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In Chapter 41, we introduced some basic 

concepts and techniques used in quantum 

mechanics along with their applications to vari-

ous one-dimensional systems. In this chapter, 

we apply quantum mechanics to atomic sys-

tems. A large portion of the chapter is focused 

on the application of quantum mechanics to 

the study of the hydrogen atom. Understand-

ing the hydrogen atom, the simplest atomic 

system, is important for several reasons:

• The hydrogen atom is the only atomic sys-

tem that can be solved exactly.

• Much of what was learned in the 20th 

century about the hydrogen atom, with its single electron, can be extended to such 

single-electron ions as He1 and Li21.

• The hydrogen atom is an ideal system for performing precise tests of theory against 

experiment and for improving our overall understanding of atomic structure.

• The quantum numbers that are used to characterize the allowed states of hydro-

gen can also be used to investigate more complex atoms, and such a description 

This street in the Ginza district in Tokyo displays many signs formed from 
neon lamps of varying bright colors. The light from these lamps has its origin 
in transitions between quantized energy states in the atoms contained in the 
lamps. In this chapter, we investigate those transitions. (© Ken Straiton/Corbis)
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enables us to understand the periodic table of the elements. This understanding is 

one of the greatest triumphs of quantum mechanics.

• The basic ideas about atomic structure must be well understood before we attempt 

to deal with the complexities of molecular structures and the electronic structure 

of solids.

 The full mathematical solution of the Schrödinger equation applied to the hydrogen 

atom gives a complete and beautiful description of the atom’s properties. Because the 

mathematical procedures involved are beyond the scope of this text, however, many 

details are omitted. The solutions for some states of hydrogen are discussed, together 

with the quantum numbers used to characterize various allowed states. We also discuss 

the physical significance of the quantum numbers and the effect of a magnetic field on 

certain quantum states.

 A new physical idea, the exclusion principle, is presented in this chapter. This principle 

is extremely important for understanding the properties of multielectron atoms and the 

arrangement of elements in the periodic table.

 Finally, we apply our knowledge of atomic structure to describe the mechanisms 

involved in the production of x-rays and in the operation of a laser.

42.1 Atomic Spectra of Gases
As pointed out in Section 40.1, all objects emit thermal radiation characterized 
by a continuous distribution of wavelengths. In sharp contrast to this continuous-
 distribution spectrum is the discrete line spectrum observed when a low-pressure 
gas undergoes an electric discharge. (Electric discharge occurs when the gas is sub-
ject to a potential difference that creates an electric field greater than the dielectric 
strength of the gas.) Observation and analysis of these spectral lines is called emis-
sion spectroscopy.
 When the light from a gas discharge is examined using a spectrometer (see 
Active Fig. 38.15), it is found to consist of a few bright lines of color on a generally 
dark background. This discrete line spectrum contrasts sharply with the continu-
ous rainbow of colors seen when a glowing solid is viewed through the same instru-
ment. Figure 42.1a shows that the wavelengths contained in a given line spectrum 
are characteristic of the element emitting the light. The simplest line spectrum is 
that for atomic hydrogen, and we describe this spectrum in detail. Because no two 
elements have the same line spectrum, this phenomenon represents a practical and 
sensitive technique for identifying the elements present in unknown samples.
 Another form of spectroscopy very useful in analyzing substances is absorption 
spectroscopy. An absorption spectrum is obtained by passing white light from a 
continuous source through a gas or a dilute solution of the element being ana-
lyzed. The absorption spectrum consists of a series of dark lines superimposed on 
the continuous spectrum of the light source as shown in Figure 42.1b for atomic 
hydrogen.
 The absorption spectrum of an element has many practical applications. For 
example, the continuous spectrum of radiation emitted by the Sun must pass 
through the cooler gases of the solar atmosphere. The various absorption lines 
observed in the solar spectrum have been used to identify elements in the solar 
atmosphere. In early studies of the solar spectrum, experimenters found some lines 

Pitfall Prevention 42.1
Why Lines?
The phrase “spectral lines” is often 
used when discussing the radiation 
from atoms. Lines are seen because 
the light passes through a long and 
very narrow slit before being sepa-
rated by wavelength. You will see 
many references to these “lines” in 
both physics and chemistry.
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that did not correspond to any known element. A new element had been discov-
ered! The new element was named helium, after the Greek word for Sun, helios. 
Helium was subsequently isolated from subterranean gas on the Earth.
 Using this technique, scientists have examined the light from stars other than 
our Sun and have never detected elements other than those present on the Earth. 
Absorption spectroscopy has also been useful in analyzing heavy-metal contamina-
tion of the food chain. For example, the first determination of high levels of mer-
cury in tuna was made with the use of atomic absorption spectroscopy.
 The discrete emissions of light from gas discharges are used in “neon” signs such 
as those in the opening photograph of this chapter. Neon, the first gas used in 
these types of signs and the gas after which these signs are named, emits strongly 
in the red region. As a result, a glass tube filled with neon gas emits bright red light 
when an applied voltage causes a continuous discharge. Early signs used different 
gases to provide different colors, although the brightness of these signs was gener-
ally very low. Many present-day “neon” signs contain mercury vapor, which emits 
strongly in the ultraviolet range of the electromagnetic spectrum. The inside of a 
present-day sign’s glass tube is coated with a material that emits a particular color 
when it absorbs ultraviolet radiation from the mercury. The color of the light from 
the tube results from the particular material chosen. A household fluorescent light 
operates in the same manner, with a white-emitting material coating the inside of 
the glass tube.
 From 1860 to 1885, scientists accumulated a great deal of data on atomic emis-
sions using spectroscopic measurements. In 1885, a Swiss schoolteacher, Johann 
Jacob Balmer (1825–1898), found an empirical equation that correctly predicted 
the wavelengths of four visible emission lines of hydrogen: Ha (red), Hb (blue-
green), Hg (blue-violet), and Hd (violet). Figure 42.2 shows these and other lines 
(in the ultraviolet) in the emission spectrum of hydrogen. The four visible lines 
occur at the wavelengths 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm. The com-
plete set of lines is called the Balmer series. The wavelengths of these lines can be 
described by the following equation, which is a modification made by Johannes 
Rydberg (1854–1919) of Balmer’s original equation:

 
1
l

5 RHa
1
22 2

1
n2 b n 5 3, 4, 5, c  (42.1)

where RH is a constant now called the Rydberg constant with a value of 
1.097 373 2 3 107 m21. The integer values of n from 3 to 6 give the four visible lines 
from 656.3 nm (red) down to 410.2 nm (violet). Equation 42.1 also describes the 
ultraviolet spectral lines in the Balmer series if n is carried out beyond n 5 6. The 
series limit is the shortest wavelength in the series and corresponds to n S ,̀ with 
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Figure 42.1  (a) Emission line 
spectra for hydrogen, mercury, and 
neon. (b) The absorption spectrum 
for hydrogen. Notice that the dark 
absorption lines occur at the same 
wavelengths as the hydrogen emis-
sion lines in (a). (K. W. Whitten, 
R. E. Davis, M. L. Peck, and G. G. 
Stanley, General Chemistry, 7th ed., 
Belmont, CA, Brooks/Cole, 2004.)
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The lines shown in color are in 
the visible range of wavelengths.

This line is the shortest wavelength 
line and is in the ultraviolet region 
of the electromagnetic spectrum.

