 5.90 3 1028 5.53

TABLE 43.2

Example 43.4 The Fermi Energy of Gold

Each atom of gold (Au) contributes one free electron to the metal. Compute the Fermi energy for gold.

SOLUTION

Conceptualize  Imagine electrons filling available levels at T 5 0 K in gold until the solid is neutral. The highest energy 
filled is the Fermi energy.

Categorize  We evaluate the result using a result from this section, so we categorize this example as a substitution 
problem.

Substitute the concentration of free electrons in gold 
from Table 43.2 into Equation 43.25 to calculate the 
Fermi energy at 0 K:

EF 10 2 5
16.626 3 10234 J ? s 22
2 19.11 3 10231 kg 2 c

3 15.90 3 1028 m23 2
8p

d
2/3

5 8.85 3 10219 J 5 5.53 ev

Example 43.5 Deriving Equation 43.21

Based on the allowed states of a particle 
in a three-dimensional box, derive Equa-
tion 43.21.

SOLUTION

Conceptualize  Imagine a particle con-
fined to a three-dimensional box, sub-
ject to boundary conditions in three 
dimensions.

Categorize  We categorize this problem 
as that of a quantum system in which the 
energies of the particle are quantized. 
Furthermore, we can base the solution to 
the problem on our understanding of the 
particle in a one-dimensional box.

Analyze  As noted previously, the allowed 
states of the particle in a three-dimensional box are described by three quantum numbers nx, ny, and nz. Imagine a 

Figure 43.17  (Example 43.5) 
The allowed states of particles 
in a three-dimensional box can 
be represented by dots (blue 
circles) in a quantum number 
space. This space is not tradi-
tional space in which a location 
is specified by coordinates x, 
y, and z; rather, it is a space in 
which allowed states can be 
specified by coordinates repre-
senting the quantum numbers. 
The dots representing the 
allowed states are located at 
integer values of nx, ny, and nz 
and are therefore at the cor-
ners of cubes with sides of “length” 1. The number of allowed states having ener-
gies between E and E 1 dE corresponds to the number of dots in the spherical shell 
of radius n and thickness dn.

nz

n dn

ny

nx



 43.5 | Band Theory of Solids 1313

43.5 cont.

three-dimensional quantum number space whose axes represent nx, ny, and nz. The allowed states in this space can be rep-
resented as dots located at integral values of the three quantum numbers as in Figure 43.17.

Defining E0 5 "2p2/2meL2 and n 5 (E/E0)1/2, rewrite 
Equation 43.20: (1)   n x

2 1 n y
2 1 n z

2 5
2meL

2

U2p 2  E 5
E
E0
5 n2

In the quantum number space, Equation (1) is the equation of a sphere of radius n. Therefore, the number of allowed 
states having energies between E and E 1 dE is equal to the number of points in a spherical shell of radius n and thick-
ness dn.

Find the “volume” of this shell, which represents the 
total number of states G(E) dE:

(2)   G 1E 2  dE 5 1
8 14pn2 dn 2 5 1

2pn2 dn

We have taken one-eighth of the total volume because we are restricted to the octant of a three-dimensional space in 
which all three quantum numbers are positive.

Multiply by 2 for the two possible spin states in each 
particle-in-a-box state:

g 1E 2  dE 5
8"2 pme

3/2

h3  E 1/2 dE

Substitute " 5 h/2p: g 1E 2  dE 5
4"2 pme

3/2

h3  E 1/2 dE

Letting g(E) represent the number of states per unit 
volume, where L3 is the volume V of the cubical box in 
normal space, find g(E) 5 G(E)/V :

g 1E 2  dE 5
G 1E 2

V
 dE 5

"2
2

  
me

3/2

U3p 2  E 1/2 dE

Substitute for E0 from its definition above: G 1E 2  dE 5 1
4pa

U2p 2

2meL
2b

23/2

E 1/2 dE

5
"2
2

  
me

3/2L3

U3p 2  E 1/2 dE

Evaluate the differential: G 1E 2  dE 5 1
2p c

E
1E0 23/2 d 112E21/2 dE 2 5 1

4pE 0
23/2E 1/2 dE

Replace n in Equation (2) with its equivalent in terms of 
E using the relation n2 5 E/E0 from Equation (1):

G 1E 2  dE 5 1
2pa

E
E0
b d c a E

E0
b

1/2

d 5 1
2p 

E
1E0 23/2 d 3 1E 21/2 4

Finalize  This result is Equation 43.21, which is what we set out to derive.

43.5 Band Theory of Solids
In Section 43.4, the electrons in a metal were modeled as particles free to move 
around inside a three-dimensional box and we ignored the influence of the parent 
atoms. In this section, we make the model more sophisticated by incorporating the 
contribution of the parent atoms that form the crystal.
 Recall from Section 41.1 that the probability density |c|2 for a system is physically 
significant, but the probability amplitude c is not. Let’s consider as an example an 
atom that has a single s electron outside of a closed shell. Both of the following wave 
functions are valid for such an atom with atomic number Z :

cs
1 1r 2 5 1Af 1r 2e2Zr/na0  cs

2 1r 2 5 2Af 1r 2e2Zr/na0
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where A is the normalization constant and f(r) is a function3 of r that varies with the 
value of n. Choosing either of these wave functions leads to the same value of |c|2, 
so both choices are equivalent. A difference arises, however, when two atoms are 
combined.
 If two identical atoms are very far apart, they do not interact and their electronic 
energy levels can be considered to be those of isolated atoms. Suppose the two 
atoms are sodium, each having a lone 3s electron that is in a well-defined quantum 
state. As the two sodium atoms are brought closer together, their wave functions 
begin to overlap as we discussed for covalent bonding in Section 43.1. The proper-
ties of the combined system differ depending on whether the two atoms are com-
bined with wave functions cs

1(r) as in Figure 43.18a or whether they are combined 
with one having wave function cs

1(r) and the other cs
2(r) as in Figure 43.18b. The 

choice of two atoms with wave function cs
2(r) is physically equivalent to that with 

two positive wave functions, so we do not consider it separately. When two wave 
functions cs

1(r) are combined, the result is a composite wave function in which 
the probability amplitudes add between the atoms. If cs

1(r) combines with cs
2(r), 

however, the wave functions between the nuclei subtract. Therefore, the composite 
probability amplitudes for the two possibilities are different. These two possible 
combinations of wave functions represent two possible states of the two-atom sys-
tem. We interpret these curves as representing the probability amplitude of find-
ing an electron. The positive–positive curve shows some probability of finding the 
electron at the midpoint between the atoms. The positive–negative function shows 
no such probability. A state with a high probability of an electron between two posi-
tive nuclei must have a different energy than a state with a high probability of the 
electron being elsewhere! Therefore, the states are split into two energy levels due 
to the two ways of combining the wave functions. The energy difference is relatively 
small, so the two states are close together on an energy scale.
 Figure 43.19a shows this splitting effect as a function of separation distance. For 
large separations r, the electron clouds do not overlap and there is no splitting. As 
the atoms are brought closer so that r decreases, the electron clouds overlap and we 
need to consider the system of two atoms.
 When a large number of atoms are brought together to form a solid, a similar 
phenomenon occurs. The individual wave functions can be brought together in 
various combinations of cs

1(r) and cs
2(r), each possible combination correspond-

3The functions f(r) are called Laguerre polynomials. They can be found in the quantum treatment of the hydrogen 
atom in modern physics textbooks.
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ing to a different energy. As the atoms are brought close together, the various 
 isolated-atom energy levels split into multiple energy levels for the composite sys-
tem. This splitting in levels for five atoms in close proximity is shown in Figure 
43.19b. In this case, there are five energy levels corresponding to five different com-
binations of isolated-atom wave functions.
 If we extend this argument to the large number of atoms found in solids (on the 
order of 1023 atoms per cubic centimeter), we obtain a large number of levels of 
varying energy so closely spaced that they may be regarded as a continuous band 
of energy levels as shown in Figure 43.19c. In the case of sodium, it is customary to 
refer to the continuous distributions of allowed energy levels as s bands because the 
bands originate from the s levels of the individual sodium atoms.
 Figure 43.20 shows the allowed energy bands of sodium at a fixed separation dis-
tance between the atoms. Notice that energy gaps, corresponding to forbidden ener-
gies, occur between the allowed bands. In addition, some bands exhibit sufficient 
spreading in energy that there is an overlap between bands arising from different 
quantum states (3s and 3p).
 As indicated by the blue-shaded areas in Figure 43.20, the 1s, 2s, and 2p bands 
of sodium are each full of electrons because the 1s, 2s, and 2p states of each atom 
are full. An energy level in which the orbital angular momentum is , can hold 
2(2, 1 1) electrons. The factor 2 arises from the two possible electron spin orienta-
tions, and the factor 2, 1 1 corresponds to the number of possible orientations of 
the orbital angular momentum. The capacity of each band for a system of N atoms 
is 2(2, 1 1)N electrons. Therefore, the 1s and 2s bands each contain 2N electrons 
(, 5 0), and the 2p band contains 6N electrons (, 5 1). Because sodium has only 
one 3s electron and there are a total of N atoms in the solid, the 3s band contains 
only N electrons and is partially full as indicated by the blue coloring in Figure 
43.20. The 3p band, which is the higher region of the overlapping bands, is com-
pletely empty (all gold in the figure).
 Band theory allows us to build simple models to understand the behavior of con-
ductors, insulators, and semiconductors as well as that of semiconductor devices, as 
we shall discuss in the following sections.