Figure 42.2  The Balmer series of 
spectral lines for atomic hydrogen, 
with several lines marked with the 
wavelength in nanometers. (The 
horizontal wavelength axis is not to 
scale.)
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a wavelength of 364.6 nm as in Figure 42.2. The measured spectral lines agree with 
the empirical equation, Equation 42.1, to within 0.1%.
 Other lines in the spectrum of hydrogen were found following Balmer’s discov-
ery. These spectra are called the Lyman, Paschen, and Brackett series after their 
discoverers. The wavelengths of the lines in these series can be calculated through 
the use of the following empirical equations:

 
1
l

5 RHa1 2
1
n2b n 5 2, 3, 4, c  (42.2)

 
1
l

5 RHa
1
32 2

1
n2b n 5 4, 5, 6, c  (42.3)

 
1
l

5 RHa
1
42 2

1
n2b n 5 5, 6, 7, c  (42.4)

No theoretical basis existed for these equations; they simply worked. The same con-
stant RH appears in each equation, and all equations involve small integers. In Sec-
tion 42.3, we shall discuss the remarkable achievement of a theory for the hydrogen 
atom that provided an explanation for these equations.

42.2 Early Models of the Atom 
The model of the atom in the days of Newton was a tiny, hard, indestructible 
sphere. Although this model provided a good basis for the kinetic theory of gases 
(Chapter 21), new models had to be devised when experiments revealed the electri-
cal nature of atoms. In 1897, J. J. Thomson established the charge-to-mass ratio for 
electrons. (See Fig. 29.15 in Section 29.3.) The following year, he suggested a model 
that describes the atom as a region in which positive charge is spread out in space 
with electrons embedded throughout the region, much like the seeds in a water-
melon or raisins in thick pudding (Fig. 42.3). The atom as a whole would then be 
electrically neutral.
 In 1911, Ernest Rutherford (1871–1937) and his students Hans Geiger and Ernest 
Marsden performed a critical experiment that showed that Thomson’s model could 
not be correct. In this experiment, a beam of positively charged alpha particles 
(helium nuclei) was projected into a thin metallic foil such as the target in Fig-
ure 42.4a. Most of the particles passed through the foil as if it were empty space, 
but some of the results of the experiment were astounding. Many of the particles 
deflected from their original direction of travel were scattered through large angles. 
Some particles were even deflected backward, completely reversing their direction 
of travel! When Geiger informed Rutherford that some alpha particles were scat-
tered backward, Rutherford wrote, “It was quite the most incredible event that has 

Lyman series 

Paschen series 

Brackett series 

Joseph John Thomson
English physicist (1856–1940)
The recipient of a Nobel Prize in Physics in 
1906, Thomson is usually considered the 
discoverer of the electron. He opened up the 
field of subatomic particle physics with his 
extensive work on the deflection of cathode 
rays (electrons) in an electric field.
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charges at 
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locations 
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atom.
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charge of the 
atom is 
distributed 
continuously in a 
spherical volume.

Figure 42.3  Thomson’s model of 
the atom.
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Figure 42.4  (a) Rutherford’s technique for observing the scattering of alpha particles from a thin 
foil target. The source is a naturally occurring radioactive substance, such as radium. (b) Rutherford’s 
planetary model of the atom.
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ever happened to me in my life. It was almost as incredible as if you fired a 15-inch 
[artillery] shell at a piece of tissue paper and it came back and hit you.”
 Such large deflections were not expected on the basis of Thomson’s model. Accord-
ing to that model, the positive charge of an atom in the foil is spread out over such 
a great volume (the entire atom) that there is no concentration of positive charge 
strong enough to cause any large-angle deflections of the positively charged alpha 
particles. Furthermore, the electrons are so much less massive than the alpha par-
ticles that they would not cause large-angle scattering either. Rutherford explained 
his astonishing results by developing a new atomic model, one that assumed the posi-
tive charge in the atom was concentrated in a region that was small relative to the 
size of the atom. He called this concentration of positive charge the nucleus of the 
atom. Any electrons belonging to the atom were assumed to be in the relatively large 
volume outside the nucleus. To explain why these electrons were not pulled into the 
nucleus by the attractive electric force, Rutherford modeled them as moving in orbits 
around the nucleus in the same manner as the planets orbit the Sun (Fig. 42.4b). For 
this reason, this model is often referred to as the planetary model of the atom.
 Two basic difficulties exist with Rutherford’s planetary model. As we saw in Sec-
tion 42.1, an atom emits (and absorbs) certain characteristic frequencies of electro-
magnetic radiation and no others, but the Rutherford model cannot explain this 
phenomenon. A second difficulty is that Rutherford’s electrons are undergoing a 
centripetal acceleration. According to Maxwell’s theory of electromagnetism, cen-
tripetally accelerated charges revolving with frequency f should radiate electromag-
netic waves of frequency f. Unfortunately, this classical model leads to a prediction 
of self-destruction when applied to the atom. As the electron radiates, energy is car-
ried away from the atom, the radius of the electron’s orbit steadily decreases, and 
its frequency of revolution increases. This process would lead to an ever-increasing 
frequency of emitted radiation and an ultimate collapse of the atom as the electron 
plunges into the nucleus (Fig. 42.5).

42.3 Bohr’s Model of the Hydrogen Atom
Given the situation described at the end of Section 42.2, the stage was set for Niels 
Bohr in 1913 when he presented a new model of the hydrogen atom that circum-
vented the difficulties of Rutherford’s planetary model. Bohr applied Planck’s ideas 
of quantized energy levels (Section 40.1) to Rutherford’s orbiting atomic electrons. 
Bohr’s theory was historically important to the development of quantum physics, 
and it appeared to explain the spectral line series described by Equations 42.1 
through 42.4. Although Bohr’s model is now considered obsolete and has been 
completely replaced by a probabilistic quantum-mechanical theory, we can use the 
Bohr model to develop the notions of energy quantization and angular momentum 
quantization as applied to atomic-sized systems.
 Bohr combined ideas from Planck’s original quantum theory, Einstein’s concept 
of the photon, Rutherford’s planetary model of the atom, and Newtonian mechan-
ics to arrive at a semiclassical model based on some revolutionary ideas. The postu-
lates of the Bohr theory as it applies to the hydrogen atom are as follows:

 1. The electron moves in circular orbits around the proton under the influ-
ence of the electric force of attraction as shown in Figure 42.6.

 2. Only certain electron orbits are stable. When in one of these stationary 
states, as Bohr called them, the electron does not emit energy in the form 
of radiation, even though it is accelerating. Hence, the total energy of the 
atom remains constant and classical mechanics can be used to describe the 
electron’s motion. Bohr’s model claims that the centripetally accelerated 
electron does not continuously emit radiation, losing energy and eventually 
spiraling into the nucleus, as predicted by classical physics in the form of 
Rutherford’s planetary model.

�e

�

Because the accelerating 
electron radiates energy, the 
size of the orbit decreases 
until the electron falls into 
the nucleus.

Figure 42.5  The classical model of 
the nuclear atom predicts that the 
atom decays.
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Figure 42.6  Diagram representing 
Bohr’s model of the hydrogen atom. 
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 3. The atom emits radiation when the electron makes a transition from a 
more energetic initial stationary state to a lower-energy stationary state. 
This transition cannot be visualized or treated classically. In particular, the 
frequency f of the photon emitted in the transition is related to the change 
in the atom’s energy and is not equal to the frequency of the electron’s 
orbital motion. The frequency of the emitted radiation is found from the 
energy-conservation expression

 Ei 2 Ef 5 hf (42.5)

  where Ei is the energy of the initial state, Ef is the energy of the final state, 
and Ei . Ef . In addition, energy of an incident photon can be absorbed by 
the atom, but only if the photon has an energy that exactly matches the dif-
ference in energy between an allowed state of the atom and a higher-energy 
state. Upon absorption, the photon disappears and the atom makes a transi-
tion to the higher-energy state.

 4. The size of an allowed electron orbit is determined by a condition imposed 
on the electron’s orbital angular momentum: the allowed orbits are those 
for which the electron’s orbital angular momentum about the nucleus is 
quantized and equal to an integral multiple of " 5 h/2p,

 mevr 5 nU n 5 1, 2, 3, c  (42.6)

  where me is the electron mass, v is the electron’s speed in its orbit, and r is 
the orbital radius.

 These postulates are a mixture of established principles and completely new and 
untested ideas at the time. Postulate 1, from classical mechanics, treats the electron 
in orbit around the nucleus in the same way we treat a planet in orbit around a 
star. Postulate 2 was a radical new idea in 1913 that was completely at odds with the 
understanding of electromagnetism at the time. Postulate 3 represents the prin-
ciple of conservation of energy. Postulate 4 is another new idea that had no basis in 
classical physics.
 Postulate 3 implies qualitatively the existence of a characteristic discrete emis-
sion line spectrum and also a corresponding absorption line spectrum of the kind 
shown in Figure 42.1 for hydrogen. Using these four postulates, let’s calculate the 
allowed energy levels and find quantitative values of the emission wavelengths of 
the hydrogen atom.
 The electric potential energy of the system shown in Figure 42.6 is given by Equa-
tion 25.13, U 5 keq1q2/r 5 2kee2/r, where ke is the Coulomb constant and the nega-
tive sign arises from the charge 2e on the electron. Therefore, the total energy of 
the atom, which consists of the electron’s kinetic energy and the system’s potential 
energy, is

 E 5 K 1 U 5 1
2mev

2 2 k e 
e2

r
 (42.7)

The electron is modeled as a particle in uniform circular motion, so the electric 
force kee2/r 2 exerted on the electron must equal the product of its mass and its cen-
tripetal acceleration (ac 5 v2/r):

k e e
2

r 2 5
mev

2

r

 v 2 5
k e e

2

mer
 (42.8)

From Equation 42.8, we find that the kinetic energy of the electron is

K 5 1
2mev

2 5
k e e

2

2r

Niels Bohr
Danish Physicist (1885–1962)
Bohr was an active participant in the early 
development of quantum mechanics and 
provided much of its philosophical framework. 
During the 1920s and 1930s, he headed the 
Institute for Advanced Studies in Copenhagen. 
The institute was a magnet for many of the 
world’s best physicists and provided a forum 
for the exchange of ideas. When Bohr visited 
the United States in 1939 to attend a scien-
tific conference, he brought news that the fis-
sion of uranium had been observed by Hahn 
and Strassman in Berlin. The results were the 
foundations of the nuclear weapon developed 
in the United States during World War II. Bohr 
was awarded the 1922 Nobel Prize in Physics 
for his investigation of the structure of atoms 
and the radiation emanating from them.
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Substituting this value of K into Equation 42.7 gives the following expression for 
the total energy of the atom:1

 E 5 2
k e e

2

2r
 (42.9)

Because the total energy is negative, which indicates a bound electron–proton sys-
tem, energy in the amount of kee2/2r must be added to the atom to remove the elec-
tron and make the total energy of the system zero.
 We can obtain an expression for r, the radius of the allowed orbits, by solving 
Equation 42.6 for v2 and equating it to Equation 42.8:

v 2 5
n2U2

me
2r 2 5

k e e
2

mer

 rn 5
n2U2

mek e e
2  n 5 1, 2, 3, c  (42.10)

Equation 42.10 shows that the radii of the allowed orbits have discrete values: they 
are quantized. The result is based on the assumption that the electron can exist only 
in certain allowed orbits determined by the integer n (Bohr’s postulate 4).
 The orbit with the smallest radius, called the Bohr radius a0, corresponds to n 5 1 
and has the value

 a0 5
U2

meke e
2 5 0.052 9 nm (42.11)

Substituting Equation 42.11 into Equation 42.10 gives a general expression for the 
radius of any orbit in the hydrogen atom:

 rn 5 n2a0 5 n2(0.052 9 nm) n 5 1, 2, 3, . . . (42.12)

 Bohr’s theory predicts a value for the radius of a hydrogen atom on the right 
order of magnitude, based on experimental measurements. This result was a strik-
ing triumph for Bohr’s theory. The first three Bohr orbits are shown to scale in 
Active Figure 42.7.
 The quantization of orbit radii leads to energy quantization. Substituting rn 5 
n2a0 into Equation 42.9 gives

 En 5 2
k ee

2

2a0
a 1

n2b     n 5 1, 2, 3, . . .  (42.13)

Inserting numerical values into this expression, we find that

 En 5 2
13.606 eV

n2     n 5 1, 2, 3, . . .  (42.14)

Only energies satisfying this equation are permitted. The lowest allowed energy 
level, the ground state, has n 5 1 and energy E1 5 213.606 eV. The next energy 
level, the first excited state, has n 5 2 and energy E2 5 E1/22 5 23.401 eV. Active 
Figure 42.8 on page 1258 is an energy-level diagram showing the energies of these 
discrete energy states and the corresponding quantum numbers n. The uppermost 
level corresponds to n 5 ` (or r 5 `) and E 5 0.
 Notice how the allowed energies of the hydrogen atom differ from those of the 
particle in a box. The particle-in-a-box energies (Eq. 41.14) increase as n2, so they 
become farther apart in energy as n increases. On the other hand, the energies of 
the hydrogen atom (Eq. 42.14) vary inversely with n2, so their separation in energy 
becomes smaller as n increases. The separation between energy levels approaches 
zero as n approaches infinity and the energy approaches zero.
 Zero energy represents the boundary between a bound system of an electron 
and a proton and an unbound system. If the energy of the atom is raised from that 

Bohr radius 

 Radii of Bohr orbits in  
hydrogen

1Compare Equation 42.9 with its gravitational counterpart, Equation 13.18.

9a0

4a0

� e

a0
� e

The electron is shown in the 
lowest-energy orbit, but it could 
be in any of the allowed orbits.

The first three circular orbits pre-
dicted by the Bohr model of the 
hydrogen atom.

ACTIVE FIGURE 42.7
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of the ground state to any energy larger than zero, the atom is ionized. The mini-
mum energy required to ionize the atom in its ground state is called the ionization 
energy. As can be seen from Active Figure 42.8, the ionization energy for hydrogen 
in the ground state, based on Bohr’s calculation, is 13.6 eV. This finding constituted 
another major achievement for the Bohr theory because the ionization energy for 
hydrogen had already been measured to be 13.6 eV.
 Equations 42.5 and 42.13 can be used to calculate the frequency of the pho-
ton emitted when the electron makes a transition from an outer orbit to an inner 
orbit:

 f 5
Ei 2 Ef

h
5

k e e
2

2a0h
a 1

n f 
2 2

1
n i

2b  (42.15)

Because the quantity measured experimentally is wavelength, it is convenient to use 
c 5 fl to express Equation 42.15 in terms of wavelength:

 
1
l

5
f
c

5
k e e

2

2a0hc
 a 1

n f
2 2

1
n i

2b  (42.16)

Remarkably, this expression, which is purely theoretical, is identical to the general 
form of the empirical relationships discovered by Balmer and Rydberg and given by 
Equations 42.1 to 42.4:

 
1
l

5 RHa
1

n f
2 2

1
n i

2b  (42.17)

provided the constant kee2/2a0hc is equal to the experimentally determined Ryd-
berg constant. Soon after Bohr demonstrated that these two quantities agree to 
within approximately 1%, this work was recognized as the crowning achievement 
of his new quantum theory of the hydrogen atom. Furthermore, Bohr showed that 
all the spectral series for hydrogen have a natural interpretation in his theory. The 
different series correspond to transitions to different final states characterized by 
the quantum number nf . Active Figure 42.8 shows the origin of these spectral series 
as transitions between energy levels.
 Bohr extended his model for hydrogen to other elements in which all but one 
electron had been removed. These systems have the same structure as the hydrogen 
atom except that the nuclear charge is larger. Ionized elements such as He1, Li21, 
and Be31 were suspected to exist in hot stellar atmospheres, where atomic collisions 
frequently have enough energy to completely remove one or more atomic electrons. 
Bohr showed that many mysterious lines observed in the spectra of the Sun and 
several other stars could not be due to hydrogen but were correctly predicted by 
his theory if attributed to singly ionized helium. In general, the number of protons 
in the nucleus of an atom is called the atomic number of the element and is given 
the symbol Z. To describe a single electron orbiting a fixed nucleus of charge 1Ze, 
Bohr’s theory gives

 rn 5 1n2 2 a0

Z
 (42.18)