43.6 Electrical Conduction in Metals, 
Insulators, and Semiconductors

Good electrical conductors contain a high density of free charge carriers, and the 
density of free charge carriers in insulators is nearly zero. Semiconductors, first 
introduced in Section 23.2, are a class of technologically important materials in 
which charge-carrier densities are intermediate between those of insulators and 
those of conductors. In this section, we discuss the mechanisms of conduction in 
these three classes of materials in terms of a model based on energy bands.

Metals

If a material is to be a good electrical conductor, the charge carriers in the mate-
rial must be free to move in response to an applied electric field. Let’s consider the 
electrons in a metal as the charge carriers. The motion of the electrons in response 
to an electric field represents an increase in energy of the system (the metal lattice 
and the free electrons) corresponding to the additional kinetic energy of the mov-
ing electrons. Therefore, when an electric field is applied to a conductor, electrons 
must move upward to an available higher energy state on an energy-level diagram.
 Figure 43.21 shows a half-filled band in a metal at T 5 0 K, where the blue 
region represents levels filled with electrons. Because electrons obey Fermi–Dirac 
statistics, all levels below the Fermi energy are filled with electrons and all levels 
above the Fermi energy are empty. The Fermi energy lies in the band at the highest 
filled state. At temperatures slightly greater than 0 K, some electrons are thermally 
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Figure 43.20  Energy bands of 
a sodium crystal. Blue represents 
energy bands occupied by the 
sodium electrons when the atom is 
in its ground state. Gold represents 
energy bands that are empty.

Metal
E � 0

E � E F

E
N

E
R

G
Y

The states in the gold 
region of the band are 
available to account for 
electron motion.

Figure 43.21 Half-filled band of 
a metal, an electrical conductor. At 
T 5 0 K, the Fermi energy lies in the 
middle of the band.
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excited to levels above EF, but overall there is little change from the 0 K case. If 
a potential difference is applied to the metal, however, electrons having energies 
near the Fermi energy require only a small amount of additional energy from the 
applied electric field to reach nearby empty energy states above the Fermi energy. 
Therefore, electrons in a metal experiencing only a weak applied electric field are 
free to move because many empty levels are available close to the occupied energy 
levels. The model of metals based on band theory demonstrates that metals are 
excellent electrical conductors.

Insulators

Now consider the two outermost energy bands of a material in which the lower 
band is filled with electrons and the higher band is empty at 0 K (Fig. 43.22). The 
lower, filled band is called the valence band, and the upper, empty band is the con-
duction band. (The conduction band is the one that is partially filled in a metal.) 
It is common to refer to the energy separation between the valence and conduction 
bands as the energy gap Eg of the material. The Fermi energy lies somewhere in the 
energy gap4 as shown in Figure 43.22.
 Suppose a material has a relatively large energy gap of, for example, approxi-
mately 5 eV. At 300 K (room temperature), kBT 5 0.025 eV, which is much smaller 
than the energy gap. At such temperatures, the Fermi–Dirac distribution predicts 
that very few electrons are thermally excited into the conduction band. There are 
no available states that lie close in energy above the valence band and into which 
electrons can move upward to account for the extra kinetic energy associated with 
motion through the material in response to an electric field. Consequently, the 
electrons do not move; the material is an insulator. Although an insulator has many 
vacant states in its conduction band that can accept electrons, these states are sepa-
rated from the filled states by a large energy gap. Only a few electrons occupy these 
states, so the overall electrical conductivity of insulators is very small.

Semiconductors

Semiconductors have the same type of band structure as an insulator, but the 
energy gap is much smaller, on the order of 1 eV. Table 43.3 shows the energy gaps 
for some representative materials. The band structure of a semiconductor is shown 
in Figure 43.23. Because the Fermi level is located near the middle of the gap for 
a semiconductor and Eg is small, appreciable numbers of electrons are thermally 
excited from the valence band to the conduction band. Because of the many empty 
levels above the thermally filled levels in the conduction band, a small applied 
potential difference can easily raise the energy of the electrons in the conduction 
band, resulting in a moderate current.
 At T 5 0 K, all electrons in these materials are in the valence band and no energy 
is available to excite them across the energy gap. Therefore, semiconductors are 
poor conductors at very low temperatures. Because the thermal excitation of elec-
trons across the narrow gap is more probable at higher temperatures, the conductiv-
ity of semiconductors increases rapidly with temperature, contrasting sharply with 
the conductivity of metals, which decreases slowly with increasing temperature.
 Charge carriers in a semiconductor can be negative, positive, or both. When an 
electron moves from the valence band into the conduction band, it leaves behind a 
vacant site, called a hole, in the otherwise filled valence band. This hole (electron-
deficient site) acts as a charge carrier in the sense that a free electron from a nearby 
site can transfer into the hole. Whenever an electron does so, it creates a new hole 
at the site it abandoned. Therefore, the net effect can be viewed as the hole migrat-

4We defined the Fermi energy as the energy of the highest filled state at T 5 0, which might suggest that the Fermi 
energy should be at the top of the valence band in Figure 43.22. A more sophisticated general treatment of the Fermi 
energy, however, shows that it is located at that energy at which the probability of occupation is one-half (see Active 
Fig. 43.15b). According to this definition, the Fermi energy lies in the energy gap between the bands.
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Energy-Gap Values for Some 
Semiconductors

Eg (eV)

Crystal 0 K 300 K

Si 1.17 1.14
Ge 0.74 0.67
InP 1.42 1.34
GaP 2.32 2.26
GaAs 1.52 1.42
CdS 2.58 2.42
CdTe 1.61 1.56
ZnO 3.44 3.2
ZnS 3.91 3.6

TABLE 43.3
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ing through the material in the direction opposite the direction of electron move-
ment. The hole behaves as if it were a particle with a positive charge 1e.
 A pure semiconductor crystal containing only one element or one compound is 
called an intrinsic semiconductor. In these semiconductors, there are equal num-
bers of conduction electrons and holes. Such combinations of charges are called 
electron–hole pairs. In the presence of an external electric field, the holes move in 
the direction of the field and the conduction electrons move in the direction oppo-
site the field (Fig. 43.24). Because the electrons and holes have opposite signs, both 
motions correspond to a current in the same direction.

Quick Quiz 43.4  Consider the data on three materials given in the table.

Material Conduction Band Eg

A Empty 1.2 eV
B Half full 1.2 eV
C Empty 8.0 eV

Identify each material as a conductor, an insulator, or a semiconductor.

Doped Semiconductors

When impurities are added to a semiconductor, both the band structure of the 
semiconductor and its resistivity are modified. The process of adding impurities, 
called doping, is important in controlling the conductivity of semiconductors. For 
example, when an atom containing five outer-shell electrons, such as arsenic, is 
added to a Group IV semiconductor, four of the electrons form covalent bonds with 
atoms of the semiconductor and one is left over (Fig. 43.25a on page 1318). This 
extra electron is nearly free of its parent atom and can be modeled as having an 
energy level that lies in the energy gap, immediately below the conduction band 
(Fig. 43.25b). Such a pentavalent atom in effect donates an electron to the structure 
and hence is referred to as a donor atom. Because the spacing between the energy 
level of the electron of the donor atom and the bottom of the conduction band is 
very small (typically, approximately 0.05 eV), only a small amount of thermal exci-
tation is needed to cause this electron to move into the conduction band. (Recall 
that the average energy of an electron at room temperature is approximately kBT < 
0.025 eV.) Semiconductors doped with donor atoms are called n-type semiconduc-
tors because the majority of charge carriers are electrons, which are negatively 
charged.
 If a Group IV semiconductor is doped with atoms containing three outer-shell 
electrons, such as indium and aluminum, the three electrons form covalent bonds 
with neighboring semiconductor atoms, leaving an electron deficiency—a hole—
where the fourth bond would be if an impurity-atom electron were available to form 
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it (Fig. 43.26a). This situation can be modeled by placing an energy level in the 
energy gap, immediately above the valence band, as in Figure 43.26b. An electron 
from the valence band has enough energy at room temperature to fill this impurity 
level, leaving behind a hole in the valence band. This hole can carry current in the 
presence of an electric field. Because a trivalent atom accepts an electron from the 
valence band, such impurities are referred to as acceptor atoms. A semiconduc-
tor doped with trivalent (acceptor) impurities is known as a p -type semiconductor 
because the majority of charge carriers are positively charged holes.
 When conduction in a semiconductor is the result of acceptor or donor impuri-
ties, the material is called an extrinsic semiconductor. The typical range of doping 
densities for extrinsic semiconductors is 1013 to 1019 cm23, whereas the electron den-
sity in a typical semiconductor is roughly 1021 cm23.