 En 5 2
ke e

2

2a0
aZ 2

n2  b n 5 1, 2, 3, c  (42.19)

 Although the Bohr theory was triumphant in its agreement with some experi-
mental results on the hydrogen atom, it suffered from some difficulties. One of the 
first indications that the Bohr theory needed to be modified arose when improved 
spectroscopic techniques were used to examine the spectral lines of hydrogen. It 
was found that many of the lines in the Balmer and other series were not single 
lines at all. Instead, each was a group of lines spaced very close together. An addi-
tional difficulty arose when it was observed that in some situations certain single 
spectral lines were split into three closely spaced lines when the atoms were placed 
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Pitfall Prevention 42.2
The Bohr Model Is Great, but . . .
The Bohr model correctly predicts 
the ionization energy and general 
features of the spectrum for hydro-
gen, but it cannot account for the 
spectra of more complex atoms and 
is unable to predict many subtle 
spectral details of hydrogen and 
other simple atoms. Scattering 
experiments show that the electron 
in a hydrogen atom does not move 
in a flat circle around the nucleus. 
Instead, the atom is spherical. The 
ground-state angular momentum of 
the atom is zero and not ".
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in a strong magnetic field. Efforts to explain these and other deviations from the 
Bohr model led to modifications in the theory and ultimately to a replacement 
theory that will be discussed in Section 42.4.

Bohr’s Correspondence Principle

In our study of relativity, we found that Newtonian mechanics is a special case of 
relativistic mechanics and is usable only for speeds much less than c. Similarly,

quantum physics agrees with classical physics when the difference between 
quantized levels becomes vanishingly small.

This principle, first set forth by Bohr, is called the correspondence principle.2

 For example, consider an electron orbiting the hydrogen atom with n . 10 000. 
For such large values of n, the energy differences between adjacent levels approach 
zero; therefore, the levels are nearly continuous. Consequently, the classical model 
is reasonably accurate in describing the system for large values of n. According to 
the classical picture, the frequency of the light emitted by the atom is equal to the 
frequency of revolution of the electron in its orbit about the nucleus. Calculations 
show that for n . 10 000, this frequency is different from that predicted by quan-
tum mechanics by less than 0.015%.

Quick Quiz 42.1  A hydrogen atom is in its ground state. Incident on the atom 
is a photon having an energy of 10.5 eV. What is the result? (a) The atom is 
excited to a higher allowed state. (b) The atom is ionized. (c) The photon 
passes by the atom without interaction.

Quick Quiz 42.2  A hydrogen atom makes a transition from the n 5 3 level to 
the n 5 2 level. It then makes a transition from the n 5 2 level to the n 5 1 
level. Which transition results in emission of the longest-wavelength photon? 
(a) the first transition (b) the second transition (c) neither transition because 
the wavelengths are the same for both

2In reality, the correspondence principle is the starting point for Bohr’s postulate 4 on angular momentum quantiza-
tion. To see how postulate 4 arises from the correspondence principle, see J. W. Jewett Jr., Physics Begins with Another 
M . . . Mysteries, Magic, Myth, and Modern Physics (Boston: Allyn & Bacon, 1996), pp. 353–356.

Example 42.1 Electronic Transitions in Hydrogen

(A)  The electron in a hydrogen atom makes a transition from the n 5 2 energy level to the ground level (n 5 1). Find 
the wavelength and frequency of the emitted photon.

SOLUTION

Conceptualize  Imagine the electron in a circular orbit about the nucleus as in the Bohr model in Figure 42.6. When the 
electron makes a transition to a lower stationary state, it emits a photon with a given frequency.

Categorize  We evaluate the results using equations developed in this section, so we categorize this example as a substitu-
tion problem.

Use Equation 42.17 to obtain l, with ni 5 2 and 
nf 5 1:

1
l

5 RHa 1
12 2

1
22b 5

3RH

4

l 5
4

3RH
5

4

3 11.097 3 107 m21 2 5 1.22 3 1027 m 5 122 nm

continued
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42.1 cont.

42.4 The Quantum Model of the Hydrogen Atom
In the preceding section, we described how the Bohr model views the electron 
as a particle orbiting the nucleus in nonradiating, quantized energy levels. This 
model combines both classical and quantum concepts. Although the model dem-
onstrates excellent agreement with some experimental results, it cannot explain 
others. These difficulties are removed when a full quantum model involving the 
Schrödinger equation is used to describe the hydrogen atom.

Use Equation 34.20 to find the frequency of the photon: f 5
c
l

5
3.00 3 108 m/s

1.22 3 1027 m
5 2.47 3 1015 Hz

(B)  In interstellar space, highly excited hydrogen atoms called Rydberg atoms have been observed. Find the wavelength 
to which radio astronomers must tune to detect signals from electrons dropping from the n 5 273 level to the n 5 272 
level.

SOLUTION

Solve for l: l 5
1

9.88 3 1028RH
5

1
19.88 3 1028 2 11.097 3 107 m21 2 5 0.922 m

Use Equation 42.17, this time with ni 5 273 
and nf 5 272:

1
l

5 RHa 1
n f

2 2
1

n i
2b 5 RHa 1

1272 22 2
1

1273 22b 5 9.88 3 1028 RH

(C)  What is the radius of the electron orbit for a Rydberg atom for which n 5 273?

SOLUTION

Use Equation 42.12 to find the radius of the orbit: r273 5 (273)2 (0.052 9 nm) 5 3.94 mm

This radius is large enough that the atom is on the verge of becoming macroscopic!

(D)  How fast is the electron moving in a Rydberg atom for which n 5 273?

SOLUTION

Solve Equation 42.8 for the electron’s speed: v 5 Å
k e e

2

mer
5 Å

18.99 3 109 N ? m2/C2 2 11.60 3 10219 C 22
19.11 3 10231 kg 2 13.94 3 1026 m 2

5 8.01 3 103 m/s

WHAT IF? What if radiation from the Rydberg atom in part (B) is treated classically? What is the wavelength of radia-
tion emitted by the atom in the n 5 273 level?

Answer  Classically, the frequency of the emitted radiation is that of the rotation of the electron around the nucleus.

Find the wavelength of the radiation from 
Equation 34.20:

l 5
c
f

5
3.00 3 108 m/s
3.24 3 108 Hz

5 0.927 m

Substitute the radius and speed from parts (C) and (D): f 5
v

2pr
5

8.02 3 103 m/s
2p 13.94 3 1026 m 2 5 3.24 3 108 Hz

Calculate this frequency using the period defined in 
Equation 4.15:

f 5
1
T

5
v

2pr

This value is less than 0.5% different from the wavelength calculated in part (B). As indicated in the discussion of Bohr’s 
correspondence principle, this difference becomes even smaller for higher values of n.
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 The formal procedure for solving the problem of the hydrogen atom is to substi-
tute the appropriate potential energy function into the Schrödinger equation, find 
solutions to the equation, and apply boundary conditions as we did for the particle 
in a box in Chapter 41. The potential energy function for the hydrogen atom is that 
due to the electrical interaction between the electron and the proton (see Section 
25.3):