43.7 Semiconductor Devices
The electronics of the first half of the 20th century was based on vacuum tubes, in 
which electrons pass through empty space between a cathode and an anode. We 
have seen vacuum tubes in Figure 29.6 (the television picture tube), Figure 29.10 
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(circular electron beam), Figure 29.15a (Thomson’s apparatus for measuring e/me 
for the electron), and Active Figure 40.9 (photoelectric effect apparatus).
 The transistor was invented in 1948, leading to a shift away from vacuum tubes 
and toward semiconductors as the basis of electronic devices. This phase of elec-
tronics has been under way for several decades. As discussed in Chapter 41, there 
may be a new phase of electronics in the near future using nanotechnological 
devices employing quantum dots and other nanoscale structures.
 In this section, we discuss electronic devices based on semiconductors, which are 
still in wide use and will be for many years to come.

The Junction Diode

A fundamental unit of a semiconductor device is formed when a p -type semicon-
ductor is joined to an n-type semiconductor to form a p–n junction. A junction 
diode is a device that is based on a single p–n junction. The role of a diode of any 
type is to pass current in one direction but not the other. Therefore, it acts as a one-
way valve for current.
 The p–n junction shown in Figure 43.27a consists of three distinct regions: a p 
region, an n region, and a small area that extends several micrometers to either 
side of the interface, called a depletion region.
 The depletion region may be visualized as arising when the two halves of the 
junction are brought together. The mobile n-side donor electrons nearest the junc-
tion (deep-blue area in Fig. 43.27a) diffuse to the p side and fill holes located there, 
leaving behind immobile positive ions. While this process occurs, we can model the 
holes that are being filled as diffusing to the n side, leaving behind a region (brown 
area in Fig. 43.27a) of fixed negative ions.
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Figure 43.27  (a) Physical arrange-
ment of a p–n junction. (b) Internal 
electric field magnitude versus x for 
the p–n junction. (c) Internal elec-
tric potential difference DV versus x 
for the p–n junction.
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 Because the two sides of the depletion region each carry a net charge, an inter-
nal electric field on the order of 104 to 106 V/cm exists in the depletion region (see 
Fig. 43.27b). This field produces an electric force on any remaining mobile charge 
carriers that sweeps them out of the depletion region, so named because it is a 
region depleted of mobile charge carriers. This internal electric field creates an 
internal potential difference DV0 that prevents further diffusion of holes and elec-
trons across the junction and thereby ensures zero current in the junction when no 
potential difference is applied.
 The operation of the junction as a diode is easiest to understand in terms of 
the potential difference graph shown in Figure 43.27c. If a voltage DV is applied to 
the junction such that the p side is connected to the positive terminal of a voltage 
source as shown in Figure 43.28a, the internal potential difference DV0 across the 
junction decreases; the decrease results in a current that increases exponentially 
with increasing forward voltage, or forward bias. For reverse bias (where the n side of 
the junction is connected to the positive terminal of a voltage source), the inter-
nal potential difference DV0 increases with increasing reverse bias; the increase 
results in a very small reverse current that quickly reaches a saturation value I0. The 
 current–voltage relationship for an ideal diode is

 I 5 I0 1e e DV/kBT 2 1 2  (43.27)

where the first e is the base of the natural logarithm, the second e represents the 
magnitude of the electron charge, kB is Boltzmann’s constant, and T is the absolute 
temperature. Figure 43.28b shows a circuit diagram for a diode under reverse bias, 
and Figure 43.28c shows an I2DV plot characteristic of a real p–n junction, demon-
strating the diode behavior.

Light-Emitting and Light-Absorbing Diodes

Light-emitting diodes (LEDs) and semiconductor lasers are common examples 
of devices that depend on the behavior of semiconductors. LEDs are used in traf-
fic signals, in electronic displays, and as indicator lights for electronic equipment. 
Semiconductor lasers are often used for pointers in presentations and in compact 
disc and DVD playback equipment.
 Light emission and absorption in semiconductors is similar to light emission and 
absorption by gaseous atoms except that in the discussion of semiconductors we 
must incorporate the concept of energy bands rather than the discrete energy lev-
els in single atoms. As shown in Figure 43.29a, an electron excited electrically into 
the conduction band can easily recombine with a hole (especially if the electron 
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Example 43.6 Where’s the Remote?

Estimate the band gap of the semiconductor in the infrared LED of a typical television remote control.

SOLUTION

Conceptualize  Imagine electrons in Figure 43.29a falling from the conduction band to the valence band, emitting infra-
red photons in the process.

Categorize  We use concepts discussed in this section, so we categorize this example as a substitution problem.
 In Chapter 34, we learned that the wavelength of infrared light ranges from 700 nm to 1 mm. Let’s pick a number that 
is easy to work with, such as 1 000 nm (which is not a bad estimate because remote controls typically operate in the range 
of 880 to 950 nm.)
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is injected into a p region). As this recombination takes place, a photon of energy 
Eg is emitted. With proper design of the semiconductor and the associated plastic 
envelope or mirrors, the light from a large number of these transitions serves as the 
source of an LED or a semiconductor laser.
 Conversely, an electron in the valence band may absorb an incoming photon of 
light and be promoted to the conduction band, leaving a hole behind (Fig. 43.29b). 
This absorbed energy can be used to operate an electrical circuit.
 One device that operates on this principle is the photovoltaic solar cell, which 
appears in many handheld calculators. An early large-scale application of arrays of 
photovoltaic cells is the energy supply for orbiting spacecraft. The solar panels of 
the Hubble Space Telescope can be seen in the chapter-opening photograph for 
Chapter 38 on page 1111.
 During the early years of the current century, application of photovoltaics for 
ground-based generation of electricity has been one of the world’s fastest-growing 
energy technologies. At the time of this printing, the global generation of energy 
by means of photovoltaics is over 10 GW. A homeowner can install arrays of pho-
tovoltaic panels on the roof of his or her house and generate enough energy to 
operate the home as well as feed excess energy back into the electrical grid. Several 
photovoltaic power plants have recently been completed in Europe, including the 
60-MW Olmedilla Photovoltaic Park in Olmedilla de Alercón, Spain. Several large 
solar power plants have been proposed in the United States, including one that 
would provide over 500 MW in California.
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The Transistor

The invention of the transistor by John Bardeen (1908–1991), Walter Brattain 
(1902–1987), and William Shockley (1910–1989) in 1948 totally revolutionized 
the world of electronics. For this work, these three men shared the Nobel Prize 
in Physics in 1956. By 1960, the transistor had replaced the vacuum tube in many 
electronic applications. The advent of the transistor created a multitrillion-dollar 
industry that produces such popular devices as MP3 players, handheld calculators, 
computers, wireless telephones, and electronic games.
 A junction transistor consists of a semiconducting material in which a very nar-
row n region is sandwiched between two p regions or a p region is sandwiched 
between two n regions. In either case, the transistor is formed from two p–n junc-
tions. These types of transistors were used widely in the early days of semiconductor 
electronics.
 During the 1960s, the electronics industry converted many electronic applica-
tions from the junction transistor to the field-effect transistor, which is much eas-
ier to manufacture and just as effective. Figure 43.30a shows the structure of a very 
common device, the MOSFET, or metal-oxide-semiconductor field-effect transis-
tor. You are likely using millions of MOSFET devices when you are working on your 
computer.
 There are three metal connections (the M in MOSFET) to the transistor: the 
source, drain, and gate. The source and drain are connected to n-type semiconduc-
tor regions (the S in MOSFET) at either end of the structure. These regions are 
connected by a narrow channel of additional n-type material, the n channel. The 
source and drain regions and the n channel are embedded in a p -type substrate 
material, which forms a depletion region, as in the junction diode, along the bot-
tom of the n channel. (Depletion regions also exist at the junctions underneath 
the source and drain regions, but we will ignore them because the operation of the 
device depends primarily on the behavior in the channel.)
 The gate is separated from the n channel by a layer of insulating silicon dioxide 
(the O in MOSFET, for oxide). Therefore, it does not make electrical contact with 
the rest of the semiconducting material.
 Imagine that a voltage source DVSD is applied across the source and drain as 
shown in Figure 43.30b. In this situation, electrons flow through the upper region 
of the n channel. Electrons cannot flow through the depletion region in the lower 
part of the n channel because this region is depleted of charge carriers. Now a 
second voltage DVSG is applied across the source and gate as in Figure 43.30c. The 
positive potential on the gate electrode results in an electric field below the gate 
that is directed downward in the n channel (the field in “field-effect”). This elec-
tric field exerts upward forces on electrons in the region below the gate, causing 
them to move into the n channel. Consequently, the depletion region becomes 
smaller, widening the area through which there is current between the top of 
the n channel and the depletion region. As the area becomes wider, the current 
increases.
 If a varying voltage, such as that generated from music stored on a compact disc, 
is applied to the gate, the area through which the source–drain current exists var-

Source DrainGate
Silicon dioxide

Depletion regionp-type substrate

n n

p

p

�VSD

Output

I

I

n n

n n

�VSG

The n-channel is a narrow strip 
of n-type material surrounded 
by p-type material.