 U 1r 2 5 2k e 
e 2

r
 (42.20)

where ke 5 8.99 3 109 N ? m2/C2 is the Coulomb constant and r is the radial dis-
tance from the proton (situated at r 5 0) to the electron.
 The mathematics for the hydrogen atom is more complicated than that for the 
particle in a box because the atom is three-dimensional and U depends on the 
radial coordinate r. If the time-independent Schrödinger equation (Eq. 41.15) is 
extended to three-dimensional rectangular coordinates, the result is

2
U2

2m
a'

2c

'x 2 1
'2c

'y2 1
'2c

'z2 b 1 Uc 5 Ec

It is easier to solve this equation for the hydrogen atom if rectangular coordinates 
are converted to spherical polar coordinates, an extension of the plane polar coor-
dinates introduced in Section 3.1. In spherical polar coordinates, a point in space 
is represented by the three variables r, u, and f, where r is the radial distance from 
the origin, r 5 !x 2 1 y2 1 z2 . With the point represented at the end of a posi-
tion vector rS as shown in Figure 42.9, the angular coordinate u specifies its angu-
lar position relative to the z axis. Once that position vector is projected onto the 
xy plane, the angular coordinate f specifies the projection’s (and therefore the 
point’s) angular position relative to the x axis.
 The conversion of the three-dimensional time-independent Schrödinger equa-
tion for c(x, y, z) to the equivalent form for c(r, u, f) is straightforward but very 
tedious, so we omit the details.3 In Chapter 41, we separated the time dependence 
from the space dependence in the general wave function C. In this case of the 
hydrogen atom, the three space variables in c(r, u, f) can be similarly separated by 
writing the wave function as a product of functions of each single variable:

c(r, u, f) 5 R(r)f(u)g(f)

In this way, Schrödinger’s equation, which is a three-dimensional partial differen-
tial equation, can be transformed into three separate ordinary differential equa-
tions: one for R(r), one for f(u), and one for g(f). Each of these functions is subject 
to boundary conditions. For example, R(r) must remain finite as r S 0 and r S `; 
furthermore, g(f) must have the same value as g(f 1 2p).
 The potential energy function given in Equation 42.20 depends only on the radial 
coordinate r and not on either of the angular coordinates; therefore, it appears 
only in the equation for R(r). As a result, the equations for u and f are indepen-
dent of the particular system and their solutions are valid for any system exhibiting 
rotation.
 When the full set of boundary conditions is applied to all three functions, three 
different quantum numbers are found for each allowed state of the hydrogen atom, 
one for each of the separate differential equations. These quantum numbers are 
restricted to integer values and correspond to the three independent degrees of 
freedom (three space dimensions).
 The first quantum number, associated with the radial function R(r) of the full 
wave function, is called the principal quantum number and is assigned the symbol 
n. The differential equation for R(r) leads to functions giving the probability of 
finding the electron at a certain radial distance from the nucleus. In Section 42.5, 

z

y

P

x

f

u
rS 

Figure 42.9  A point P in space is 
located by means of a position vec-
tor rS. In Cartesian coordinates, the 
components of this vector are x, y, 
and z. In spherical polar coordi-
nates, the point is described by r, the 
distance from the origin; u, the angle 
between rS and the z axis; and f, the 
angle between the x axis and a pro-
jection of rS onto the xy plane.

3Descriptions of the solutions to the Schrödinger equation for the hydrogen atom are available in modern phys-
ics textbooks such as R. A. Serway, C. Moses, and C. A. Moyer, Modern Physics, 3rd ed. (Belmont, CA: Brooks/Cole, 
2005).
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we will describe two of these radial wave functions. The energies of the allowed 
states for the hydrogen atom are found to be related to n as follows:

 En 5 2ake e
2

2a0
b 1

n2 5 2
13.606 eV

n2  n 5 1, 2, 3, c  (42.21)

This result is in exact agreement with that obtained in the Bohr theory (Eqs. 42.13 
and 42.14)! This agreement is remarkable because the Bohr theory and the full quan-
tum theory arrive at the result from completely different starting points.
 The orbital quantum number, symbolized ,, comes from the differential equa-
tion for f(u) and is associated with the orbital angular momentum of the electron. 
The orbital magnetic quantum number m, arises from the differential equation 
for g(f). Both , and m, are integers. We will expand our discussion of these two 
quantum numbers in Section 42.6, where we also introduce a fourth (nonintegral) 
quantum number, resulting from a relativistic treatment of the hydrogen atom.
 The application of boundary conditions on the three parts of the full wave func-
tion leads to important relationships among the three quantum numbers as well as 
certain restrictions on their values:

The values of n are integers that can range from 1 to .̀

The values of , are integers that can range from 0 to n 2 1.

The values of m, are integers that can range from 2, to ,.

For example, if n 5 1, only , 5 0 and m, 5 0 are permitted. If n 5 2, then , may be 
0 or 1; if , 5 0, then m, 5 0; but if , 5 1, then m, may be 1, 0, or 21. Table 42.1 sum-
marizes the rules for determining the allowed values of , and m, for a given n.
 For historical reasons, all states having the same principal quantum number are 
said to form a shell. Shells are identified by the letters K, L, M, . . . , which designate 
the states for which n 5 1, 2, 3, . . . . Likewise, all states having the same values of n 
and , are said to form a subshell. The letters4 s, p, d, f, g, h, . . . are used to designate 
the subshells for which , 5 0, 1, 2, 3, . . . . The state designated by 3p, for example, 
has the quantum numbers n 5 3 and , 5 1; the 2s state has the quantum numbers 
n 5 2 and , 5 0. These notations are summarized in Tables 42.2 and 42.3.
 States that violate the rules given in Table 42.1 do not exist. (They do not satisfy 
the boundary conditions on the wave function.) For instance, the 2d state, which 
would have n 5 2 and , 5 2, cannot exist because the highest allowed value of , is 
n 2 1, which in this case is 1. Therefore, for n 5 2, the 2s and 2p states are allowed 
but 2d, 2f, . . . are not. For n 5 3, the allowed subshells are 3s, 3p, and 3d.

Quick Quiz 42.3  How many possible subshells are there for the n 5 4 level of 
hydrogen? (a) 5   (b) 4   (c) 3   (d) 2   (e) 1

Quick Quiz 42.4  When the principal quantum number is n 5 5, how many 
different values of (a) , and (b) m, are possible?

Allowed energies of  
the quantum hydrogen atom

Restrictions on the values 
 of hydrogen-atom 
quantum numbers

Pitfall Prevention 42.3
Energy Depends on n Only for 
Hydrogen
The implication in Equation 42.21 
that the energy depends only on 
the quantum number n is true only 
for the hydrogen atom. For more 
complicated atoms, we will use the 
same quantum numbers developed 
here for hydrogen. The energy levels 
for these atoms depend primarily on 
n, but they also depend to a lesser 
degree on other quantum numbers.

Pitfall Prevention 42.4
Quantum Numbers Describe 
a System
It is common to assign the quantum 
numbers to an electron. Remember, 
however, that these quantum num-
bers arise from the Schrödinger 
equation, which involves a potential 
energy function for the system of the 
electron and the nucleus. Therefore, 
it is more proper to assign the quan-
tum numbers to the atom, but it is 
more popular to assign them to an 
electron. We follow this latter usage 
because it is so common.

Three Quantum Numbers for the Hydrogen Atom
Quantum  Allowed Number of
Number Name Values Allowed States

n Principal quantum  1, 2, 3, . . . Any number
  number 
, Orbital quantum  0, 1, 2, . . . , n 2 1 n
  number 
m, Orbital magnetic  2,, 2, 1 1, . . . , 0, . . . , , 2 1, , 2, 1 1
  quantum number 

TABLE 42.1

4The first four of these letters come from early classifications of spectral lines: sharp, principal, diffuse, and funda-
mental. The remaining letters are in alphabetical order.
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Atomic Shell Notations
n Shell Symbol

1 K
2 L
3 M
4 N
5 O
6 P

TABLE 42.2

Atomic Subshell Notations
, Subshell Symbol

0 s
1 p
2 d
3 f
4 g
5 h

TABLE 42.3

Example 42.2 The n 5 2 Level of Hydrogen

For a hydrogen atom, determine the allowed states corresponding to the principal quantum number n 5 2 and calculate 
the energies of these states.

SOLUTION

Conceptualize  Think about the atom in the n 5 2 quantum state. There is only one such state in the Bohr theory, but 
our discussion of the quantum theory allows for more states because of the possible values of , and m,.

Categorize  We evaluate the results using rules discussed in this section, so we categorize this example as a substitution 
problem.

From Table 42.1, we find that when n 5 2, , can be 0 or 
1. Find the possible values of m, from Table 42.1:

, 5 0    S    m, 5 0

, 5 1    S    m, 5 21, 0, or 1

Hence, we have one state, designated as the 2s state, that is associated with the quantum numbers n 5 2, , 5 0, and 
m, 5 0, and we have three states, designated as 2p states, for which the quantum numbers are n 5 2, , 5 1, and m, 5 21; 
n 5 2, , 5 1, and m, 5 0; and n 5 2, , 5 1, and m, 5 1.

Find the energy for all four of these states with n 5 2 
from Equation 42.21:

E2 5 2
13.606 eV

22 5  23.401 eV

42.5 The Wave Functions for Hydrogen
Because the potential energy of the hydrogen atom depends only on the radial 
distance r between nucleus and electron, some of the allowed states for this atom 
can be represented by wave functions that depend only on r. For these states, f(u) 
and g(f) are constants. The simplest wave function for hydrogen is the one that 
describes the 1s state and is designated c1s(r):

 c1s 1r 2 5
1

"pa0
3
 e2r/a0  (42.22)

where a0 is the Bohr radius. (In Problem 24, you can verify that this function satis-
fies the Schrödinger equation.) Note that c1s approaches zero as r approaches ` 
and is normalized as presented (see Eq. 41.7). Furthermore, because c1s depends 
only on r, it is spherically symmetric. This symmetry exists for all s states.
 Recall that the probability of finding a particle in any region is equal to an inte-
gral of the probability density ucu2 for the particle over the region. The probability 
density for the 1s state is

 0c1s 0 2 5 a 1
pa0

3be22r/a0  (42.23)

Because we imagine the nucleus to be fixed in space at r 5 0, we can assign this 
probability density to the question of locating the electron. According to Equation 

 Wave function for hydrogen  
in its ground state
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41.3, the probability of finding the electron in a volume element dV is ucu2 dV. It is 
convenient to define the radial probability density function P(r) as the probability per 
unit radial length of finding the electron in a spherical shell of radius r and thick-
ness dr. Therefore, P(r) dr is the probability of finding the electron in this shell. The 
volume dV of such an infinitesimally thin shell equals its surface area 4pr2 multi-
plied by the shell thickness dr (Fig. 42.10), so we can write this probability as

P(r) dr 5 ucu2 dV 5 ucu24pr 2 dr

Therefore, the radial probability density function is

 P(r) 5 4pr 2ucu2 (42.24)

Substituting Equation 42.23 into Equation 42.24 gives the radial probability density 
function for the hydrogen atom in its ground state:

 P1s 1r 2 5 a4r 2

a0
3 be22r/a0  (42.25)

 A plot of the function P1s(r) versus r is presented in Figure 42.11a. The peak of 
the curve corresponds to the most probable value of r for this particular state. We 
show in Example 42.3 that this peak occurs at the Bohr radius, the radial position 
of the electron when the hydrogen atom is in its ground state in the Bohr theory, 
another remarkable agreement between the Bohr theory and the quantum theory.
 According to quantum mechanics, the atom has no sharply defined boundary 
as suggested by the Bohr theory. The probability distribution in Figure 42.11a sug-
gests that the charge of the electron can be modeled as being extended throughout 
a region of space, commonly referred to as an electron cloud. Figure 42.11b shows the 
probability density of the electron in a hydrogen atom in the 1s state as a function 
of position in the xy plane. The darkness of the blue color corresponds to the value 
of the probability density. The darkest portion of the distribution appears at r 5 a0, 
corresponding to the most probable value of r for the electron.

Radial probability density  
for the 1s state of hydrogen

dr

r

Figure 42.10  A spherical shell of 
radius r and thickness dr has a vol-
ume equal to 4pr 2 dr.

P 1s(r)

a0 � 0.052 9 nm
r

x

y

r � a0

The probability has 
its maximum value 
when r equals the 
Bohr radius a0.

In this representation, the 
darkest color, representing 
the maximum probability, 
occurs at the Bohr radius.

a b

Figure 42.11 (a) The probability 
of finding the electron as a function 
of distance from the nucleus for the 
hydrogen atom in the 1s (ground) 
state. (b) The cross section in the 
xy plane of the spherical electronic 
charge distribution for the hydrogen 
atom in its 1s state.

Example 42.3 The Ground State of Hydrogen

(A)  Calculate the most probable value of r for an electron in the ground state of the hydrogen atom.

SOLUTION

Conceptualize  Do not imagine the electron in orbit around the proton as in the Bohr theory of the hydrogen atom. 
Instead, imagine the charge of the electron spread out in space around the proton in an electron cloud with spherical 
symmetry.
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Categorize  Because the statement of the problem asks for the “most probable value of r,” we categorize this example as 
a problem in which the quantum approach is used. (In the Bohr atom, the electron moves in an orbit with an exact value 
of r.)

Analyze The most probable value of r corresponds to the maximum in the plot of P1s(r) versus r. We can evaluate the 
most probable value of r by setting dP1s/dr 5 0 and solving for r.

Set the bracketed expression equal to zero and solve 
for r :

1 2
r

a0
5 0    S     r 5 a0

Differentiate Equation 42.25 and set the result equal to 
zero:

dP1s

dr
5

d
dr
c a4r 2

a0
3be22r/a0 d 5 0

e22r/a 0 
d
dr
1r 2 2 1 r 2 

d
dr
1e22r/a 0 2 5 0

2re22r/a0 1 r 2(22/a0)e22r/a0 5 0

(1)   2r[1 2 (r/a0)]e22r/a0 5 0

Finalize  The most probable value of r is the Bohr radius! Equation (1) is also satisfied at r 5 0 and as r S .̀ These points 
are locations of the minimum probability, which is equal to zero as seen in Figure 42.11a.

(B)  Calculate the probability that the electron in the ground state of hydrogen will be found outside the first Bohr 
radius.

SOLUTION

Analyze The probability is found by integrating the radial probability density function P1s(r) for this state from the Bohr 
radius a0 to .̀

Evaluate between the limits: P 5 0 2 321
2 14 1 4 1 2 2e22 4 5 5e22 5 0.677 or 67.7 %

Evaluate the integral using partial integration (see 
Appendix B.7):

P 5 21
2 1z2 1 2z 1 2 2e2z  P

`

2

Put the integral in dimensionless form by changing 
variables from r to z 5 2r/a0, noting that z 5 2 when 
r 5 a0 and that dr 5 (a0/2) dz:

P 5
4

a0
3 3

`

2
 aza0

2
b

2

e2zaa0

2
b dz 5 1

2 3
`

2
z2e2z dz

Set up this integral using Equation 42.25: P 5 3
`

a 0

P1s 1r 2  dr 5
4

a0
3 3

`

a0

 r 2e22r/a 0 dr

Finalize  This probability is larger than 50%. The reason for this value is the asymmetry in the radial probability density 
function (Fig. 42.11a), which has more area to the right of the peak than to the left.

WHAT IF?  What if you were asked for the average value of r for the electron in the ground state rather than the most 
probable value?

Answer  The average value of r is the same as the expectation value for r.

Evaluate the integral with the help of the first integral 
listed in Table B.6 in Appendix B:

ravg 5 a 4
a0

3b a
3!