The gate voltage �VSG can be 
used to control the source–drain 
current so that the MOSFET acts 
as an amplifier. 

a

b

c

The source–drain voltage �VSD 
results in a current in the circuit. 

E
S

�VSD

Figure 43.30  (a) The structure of 
a metal-oxide-semiconductor field-
effect transistor (MOSFET). (b) A 
source–drain voltage is applied. 
(c) A gate voltage is applied.

43.6 cont.

Estimate the energy hf of the photons from the remote 
control:

E 5 hf 5
hc
l
5

1 240 eV ? nm
1 000 nm

5 1.2 eV

This value corresponds to an energy gap Eg of approximately 1.2 eV in the LED’s semiconductor.
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ies in size according to the varying gate voltage. A small variation in gate voltage 
results in a large variation in current and a correspondingly large voltage across 
the resistor in Figure 43.30c. Therefore, the MOSFET acts as a voltage amplifier. 
A circuit consisting of a chain of such transistors can result in a very small initial 
signal from a microphone being amplified enough to drive powerful speakers at an 
outdoor concert.

The Integrated Circuit

Invented independently by Jack Kilby (1923–2005, Nobel Prize in Physics, 2000) 
at Texas Instruments in late 1958 and by Robert Noyce (1927–1990) at Fairchild 
Camera and Instrument in early 1959, the integrated circuit has been justly called 
“the most remarkable technology ever to hit mankind.” Kilby’s first device is shown 
in Figure 43.31. Integrated circuits have indeed started a “second industrial revo-
lution” and are found at the heart of computers, watches, cameras, automobiles, 
aircraft, robots, space vehicles, and all sorts of communication and switching 
networks.
 In simplest terms, an integrated circuit is a collection of interconnected transis-
tors, diodes, resistors, and capacitors fabricated on a single piece of silicon known 
as a chip. Contemporary electronic devices often contain many integrated circuits 
(Fig. 43.32). State-of-the-art chips easily contain several million components within 
a 1-cm2 area, and the number of components per square inch has increased steadily 
since the integrated circuit was invented. Figure 43.33 illustrates the dramatic 
advances made in chip technology since Intel introduced the first microprocessor 
in 1971.
 Integrated circuits were invented partly to solve the interconnection problem 
spawned by the transistor. In the era of vacuum tubes, power and size considerations 

Figure 43.31  Jack Kilby’s first inte-
grated circuit, tested on September 
12, 1958.
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Figure 43.32  Integrated circuits 
are prevalent in many electronic 
devices. All the flat circuit elements 
with black-topped surfaces in this 
photograph are integrated circuits.
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of individual components set modest limits on the number of components that 
could be interconnected in a given circuit. With the advent of the tiny, low-power, 
highly reliable transistor, design limits on the number of components disappeared 
and were replaced by the problem of wiring together hundreds of thousands of 
components. The magnitude of this problem can be appreciated when we consider 
that second-generation computers (consisting of discrete transistors rather than 
integrated circuits) contained several hundred thousand components requiring 
more than a million joints that had to be hand-soldered and tested.
 In addition to solving the interconnection problem, integrated circuits possess 
the advantages of miniaturization and fast response, two attributes critical for high-
speed computers. Because the response time of a circuit depends on the time inter-
val required for electrical signals traveling at the speed of light to pass from one 
component to another, miniaturization and close packing of components result in 
fast response times.

43.8 Superconductivity
We learned in Section 27.5 that there is a class of metals and compounds known 
as superconductors whose electrical resistance decreases to virtually zero below a 
certain temperature Tc called the critical temperature (Table 27.3). Let’s now look at 
these amazing materials in greater detail, using what we know about the properties 
of solids to help us understand the behavior of superconductors.
 Let’s start by examining the Meissner effect, introduced in Section 30.6 as the 
exclusion of magnetic flux from the interior of superconductors. The Meissner 
effect is illustrated in Figure 43.34 for a superconducting material in the shape of a 
long cylinder. Notice that the magnetic field penetrates the cylinder when its tem-
perature is greater than Tc (Fig. 43.34a). As the temperature is lowered to below Tc, 
however, the field lines are spontaneously expelled from the interior of the super-
conductor (Fig. 43.34b). Therefore, a superconductor is more than a perfect con-
ductor (resistivity r 5 0); it is also a perfect diamagnet (B

S
5 0). The property that 

B
S
5 0 in the interior of a superconductor is as fundamental as the property of zero 

resistance. If the magnitude of the applied magnetic field exceeds a critical value 
Bc, defined as the value of B that destroys a material’s superconducting properties, 
the field again penetrates the sample.
 Because a superconductor is a perfect diamagnet, it repels a permanent magnet. 
In fact, one can perform a demonstration of the Meissner effect by floating a small 
permanent magnet above a superconductor and achieving magnetic levitation as 
seen in Figure 30.27 in Section 30.6.
 Recall from our study of electricity that a good conductor expels static electric 
fields by moving charges to its surface. In effect, the surface charges produce an 
electric field that exactly cancels the externally applied field inside the conductor. 
In a similar manner, a superconductor expels magnetic fields by forming surface 
currents. To see why that happens, consider again the superconductor shown in 
Figure 43.34. Let’s assume the sample is initially at a temperature T . Tc as illus-
trated in Figure 43.34a so that the magnetic field penetrates the cylinder. As the 
cylinder is cooled to a temperature T , Tc, the field is expelled as shown in Figure 
43.34b. Surface currents induced on the superconductor’s surface produce a mag-
netic field that exactly cancels the externally applied field inside the superconduc-
tor. As you would expect, the surface currents disappear when the external mag-
netic field is removed.
 A successful theory for superconductivity in metals was published in 1957 by J. 
Bardeen (1908–1991), L. N. Cooper (b. 1930), and J. R. Schrieffer (b. 1931); it is 

T � Tc

I

T � Tc

a b

At 
temperatures 
above Tc, the 
field lines 
penetrate the
cylinder 
because it is 
in its normal 
state.

When the 
cylinder is cooled 
to T � Tc and 
becomes 
superconducting, 
magnetic flux is 
excluded from its 
interior by the 
induction of 
surface currents.

Figure 43.34  A superconductor 
in the form of a long cylinder in the 
presence of an external magnetic 
field.
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generally called BCS theory, based on the first letters of their last names. This the-
ory led to a Nobel Prize in Physics for the three scientists in 1972. In this theory, 
two electrons can interact via distortions in the array of lattice ions so that there 
is a net attractive force between the electrons.5 As a result, the two electrons are 
bound into an entity called a Cooper pair, which behaves like a particle with integral 
spin. Particles with integral spin are called bosons. (As noted in Pitfall Prevention 
42.6, fermions make up another class of particles, those with half-integral spin.) An 
important feature of bosons is that they do not obey the Pauli exclusion principle. 
Consequently, at very low temperatures, it is possible for all bosons in a collection 
of such particles to be in the lowest quantum state. The entire collection of Cooper 
pairs in the metal is described by a single wave function. Above the energy level 
associated with this wave function is an energy gap equal to the binding energy of a 
Cooper pair. Under the action of an applied electric field, the Cooper pairs experi-
ence an electric force and move through the metal. A random scattering event of 
a Cooper pair from a lattice ion would represent resistance to the electric current. 
Such a collision would change the energy of the Cooper pair because some energy 
would be transferred to the lattice ion. There are no available energy levels below 
that of the Cooper pair (it is already in the lowest state), however, and none avail-
able above because of the energy gap. As a result, collisions do not occur and there 
is no resistance to the movement of Cooper pairs.
 An important development in physics that elicited much excitement in the scien-
tific community was the discovery of high-temperature copper oxide-based super-
conductors. The excitement began with a 1986 publication by J. Georg Bednorz 
(b. 1950) and K. Alex Müller (b. 1927), scientists at the IBM Zurich Research Labo-
ratory in Switzerland. In their seminal paper,6 Bednorz and Müller reported strong 
evidence for superconductivity at 30 K in an oxide of barium, lanthanum, and cop-
per. They were awarded the Nobel Prize in Physics in 1987 for their remarkable 
discovery. Shortly thereafter, a new family of compounds was open for investigation 
and research activity in the field of superconductivity proceeded vigorously. In early 
1987, groups at the University of Alabama at Huntsville and the University of Hous-
ton announced superconductivity at approximately 92 K in an oxide of yttrium, 
barium, and copper (YBa2Cu3O7). Later that year, teams of scientists from Japan 
and the United States reported superconductivity at 105 K in an oxide of bismuth, 
strontium, calcium, and copper. Superconductivity at temperatures as high as 150 K 
have been reported in an oxide containing mercury. In 2006, Japanese scientists 
discovered superconductivity for the first time in iron-based materials, beginning 
with LaFePO, with a critical temperature of 4 K. The highest critical temperature 
that has been reported so far in the iron-based materials is 55 K, a milestone held 
by fluorine-doped SmFeAsO. These newly discovered materials have rejuvenated 
the field of high-Tc superconductivity. Today, one cannot rule out the possibility 
of room-temperature superconductivity, and the mechanisms responsible for the 
behavior of high-temperature superconductors are still under investigation. The 
search for novel superconducting materials continues both for scientific reasons 
and because practical applications become more probable and widespread as the 
critical temperature is raised.
 Although BCS theory was very successful in explaining superconductivity in met-
als, there is currently no widely accepted theory for high-temperature superconduc-
tivity. It remains an area of active research.

5A highly simplified explanation of this attraction between electrons is as follows. The attractive Coulomb force 
between one electron and the surrounding positively charged lattice ions causes the ions to move inward slightly 
toward the electron. As a result, there is a higher concentration of positive charge in this region than elsewhere in 
the lattice. A second electron is attracted to the higher concentration of positive charge.
6J. G. Bednorz and K. A. Müller, Z. Phys. B 64:189, 1986.
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Summary

Two or more atoms combine to form molecules because of a net attractive force between the atoms. The mechanisms 
responsible for molecular bonding can be classified as follows:

• Ionic bonds form primarily because of the Coulomb attraction between oppositely charged ions. Sodium chloride 
(NaCl) is one example.

• Covalent bonds form when the constituent atoms of a molecule share electrons. For example, the two electrons of 
the H2 molecule are equally shared between the two nuclei.

• Van der Waals bonds are weak electrostatic bonds between molecules or between atoms that do not form ionic 
or covalent bonds. These bonds are responsible for the condensation of noble gas atoms and nonpolar molecules 
into the liquid phase.

• Hydrogen bonds form between the center of positive charge in a polar molecule that includes one or more hydro-
gen atoms and the center of negative charge in another polar molecule.

The allowed values of the rotational energy of 
a diatomic molecule are

E rot 5 EJ 5
U2

2I
 J 1 J 1 1 2  J 5 0, 1, 2, c  (43.6)

where I is the moment of inertia of the mol-
ecule and J is an integer called the rotational 
quantum number. The selection rule for transi-
tions between rotational states is DJ 5 61.

The allowed values of the vibrational energy of a diatomic mol-
ecule are

 E vib 5 1v 1 1
2 2

h
2p

 Å
k
m

 v 5 0, 1, 2, c  (43.10)

where v is the vibrational quantum number, k is the force con-
stant of the “effective spring” bonding the molecule, and m is the 
reduced mass of the molecule. The selection rule for allowed 
vibrational transitions is Dv 5 61, and the energy difference 
between any two adjacent levels is the same, regardless of which 
two levels are involved.

Bonding mechanisms in 
solids can be classified in 
a manner similar to the 
schemes for molecules. 
For example, the Na1 and 
Cl2 ions in NaCl form 
ionic bonds, whereas the 
carbon atoms in diamond 
form covalent bonds. The 
metallic bond is charac-
terized by a net attractive 
force between positive ion 
cores and the mobile free 
electrons of a metal.

In the free-electron theory of metals, the free electrons fill the quantized levels in 
accordance with the Pauli exclusion principle. The number of states per unit volume 
available to the conduction electrons having energies between E and E 1 dE is

 N 1E 2  dE 5 a8"2 pme
3/2

h3  E 1/2b a 1

e 1E2EF 2/kBT 1 1
b dE  (43.22)

where EF is the Fermi energy. At T 5 0 K, all levels below EF are filled, all levels 
above EF are empty, and

 EF 10 2 5 h2

2me
a3n e

8p
b

2/3

 (43.25)

where ne is the total number of conduction electrons per unit volume. Only those 
electrons having energies near EF can contribute to the electrical conductivity of the 
metal.

Concepts and Principles

continued
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 3. What kind of bonding likely holds the atoms together in 
the following solids (i), (ii), and (iii)? Choose your answers 
from these possibilities: (a) ionic bonding, (b) covalent 
bonding, and (c) metallic bonding. (i) The solid is opaque, 
shiny, flexible, and a good electric conductor. (ii) The crys-
tal is transparent, brittle, and soluble in water. It is a poor 
conductor of electricity. (iii) The crystal is opaque, brittle, 
very hard, and a good electric insulator.

 4. The Fermi energy for silver is 5.48 eV. In a piece of solid sil-
ver, free-electron energy levels are measured near 2 eV and 
near 6 eV. (i) Near which of these energies are the energy 
levels closer together? (a) 2 eV (b) 6 eV (c) The spacing is 
the same. (ii) Near which of these energies are more elec-
trons occupying energy levels? (a) 2 eV (b) 6 eV (c) The 
number of electrons is the same.

5. As discussed in Chapter 27, the conductivity of metals 
decreases with increasing temperature due to electron col-
lisions with vibrating atoms. In contrast, the conductivity 
of semiconductors increases with increasing temperature. 
What property of a semiconductor is responsible for this 
behavior? (a) Atomic vibrations decrease as temperature 
increases. (b) The number of conduction electrons and 
the number of holes increase steeply with increasing tem-
perature. (c) The energy gap decreases with increasing 
temperature. (d) Electrons do not collide with atoms in a 
semiconductor.

 6. (i) Should you expect an n -type doped semiconductor 
to have (a) higher, (b) lower, or (c) the same conductiv-
ity as an intrinsic (pure) semiconductor? (ii) Should you 

1. Consider a typical material composed of covalently bonded 
diatomic molecules. Rank the following energies from the 
largest in magnitude to the smallest in magnitude. (a) the 
latent heat of fusion per molecule (b) the molecular bind-
ing energy (c) the energy of the first excited state of molec-
ular rotation (d) the energy of the first excited state of 
molecular vibration

 2. An infrared absorption spectrum of a molecule is shown in 
Figure OQ43.2. Notice that the highest peak on either side 
of the gap is the third peak from the gap. After this spec-
trum is taken, the temperature of the sample of molecules 
is raised to a much higher value. Compared with Figure 
OQ43.2, in this new spectrum is the highest absorption 
peak (a) at the same frequency, (b) farther from the gap, 
or (c) closer to the gap?

In a crystalline solid, the 
energy levels of the system 
form a set of bands. Electrons 
occupy the lowest energy 
states, with no more than one 
electron per state. Energy 
gaps are present between the 
bands of allowed states.

A semiconductor is a material having an energy gap of approximately 1 eV and a 
valence band that is filled at T 5 0 K. Because of the small energy gap, a signifi-
cant number of electrons can be thermally excited from the valence band into 
the conduction band. The band structures and electrical properties of a Group 
IV semiconductor can be modified by the addition of either donor atoms con-
taining five outer-shell electrons or acceptor atoms containing three outer-shell 
electrons. A semiconductor doped with donor impurity atoms is called an n-type 
semiconductor, and one doped with acceptor impurity atoms is called a p-type 
semiconductor.

Objective Questions denotes answer available in Student 
Solutions Manual/Study Guide
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Figure OQ43.2
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Problems

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

denotes Master It tutorial available in Enhanced WebAssign

denotes guided problem

denotes “paired problems” that develop reasoning with 
symbols and numerical values

 The problems found in this chapter may be assigned 
online in Enhanced WebAssign
1. denotes straightforward problem; 2. denotes intermediate problem; 
3. denotes challenging problem 
1.  full solution available in the Student Solutions Manual/Study Guide

1.  denotes problems most often assigned in Enhanced WebAssign; 
these provide students with targeted feedback and either a Master It 
tutorial or a Watch It solution video.

shaded

Conceptual Questions denotes answer available in Student 
Solutions Manual/Study Guide

Note: Conceptual Questions 4 and 5 in Chapter 27 can 
be assigned with this chapter.

 1. Discuss models for the different types of bonds that form 
stable molecules.

 2. Discuss the three major forms of excitation of a molecule 
(other than translational motion) and the relative energies 
associated with these three forms.

 3. How can the analysis of the rotational spectrum of a mol-
ecule lead to an estimate of the size of that molecule?

 4. (a) Discuss the differences in the band structures of met-
als, insulators, and semiconductors. (b) How does the 
band-structure model enable you to understand the elec-
trical properties of these materials better?

 5. When a photon is absorbed by a semiconductor, an 
 electron–hole pair is created. Give a physical explanation 
of this statement using the energy-band model as the basis 
for your description.

 6. Pentavalent atoms such as arsenic are donor atoms in a 
semiconductor such as silicon, whereas trivalent atoms 
such as indium are acceptors. Inspect the periodic table 
in Appendix C and determine what other elements might 
make good donors or acceptors.

 7. (a) What essential assumptions are made in the free-
electron theory of metals? (b) How does the energy-band 
model differ from the free-electron theory in describing 
the properties of metals?

 8. How do the vibrational and rotational levels of heavy hydro-
gen (D2) molecules compare with those of H2 molecules?

 9. The energies of photons of visible light range between the 
approximate values 1.8 eV and 3.1 eV. Explain why silicon, 
with an energy gap of 1.14 eV at room temperature (see 
Table 43.3), appears opaque, whereas diamond, with an 
energy gap of 5.47 eV, appears transparent.