12/a0 24
b 5 3

2a0

Use Equation 42.25 to evaluate the average value of r : ravg 5 8r 9 5 3
`

0
rP 1r 2  dr 5 3

`

0
r a4r 2

a0
3be22r/a 0 dr

5 a 4
a0

3b3
`

0
r 3e22r/a0 dr

Again, the average value is larger than the most probable value because of the asymmetry in the wave function as seen 
in Figure 42.11a.
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 The next-simplest wave function for the hydrogen atom is the one correspond-
ing to the 2s state (n 5 2, , 5 0). The normalized wave function for this state is

 c2s 1r 2 5
1

4"2p
a 1

a0
b

3/2

a2 2
r

a0
be2r/2a0  (42.26)

Again notice that c2s depends only on r and is spherically symmetric. The energy 
corresponding to this state is E2 5 2(13.606/4) eV 5 23.401 eV. This energy level 
represents the first excited state of hydrogen. A plot of the radial probability den-
sity function for this state in comparison to the 1s state is shown in Active Figure 
42.12. The plot for the 2s state has two peaks. In this case, the most probable value 
corresponds to that value of r that has the highest value of P (< 5a0). An electron 
in the 2s state would be much farther from the nucleus (on the average) than an 
electron in the 1s state.

42.6 Physical Interpretation of the Quantum Numbers
The principal quantum number n of a particular state in the hydrogen atom deter-
mines the energy of the atom according to Equation 42.21. Now let’s see what the 
other quantum numbers in our atomic model correspond to physically.

The Orbital Quantum Number <

We begin this discussion by returning briefly to the Bohr model of the atom. If the 
electron moves in a circle of radius r, the magnitude of its angular momentum rela-
tive to the center of the circle is L 5 mevr. The direction of L

S
 is perpendicular to the 

plane of the circle and is given by a right-hand rule. According to classical physics, 
the magnitude L of the orbital angular momentum can have any value. The Bohr 
model of hydrogen, however, postulates that the magnitude of the angular momen-
tum of the electron is restricted to multiples of "; that is, L 5 n". This model must 
be modified because it predicts (incorrectly) that the ground state of hydrogen has 
one unit of angular momentum. Furthermore, if L is taken to be zero in the Bohr 
model, the electron must be pictured as a particle oscillating along a straight line 
through the nucleus, which is a physically unacceptable situation.
 These difficulties are resolved with the quantum-mechanical model of the atom, 
although we must give up the convenient mental representation of an electron 
orbiting in a well-defined circular path. Despite the absence of this representation, 
the atom does indeed possess an angular momentum and it is still called orbital 
angular momentum. According to quantum mechanics, an atom in a state whose 
principal quantum number is n can take on the following discrete values of the mag-
nitude of the orbital angular momentum:5

 L 5 ", 1 , 1 1 2 U  , 5 0, 1, 2, c, n 2 1 (42.27)

Given these allowed values of ,, we see that L 5 0 (corresponding to , 5 0) is an 
acceptable value of the magnitude of the angular momentum. That L can be zero 
in this model serves to point out the inherent difficulties in any attempt to describe 
results based on quantum mechanics in terms of a purely particle-like (classical) 
model. In the quantum-mechanical interpretation, the electron cloud for the L 5 0 
state is spherically symmetric and has no fundamental rotation axis.

The Orbital Magnetic Quantum Number m,

Because angular momentum is a vector, its direction must be specified. Recall from 
Chapter 29 that a current loop has a corresponding magnetic moment mS 5 IA

S
 (Eq. 

Wave function for hydrogen  
in the 2s state

Allowed values of L 

0.6
P(r)

1s

2s

0.5
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0.3

0.2
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0.0
0 4 8 12 16 20

r/a0

The radial probability density func-
tion versus r/a0 for the 1s and 2s 
states of the hydrogen atom.

ACTIVE FIGURE 42.12

5Equation 42.27 is a direct result of the mathematical solution of the Schrödinger equation and the application of 
angular boundary conditions. This development, however, is beyond the scope of this book.
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29.15), where I is the current in the loop and A
S

 is a vector perpendicular to the 
loop whose magnitude is the area of the loop. Such a moment placed in a magnetic 
field B

S
 interacts with the field. Suppose a weak magnetic field applied along the z 

axis defines a direction in space. According to classical physics, the energy of the 
loop–field system depends on the direction of the magnetic moment of the loop 
with respect to the magnetic field as described by Equation 29.18, U 5 2m

S
? B
S

. Any 
energy between 2mB and 1mB is allowed by classical physics.
 In the Bohr theory, the circulating electron represents a current loop. In the 
quantum-mechanical approach to the hydrogen atom, we abandon the circular 
orbit viewpoint of the Bohr theory, but the atom still possesses an orbital angular 
momentum. Therefore, there is some sense of rotation of the electron around the 
nucleus and a magnetic moment is present due to this angular momentum.
 As mentioned in Section 42.3, spectral lines from some atoms are observed to 
split into groups of three closely spaced lines when the atoms are placed in a mag-
netic field. Suppose the hydrogen atom is located in a magnetic field. According to 
quantum mechanics, there are discrete directions allowed for the magnetic moment 
vector mS with respect to the magnetic field vector B

S
. This situation is very different 

from that in classical physics, in which all directions are allowed.
 Because the magnetic moment mS of the atom can be related6 to the angu-
lar momentum vector L

S
, the discrete directions of mS translate to the direction of 

L
S

 being quantized. This quantization means that Lz (the projection of L
S

 along the 
z axis) can have only discrete values. The orbital magnetic quantum number m, 
specifies the allowed values of the z component of the orbital angular momentum 
according to the expression7

 Lz 5 m," (42.28)

The quantization of the possible orientations of L
S

 with respect to an external mag-
netic field is often referred to as space quantization.
 Let’s look at the possible magnitudes and orientations of L

S
 for a given value of 

,. Recall that m, can have values ranging from 2, to ,. If , 5 0, then L 5 0; the 
only allowed value of m, is m, 5 0 and Lz 5 0. If , 5 1, then L 5 !2 U. The possible 
values of m, are 21, 0, and 1, so Lz may be 2", 0, or ". If , 5 2, the magnitude of 
the orbital angular momentum is !6 U. The value of m, can be 22, 21, 0, 1, or 2, 
corresponding to Lz values of 22", 2", 0, ", or 2", and so on.
 Figure 42.13a on page 1268 shows a vector model that describes space quantiza-
tion for the case , 5 2. Notice that L

S
 can never be aligned parallel or antiparallel 

to B
S

 because the maximum value of Lz is ,", which is less than the magnitude of the 
angular momentum L 5 !, 1 , 1 1 2 U. The angular momentum vector L

S
 is allowed 

to be perpendicular to B
S

, which corresponds to the case of Lz 5 0 and , 5 0.
 The vector L

S
 does not point in one specific direction even though its z component 

is fixed. If L
S

 were known exactly, all three components Lx, Ly, and Lz would be speci-
fied, which is inconsistent with the uncertainty principle. How can the magnitude 
and z component of a vector be specified, but the vector not be completely specified? 
To answer, imagine that Lx and Ly are completely unspecified so that L

S
 lies anywhere 

on the surface of a cone that makes an angle u with the z axis as shown in Figure 
42.13b. From the figure, we see that u is also quantized and that its values are speci-
fied through the relationship

 cos u 5
L z

L
5

m ,

", 1 , 1 1 2
 (42.29)

 If the atom is placed in a magnetic field, the energy U 5 2m
S
? B
S

 is additional 
energy for the atom–field system beyond that described in Equation 42.21. Because 