 10. Discuss the differences between crystalline solids, amor-
phous solids, and gases.

expect a p -type doped semiconductor to have (a) higher, 
(b) lower, or (c) the same conductivity as an intrinsic (pure) 
semiconductor?

 7. Is each one of the following statements true or false for a 
superconductor below its critical temperature? (a) It can 

carry infinite current. (b) It must carry some nonzero cur-
rent. (c) Its interior electric field must be zero. (d) Its inter-
nal magnetic field must be zero. (e) No internal energy 
appears when it carries electric current.

Section 43.1 Molecular Bonds

 1. Potassium chloride is an ionically bonded molecule that is 
sold as a salt substitute for use in a low-sodium diet. The elec-
tron affinity of chlorine is 3.6 eV. An energy input of 0.70 eV 

is required to form separate K1 and Cl2 ions from separate 
K and Cl atoms. What is the ionization energy of K?

 2. Review. A K1 ion and a Cl2 ion are separated by a distance 
of 5.00 3 10210 m. Assuming the two ions act like charged 
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particles, determine (a) the force each ion exerts on the 
other and (b) the potential energy of the two-ion system in 
electron volts.

 3. A van der Waals dispersion force between helium atoms 
produces a very shallow potential well, with a depth on the 
order of 1 meV. At approximately what temperature would 
you expect helium to condense?

 4. In the potassium iodide (KI) molecule, assume the K and 
I atoms bond ionically by the transfer of one electron from 
K to I. (a) The ionization energy of K is 4.34 eV, and the 
electron affinity of I is 3.06 eV. What energy is needed to 
transfer an electron from K to I, to form K1 and I2 ions 
from neutral atoms? This quantity is sometimes called the 
activation energy Ea. (b) A model potential energy func-
tion for the KI molecule is the Lennard–Jones potential:

U 1r 2 5 4P c as
r
b

12

2 as
r
b

6

d 1 Ea

  where r is the internuclear separation distance and P and s 
are adjustable parameters. The Ea term is added to ensure 
the correct asymptotic behavior at large r. At the equilib-
rium separation distance, r 5 r0 5 0.305 nm, U(r) is a mini-
mum, and dU/dr 5 0. In addition, U(r0) is the negative of 
the dissociation energy: U(r0) 5 23.37 eV. Find s and P. 
(c) Calculate the force needed to break up a KI molecule. 
(d) Calculate the force constant for small oscillations 
about r 5 r0. Suggestion: Set r 5 r0 1 s, where s/r0 ,, 1, and 
expand U(r) in powers of s/r0 up to second-order terms.

 5. One description of the potential energy of a diatomic mol-
ecule is given by the Lennard–Jones potential,

U 5
A

r 12 2
B
r 6

  where A and B are constants and r is the separation dis-
tance between the atoms. For the H2 molecule, take A 5 
0.124 3 102120 eV ? m12 and B 5 1.488 3 10260 eV ? m6. Find 
(a) the separation distance r0 at which the energy of the 
molecule is a minimum and (b) the energy E required to 
break up the H2 molecule.

 6.  One description of the potential energy of a diatomic 
molecule is given by the Lennard–Jones potential,

U 5
A

r 12 2
B
r 6

  where A and B are constants and r is the separation distance 
between the atoms. Find, in terms of A and B, (a) the value 
r0 at which the energy is a minimum and (b) the energy E 
required to break up a diatomic molecule.

Section 43.2  Energy States and Spectra of Molecules

 7. Assume the distance between the protons in the H2 mol-
ecule is 0.750 3 10210 m. (a) Find the energy of the first 
excited rotational state, with J 5 1. (b) Find the wavelength 
of radiation emitted in the transition from J 5 1 to J 5 0.

 8. The cesium iodide (CsI) molecule has an atomic separa-
tion of 0.127 nm. (a) Determine the energy of the second 
excited rotational state, with J 5 2. (b) Find the frequency 
of the photon absorbed in the J 5 1 to J 5 2 transition.

 9.  An HCl molecule is excited to its second rotational 
energy level, corresponding to J 5 2. If the distance 
between its nuclei is 0.127 5 nm, what is the angular speed 
of the molecule about its center of mass?

 10.  The photon frequency that would be absorbed by the 
NO molecule in a transition from vibration state v 5 0 to 
v 5 1, with no change in rotation state, is 56.3 THz. The 
bond between the atoms has an effective spring constant 
of 1 530 N/m. (a) Use this information to calculate the 
reduced mass of the NO molecule. (b) Compute a value for 
m using Equation 43.4. (c) Compare your results to parts 
(a) and (b) and explain their difference, if any.

 11.  The CO molecule makes a transition from the J 5 
1 to the J 5 2 rotational state when it absorbs a photon of 
frequency 2.30 3 1011 Hz. (a) Find the moment of inertia 
of this molecule from these data. (b) Compare your answer 
with that obtained in Example 43.1 and comment on the 
significance of the two results.

 12. Why is the following situation impossible? The effective force 
constant of a vibrating HCl molecule is k 5 480 N/m. A 
beam of infrared radiation of wavelength 6.20 3 103 nm is 
directed through a gas of HCl molecules. As a result, the 
molecules are excited from the ground vibrational state to 
the first excited vibrational state.

 13. The effective spring constant describing the potential 
energy of the HI molecule is 320 N/m and that for the 
HF molecule is 970 N/m. Calculate the minimum ampli-
tude of vibration for (a) the HI molecule and (b) the HF 
molecule.

 14.  A diatomic molecule consists of two atoms having 
masses m1 and m2 separated by a distance r. Show that the 
moment of inertia about an axis through the center of mass 
of the molecule is given by Equation 43.3, I 5 mr 2.

 15. The atoms of an NaCl molecule are separated by a distance 
r 5 0.280 nm. Calculate (a) the reduced mass of an NaCl 
molecule, (b) the moment of inertia of an NaCl molecule, 
and (c) the wavelength of radiation emitted when an NaCl 
molecule undergoes a transition from the J 5 2 state to the 
J 5 1 state.
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 20. Estimate the moment of inertia of an HCl molecule from 
its infrared absorption spectrum shown in Figure P43.19.

 21. An H2 molecule is in its vibrational and rotational ground 
states. It absorbs a photon of wavelength 2.211 2 mm and 
makes a transition to the v 5 1, J 5 1 energy level. It then 
drops to the v 5 0, J 5 2 energy level while emitting a pho-
ton of wavelength 2.405 4 mm. Calculate (a) the moment of 
inertia of the H2 molecule about an axis through its center 
of mass and perpendicular to the H–H bond, (b) the vibra-
tional frequency of the H2 molecule, and (c) the equilib-
rium separation distance for this molecule.

 22. Photons of what frequencies can be spontaneously emitted 
by CO molecules in the state with v 5 1 and J 5 0?

 23. Most of the mass of an atom is in its nucleus. Model the 
mass distribution in a diatomic molecule as two spheres of 
uniform density, each of radius 2.00 3 10215 m and mass 
1.00 3 10226 kg, located at points along the y axis as in 
Active Figure 43.5a, and separated by 2.00 3 10210 m. Rota-
tion about the axis joining the nuclei in the diatomic mol-
ecule is ordinarily ignored because the first excited state 
would have an energy that is too high to access. To see why, 
calculate the ratio of the energy of the first excited state for 
rotation about the y axis to the energy of the first excited 
state for rotation about the x axis.

Section 43.3  Bonding in Solids

 24. Use a magnifying glass to look at the grains of table salt 
that come out of a salt shaker. Compare what you see with 
Figure 43.10a. The distance between a sodium ion and a 
nearest-neighbor chlorine ion is 0.261 nm. (a) Make an 
order-of-magnitude estimate of the number N of atoms 
in a typical grain of salt. (b) What If? Suppose you had 
a number of grains of salt equal to this number N. What 
would be the volume of this quantity of salt?

 16. The rotational spectrum of the HCl molecule contains 
lines with wavelengths of 0.060 4, 0.069 0, 0.080 4, 0.096 4, 
and 0.120 4 mm. What is the moment of inertia of the 
molecule?

 17. The nuclei of the O2 molecule are separated by a distance 
1.20 3 10210 m. The mass of each oxygen atom in the mol-
ecule is 2.66 3 10226 kg. (a) Determine the rotational ener-
gies of an oxygen molecule in electron volts for the levels 
corresponding to J 5 0, 1, and 2. (b) The effective force 
constant k between the atoms in the oxygen molecule is 
1 177 N/m. Determine the vibrational energies (in elec-
tron volts) corresponding to v 5 0, 1, and 2.

 18. Figure P43.18 is a model of a benzene molecule. All atoms 
lie in a plane, and the carbon atoms (mC 5 1.99 3 10226 kg) 
form a regular hexagon, as do the hydrogen atoms (mH 5 
1.67 3 10227 kg). The carbon atoms are 0.110 nm apart 
center to center, and the adjacent carbon and hydrogen 
atoms are 0.100 nm apart center to center. (a) Calculate 
the moment of inertia of the molecule about an axis per-
pendicular to the plane of the paper through the center 
point O. (b) Determine the allowed rotational energies 
about this axis.
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Figure P43.19 Problems 19 and 20.

 19. (a) In an HCl molecule, take the Cl atom to be the isotope 
35Cl. The equilibrium separation of the H and Cl atoms is 
0.127 46 nm. The atomic mass of the H atom is 1.007 825 u 
and that of the 35Cl atom is 34.968 853 u. Calculate the 
longest wavelength in the rotational spectrum of this mol-
ecule. (b) What If? Repeat the calculation in part (a), but 
take the Cl atom to be the isotope 37Cl, which has atomic 
mass 36.965 903 u. The equilibrium separation distance is 
the same as in part (a). (c) Naturally occurring chlorine 
contains approximately three parts of 35Cl to one part of 
37Cl. Because of the two different Cl masses, each line in 
the microwave rotational spectrum of HCl is split into a 
doublet as shown in Figure P43.19. Calculate the separa-
tion in wavelength between the doublet lines for the lon-
gest wavelength.
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 32. Consider a cube of gold 1.00 mm on an edge. Calculate the 
approximate number of conduction electrons in this cube 
whose energies lie in the range 4.000 to 4.025 eV.

 33. Calculate the energy of a conduction electron in silver at 
800 K, assuming the probability of finding an electron in 
that state is 0.950. The Fermi energy of silver is 5.48 eV at 
this temperature.

 34.   (a) Consider a system of electrons confined to a 
three-dimensional box. Calculate the ratio of the number 
of allowed energy levels at 8.50 eV to the number at 7.05 eV. 
(b) What If? Copper has a Fermi energy of 7.05 eV at 300 K. 
Calculate the ratio of the number of occupied levels in cop-
per at an energy of 8.50 eV to the number at the Fermi 
energy. (c) How does your answer to part (b) compare with 
that obtained in part (a)?

 35. For copper at 300 K, calculate the probability that a state 
with an energy equal to 99.0% of the Fermi energy is 
occupied.

 36.  For a metal at temperature T, calculate the probability 
that a state with an energy equal to bE F is occupied where 
b is a fraction between 0 and 1.

 37.  Review. An electron moves in a three-dimensional box 
of edge length L and volume L3. The wave function of the 
particle is c 5 A sin (kxx) sin (kyy) sin (kzz). Show that its 
energy is given by Equation 43.20,

E 5
U2p 2

2me L
2
1n x

2 1 n y
2 1 n z

2 2

  where the quantum numbers (nx, ny, nz) are integers $ 1. 
Suggestion: The Schrödinger equation in three dimensions 
may be written

U2

2m
a'

2c

'x 2 1
'2c

'y2 1
'2c

'z2 b 5 1U 2 E 2c

 38. Why is the following situation impossible? A hypothetical metal 
has the following properties: its Fermi energy is 5.48 eV, its 
density is 4.90 3 103 kg/m3, its molar mass is 100 g/mol, 
and it has one free electron per atom.

 39.  Show that the average kinetic energy of a conduction 
electron in a metal at 0 K is Eavg 5

3
5EF. Suggestion: In gen-

eral, the average kinetic energy is

Eavg 5
1
n e

 3
`

0
 EN 1E 2  dE

 25. Use Equation 43.18 to calculate the ionic cohesive energy 
for NaCl. Take a 5 1.747 6, r0 5 0.281 nm, and m 5 8.

 26.  Consider a one-dimensional chain of alternating 
 singly-ionized positive and negative ions. Show that the 
potential energy associated with one of the ions and its 
interactions with the rest of this hypothetical crystal is

U 1r 2 5 2k ea 
e 2

r

  where the Madelung constant is a 5 2 ln 2 and r is the dis-
tance between ions. Suggestion: Use the series expansion for 
ln (1 1 x).

Section 43.4  Free-Electron Theory of Metals

Section 43.5  Band Theory of Solids

 27.  Sodium is a monovalent metal having a density of 
0.971 g/cm3 and a molar mass of 23.0 g/mol. Use this infor-
mation to calculate (a) the density of charge carriers and 
(b) the Fermi energy of sodium.

 28.  (a) State what the Fermi energy depends on accord-
ing to the free-electron theory of metals and how the Fermi 
energy depends on that quantity. (b) Show that Equa-
tion 43.25 can be expressed as EF 5 (3.65 3 10219)ne

2/3, 
where EF is in electron volts when ne is in electrons per 
cubic meter. (c) According to Table 43.2, by what factor 
does the free-electron concentration in copper exceed that 
in potassium? (d) Which of these metals has the larger 
Fermi energy? (e) By what factor is the Fermi energy larger? 
(f) Explain whether this behavior is predicted by Equation 
43.25.

 29. When solid silver starts to melt, what is the approximate 
fraction of the conduction electrons that are thermally 
excited above the Fermi level?

 30.  (a) Find the typical speed of a conduction electron 
in copper, taking its kinetic energy as equal to the Fermi 
energy, 7.05 eV. (b) Suppose the copper is a current-
 carrying wire. How does the speed found in part (a) com-
pare with a typical drift speed (see Section 27.1) of elec-
trons in the wire of 0.1 mm/s?

 31. The Fermi energy of copper at 300 K is 7.05 eV. (a) What 
is the average energy of a conduction electron in copper at 
300 K? (b) At what temperature would the average transla-
tional energy of a molecule in an ideal gas be equal to the 
energy calculated in part (a)?
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a result, the orbit radii are greatly increased over those of 
the hydrogen atom. Second, the influence of the periodic 
electric potential of the lattice causes the electron to move 
as if it had an effective mass m*, which is quite different 
from the mass me of a free electron. You can use the Bohr 
model of hydrogen to obtain relatively accurate values for 
the allowed energy levels of the extra electron. We wish to 
find the typical energy of these donor states, which play an 
important role in semiconductor devices. Assume k 5 11.7 
for silicon and m* 5 0.220me. (a) Find a symbolic expres-
sion for the smallest radius of the electron orbit in terms of 
a0, the Bohr radius. (b) Substitute numerical values to find 
the numerical value of the smallest radius. (c) Find a sym-
bolic expression for the energy levels En9 of the electron in 
the Bohr orbits around the donor atom in terms of me, m*, 
k, and En, the energy of the hydrogen atom in the Bohr 
model. (d) Find the numerical value of the energy for the 
ground state of the electron.

Section 43.7  Semiconductor Devices

 47. Assuming T 5 300 K, (a) for what value of the bias voltage 
DV in Equation 43.27 does I 5 9.00I0? (b) What If? What if 
I 5 20.900I0?

 48.  A diode is at room temperature so that kBT 5 0.025 0 eV. 
Taking the applied voltages across the diode to be 1 1.00 V 
(under forward bias) and 21.00 V (under reverse bias), cal-
culate the ratio of the forward current to the reverse cur-
rent if the diode is described by Equation 43.27.

 49. You put a diode in a microelectronic circuit to protect the 
system in case an untrained person installs the battery 
backward. In the correct forward-bias situation, the cur-
rent is 200 mA with a potential difference of 100 mV across 
the diode at room temperature (300 K). If the battery were 
reversed, so that the potential difference across the diode 
is still 100 mV but with the opposite sign, what would be 
the magnitude of the current in the diode?

 50.  A diode, a resistor, and a battery are connected in 
a series circuit. The diode is at a temperature for which 
kBT 5 25.0 meV, and the saturation value of the current is 
I0 5 1.00 mA. The resistance of the resistor is R 5 745 V, 
and the battery maintains a constant potential difference 
of e 5 2.42 V between its terminals. (a) Use Kirchhoff’s 
loop rule to show that

e 2 DV 5 I0R 1e e DV/kBT 2 1 2

  where DV is the voltage across the diode. (b) To solve this 
transcendental equation for the voltage DV, graph the left-
hand side of the above equation and the right-hand side 
as functions of DV and find the value of DV at which the 

  where ne is the density of particles, N(E) dE is given by 
 Equation 43.22, and the integral is over all possible values 
of the energy.

Section 43.6  Electrical Conduction in Metals, Insulators, 
and Semiconductors

 40. The longest wavelength of radiation absorbed by a certain 
semiconductor is 0.512 mm. Calculate the energy gap for 
this semiconductor.

 41. The energy gap for silicon at 300 K is 1.14 eV. (a) Find the 
lowest-frequency photon that can promote an electron 
from the valence band to the conduction band. (b) What is 
the wavelength of this photon?

 42. Light from a hydrogen discharge tube is incident on a CdS 
crystal. (a) Which spectral lines from the Balmer series are 
absorbed and (b) which are transmitted?

 43. A light-emitting diode (LED) made of the semiconduc-
tor GaAsP emits red light (l 5 650 nm). Determine the 
energy-band gap Eg for this semiconductor.

 44.  Most solar radiation has a wavelength of 1 mm or less. 
(a) What energy gap should the material in a solar cell have 
if it is to absorb this radiation? (b) Is silicon an appropriate 
solar cell material (see Table 43.3)? Explain your answer.

 45. You are asked to build a scientific instrument that is ther-
mally isolated from its surroundings. The isolation con-
tainer may be a calorimeter, but these design criteria could 
apply to other containers as well. You wish to use a laser 
external to the container to raise the temperature of a tar-
get inside the instrument. You decide to use a diamond 
window in the container. Diamond has an energy gap of 
5.47 eV. What is the shortest laser wavelength you can use 
to warm the sample inside the instrument?

 46.  Review. When a phosphorus atom is substituted for a 
silicon atom in a crystal, four of the phosphorus valence 
electrons form bonds with neighboring atoms and the 
remaining electron is much more loosely bound. You can 
model the electron as free to move through the crystal 
lattice. The phosphorus nucleus has one more positive 
charge than does the silicon nucleus, however, so the extra 
electron provided by the phosphorus atom is attracted 
to this single nuclear charge 1e. The energy levels of the 
extra electron are similar to those of the electron in the 
Bohr hydrogen atom with two important exceptions. First, 
the Coulomb attraction between the electron and the 
positive charge on the phosphorus nucleus is reduced by 
a factor of 1/k from what it would be in free space (see Eq. 
26.21), where k is the dielectric constant of the crystal. As 
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whether the sample behaves in a linear manner. (c) From 
the data, obtain a value for the DC resistance of the sam-
ple at room temperature. (d) At room temperature, it was 
found that DVcd 5 2.234 mV for I 5 100.3 mA, but after 
the sample was cooled to 77 K, DVcd 5 0 and I 5 98.1 mA. 
What do you think might have caused the slight decrease 
in current?

Current Versus Potential Difference DVcd Measured in a Bulk 
Ceramic Sample of YBa2Cu3O7–d at Room Temperature

 I (mA) DVcd (mV)

 57.8 1.356
 61.5 1.441
 68.3 1.602
 76.8 1.802
 87.5 2.053
 102.2 2.398
 123.7 2.904
 155 3.61 

 53. A thin rod of superconducting material 2.50 cm long is 
placed into a 0.540-T magnetic field with its cylindrical axis 
along the magnetic field lines. (a) Sketch the directions of 
the applied field and the induced surface current. (b) Find 
the magnitude of the surface current on the curved sur-
face of the rod.

Additional Problems

 54. The effective spring constant associated with bonding 
in the N2 molecule is 2 297 N/m. The nitrogen atoms 
each have a mass of 2.32 3 10226 kg, and their nuclei are 
0.120 nm apart. Assume the molecule is rigid. The first 
excited vibrational state of the molecule is above the vibra-
tional ground state by an energy difference DE. Calculate 
the J value of the rotational state that is above the rota-
tional ground state by the same energy difference DE.

 55. The hydrogen molecule comes apart (dissociates) when 
it is excited internally by 4.48 eV. Assuming this molecule 
behaves like a harmonic oscillator having classical angular 
frequency v 5 8.28 3 1014 rad/s, find the highest vibra-
tional quantum number for a state below the 4.48-eV dis-
sociation energy.

 56. The Fermi–Dirac distribution function can be written as

f 1E 2 5 1

e 1E2EF2/kBT 1 1
5

1

e 1E/EF212TF/T 1 1

  where TF is the Fermi temperature, defined according to

kBTF ; EF

curves cross. (c) Find the current I in the circuit. (d) Find 
the ohmic resistance of the diode, defined as the ratio DV/I, 
at the voltage in part (b). (e) Find the dynamic resistance 
of the diode, which is defined as the derivative d(DV)/dI, at 
the voltage in part (b).

Section 43.8  Superconductivity

Note: Problem 30 in Chapter 30 and Problems 69 
through 72 in Chapter 32 can also be assigned with this 
section.

 51. A superconducting ring of niobium metal 2.00 cm in diam-
eter is immersed in a uniform 0.020 0-T magnetic field 
directed perpendicular to the ring and carries no current. 
Determine the current generated in the ring when the 
magnetic field is suddenly decreased to zero. The induc-
tance of the ring is 3.10 3 1028 H.

 52.  A direct and relatively simple demonstration of zero 
DC resistance can be carried out using the four-point 
probe method. The probe shown in Figure P43.52 consists 
of a disk of YBa2Cu3O7 (a high-Tc superconductor) to which 
four wires are attached. Current is maintained through the 
sample by applying a DC voltage between points a and b, 
and it is measured with a DC ammeter. The current can be 
varied with the variable resistance R. The potential differ-
ence DVcd between c and d is measured with a digital volt-
meter. When the probe is immersed in liquid nitrogen, the 
sample quickly cools to 77 K, below the critical tempera-
ture of the material, 92 K. The current remains approxi-
mately constant, but DVcd drops abruptly to zero. (a) Explain 
this observation on the basis of what you know about super-
conductors. (b) The data in the accompanying table rep-
resent actual values of DVcd for different values of I taken 
on the sample at room temperature in the senior author’s 
laboratory. A 6-V battery in series with a variable resistor 
R supplied the current. The values of R ranged from 10 V 
to 100 V. Make an I–DV plot of the data and determine 
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Figure P43.52
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  (a) Write a spreadsheet to calculate and plot f(E) versus 
E/EF at a fixed temperature T. (b) Describe the curves 
obtained for T 5 0.1TF, 0.2TF, and 0.5TF.

 57. Under pressure, liquid helium can solidify as each atom 
bonds with four others, and each bond has an average 
energy of 1.74 3 10223 J. Find the latent heat of fusion 
for helium in joules per gram. (The molar mass of He is 
4.00 g/mol.)

 58. The dissociation energy of ground-state molecular hydro-
gen is 4.48 eV, but it only takes 3.96 eV to dissociate it 
when it starts in the first excited vibrational state with 
J 5 0. Using this information, determine the depth of the 
H2 molecular potential-energy function.

 59.  Starting with Equation 43.17, show that the ionic cohe-
sive energy of an ionically bonded solid is given by Equa-
tion 43.18.

 60.  (a) Starting with Equation 43.17, show that the force 
exerted on an ion in an ionic solid can be written as

F 5 2k ea 
e 2

r 2 c1 2 ar0

r
b

m21

d

  where a is the Madelung constant and r0 is the equilibrium 
separation. (b) Imagine that an ion in the solid is displaced 
a small distance s from r0. Show that the ion experiences a 
restoring force F 5 2Ks, where

K 5
k eae 2

r0
3
1m 2 1 2

  (c) Use the result of part (b) to find the frequency of vibra-
tion of a Na1 ion in NaCl. Take m 5 8 and use the value 
a 5 1.747 6.

 61. A particle moves in one- dimensional motion through a 
field for which the potential energy of the particle–field 
system is

U 1x 2 5 A
x 3 2

B
x

  where A 5 0.150 eV ? nm3 and B 5 3.68 eV ? nm. The shape 
of this function is shown in Figure P43.61. (a) Find the 
equilibrium position x0 of the particle. (b) Determine the 
depth U0 of this potential well. (c) In moving along the x 
axis, what maximum force toward the negative x direction 
does the particle experience?

U0

x0

0

Utotal

x

Figure P43.61 Problems 61 and 62.

 62.  A particle of mass m moves in one-dimensional motion 
through a field for which the potential energy of the 
 particle–field system is

U 1x 2 5 A
x 3 2

B
x

  where A and B are constants. The general shape of this 
function is shown in Figure P43.61. (a) Find the equilib-
rium position x0 of the particle in terms of m, A, and B. 
(b) Determine the depth U0 of this potential well. (c) In 
moving along the x axis, what maximum force toward the 
negative x direction does the particle experience?

Challenge Problems

 63. As you will learn in Chapter 44, carbon-14 (14C) is an unsta-
ble isotope of carbon. It has the same chemical properties 
and electronic structure as the much more abundant iso-
tope carbon-12 (12C), but it has different nuclear proper-
ties. Its mass is 14 u, greater than that of carbon-12 because 
of the two extra neutrons in the carbon-14 nucleus. Assume 
the CO molecular potential energy is the same for both 
isotopes of carbon and the examples in Section 43.2 con-
tain accurate data and results for carbon monoxide with 
carbon-12 atoms. (a) What is the vibrational frequency of 
14CO? (b) What is the moment of inertia of 14CO? (c) What 
wavelengths of light can be absorbed by 14CO in the (v 5 0, 
J 5 10) state that cause it to end up in the v 5 1 state?

 64.  As an alternative to Equation 43.1, another useful 
model for the potential energy of a diatomic molecule is 
the Morse potential

 U 1r 2 5 B 3e2a 1r2r02 2 1 4 2
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system of two nuclei and assuming the potential is nearly 
parabolic about the well minimum, what is the vibra-
tional frequency of the diatomic molecule in its ground 
state? (d) What amount of energy needs to be supplied to 
the ground-state molecule to separate the two nuclei to 
infinity?

  where B, a, and r0 are parameters used to adjust the shape 
of the potential and its depth. (a) What is the equilib-
rium separation of the nuclei? (b) What is the depth of 
the potential well, defined as the difference in energy 
between the potential’s minimum value and its asymptote 
as r approaches infinity? (c) If m is the reduced mass of the 