Allowed values of  Lz

6See Equation 30.22 for this relationship as derived from a classical viewpoint. Quantum mechanics arrives at the 
same result.
7As with Equation 42.27, the relationship expressed in Equation 42.28 arises from the solution to the Schrödinger 
equation and application of boundary conditions.
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the directions of mS are quantized, there are discrete total energies for the atom cor-
responding to different values of m,. Figure 42.14a shows a transition between two 
atomic levels in the absence of a magnetic field. In Figure 42.14b, a magnetic field 
is applied and the upper level, with , 5 1, splits into three levels corresponding to 
the different directions of mS. There are now three possible transitions from the , 5 
1 subshell to the , 5 0 subshell. Therefore, in a collection of atoms, there are atoms 
in all three states and the single spectral line in Figure 42.14a splits into three spec-
tral lines. This phenomenon is called the Zeeman effect.
 The Zeeman effect can be used to measure extraterrestrial magnetic fields. For 
example, the splitting of spectral lines in light from hydrogen atoms in the surface 
of the Sun can be used to calculate the magnitude of the magnetic field at that 
location. The Zeeman effect is one of many phenomena that cannot be explained 
with the Bohr model but are successfully explained by the quantum model of the 
atom.

f0

hf0

h( f0 � f )

( f0  � f )

No magnetic
field

Magnetic field
present

Spectrum with magnetic
field present

Spectrum without
magnetic field
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�m   �  0
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Atoms in three excited states 
decay to the ground state with 
three different energies, and 
three spectral lines are observed.

a b

When B � 0, the excited 
state has a single energy 
and only a single spectral 
line at f0 is observed.

SFigure 42.14  The Zeeman effect. 
(a) Energy levels for the ground 
and first excited states of a hydro-
gen atom. (b) When the atom is 
immersed in a magnetic field B

S
, 

the state with , 5 1 splits into three 
states, giving rise to emission lines 
at f0, f0 1 Df, and f0 2 Df, where Df is 
the frequency shift of the emission 
caused by the magnetic field.
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The allowed projections on 
the z axis af the orbital 
angular momentum L are 
integer multiples of �.

Because the x and y components of 
the orbital angular momentum 
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L lies on the surface of a cone.
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Figure 42.13  A vector model for 
, 5 2.
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Example 42.4 Space Quantization for Hydrogen

Consider the hydrogen atom in the , 5 3 state. Calculate the magnitude of L
S

, the allowed values of Lz, and the corre-
sponding angles u that L

S
 makes with the z axis.

SOLUTION

Conceptualize  Consider Figure 42.13, which is a vector model for , 5 2. Draw such a vector model for , 5 3 to help with 
this problem.

Categorize  We evaluate results using equations developed in this section, so we categorize this example as a substitution 
problem.

Find the angles corresponding to these values of cos u: u 5 30.0°, 54.7°, 73.2°, 90.0°, 107°, 125°, 150°

Calculate the allowed values of cos u using Equation 
42.29:

cos u 5
63

2"3
5 60.866  cos u 5

62

2"3
5 60.577

cos u 5
61

2"3
5 60.289  cos u 5

0

2"3
5 0

Calculate the allowed values of Lz using Equation 42.28 
with m, 5 23, 22, 21, 0, 1, 2, and 3:

Lz 5 23U, 22U, 2U, 0, U, 2U, 3U

Calculate the magnitude of the orbital angular momen-
tum using Equation 42.27:

L 5 ", 1 , 1 1 2 U 5 "3 13 1 1 2 U 5   2"3 U

WHAT IF? What if the value of , is an arbitrary integer? For an arbitrary value of ,, how many values of m, are allowed?

Answer  For a given value of ,, the values of m, range from 2, to 1, in steps of 1. Therefore, there are 2, nonzero val-
ues of m, (specifically, 61, 62, . . . , 6,). In addition, one more value of m, 5 0 is possible, for a total of 2, 1 1 values of 
m,. This result is critical in understanding the results of the Stern–Gerlach experiment described below with regard to 
spin.

The Spin Magnetic Quantum Number ms

The three quantum numbers n, ,, and m, discussed so far are generated by applying 
boundary conditions to solutions of the Schrödinger equation, and we can assign a 
physical interpretation to each quantum number. Let’s now consider electron spin, 
which does not come from the Schrödinger equation.
 In Example 42.2, we found four quantum states corresponding to n 5 2. In real-
ity, however, eight such states occur. The additional four states can be explained by 
requiring a fourth quantum number for each state, the spin magnetic quantum 
number ms.
 The need for this new quantum number arises because of an unusual feature 
observed in the spectra of certain gases, such as sodium vapor. Close examination 
of one prominent line in the emission spectrum of sodium reveals that the line 
is, in fact, two closely spaced lines called a doublet.8 The wavelengths of these lines 
occur in the yellow region of the electromagnetic spectrum at 589.0 nm and 589.6 
nm. In 1925, when this doublet was first observed, it could not be explained with 
the existing atomic theory. To resolve this dilemma, Samuel Goudsmit (1902–1978) 
and George Uhlenbeck (1900–1988), following a suggestion made by Austrian 
physicist Wolfgang Pauli, proposed the spin quantum number.
 To describe this new quantum number, it is convenient (but technically incor-
rect) to imagine the electron spinning about its axis as it orbits the nucleus as Wolfgang Pauli and Niels Bohr 

watch a spinning top. The spin of 
the electron is analogous to the spin 
of the top but is different in many 
ways.
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8This phenomenon is a Zeeman effect for spin and is identical in nature to the Zeeman effect for orbital angular 
momentum discussed before Example 42.4 except that no external magnetic field is required. The magnetic field for 
this Zeeman effect is internal to the atom and arises from the relative motion of the electron and the nucleus.
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described in Section 30.6. As illustrated in Figure 42.15, only two directions exist 
for the electron spin. If the direction of spin is as shown in Figure 42.15a, the elec-
tron is said to have spin up. If the direction of spin is as shown in Figure 42.15b, the 
electron is said to have spin down. In the presence of a magnetic field, the energy of 
the electron is slightly different for the two spin directions. This energy difference 
accounts for the sodium doublet.
 The classical description of electron spin—as resulting from a spinning elec-
tron—is incorrect. More recent theory indicates that the electron is a point particle, 
without spatial extent. Therefore, the electron cannot be considered to be spinning. 
Despite this conceptual difficulty, all experimental evidence supports the idea that 
an electron does have some intrinsic angular momentum that can be described 
by the spin magnetic quantum number. Paul Dirac (1902–1984) showed that this 
fourth quantum number originates in the relativistic properties of the electron.
 In 1921, Otto Stern (1888–1969) and Walter Gerlach (1889–1979) performed 
an experiment that demonstrated space quantization. Their results, however, were 
not in quantitative agreement with the atomic theory that existed at that time. In 
their experiment, a beam of silver atoms sent through a nonuniform magnetic field 
was split into two discrete components (Fig. 42.16). Stern and Gerlach repeated the 
experiment using other atoms, and in each case the beam split into two or more 
components. The classical argument is as follows. If the z direction is chosen to be 
the direction of the maximum nonuniformity of B

S
, the net magnetic force on the 

atoms is along the z axis and is proportional to the component of the magnetic 
moment mS of the atom in the z direction. Classically, mS can have any orientation, 
so the deflected beam should be spread out continuously. According to quantum 
mechanics, however, the deflected beam has an integral number of discrete com-
ponents and the number of components determines the number of possible values 
of mz. Therefore, because the Stern–Gerlach experiment showed split beams, space 
quantization was at least qualitatively verified.
 For the moment, let’s assume the magnetic moment of the atom is due to the 
orbital angular momentum. Because mz is proportional to m,, the number of possi-
ble values of mz is 2, 1 1 as found in the What If? section of Example 42.4. Further-
more, because , is an integer, the number of values of mz is always odd. This pre-
diction is not consistent with Stern and Gerlach’s observation of two components 
(an even number) in the deflected beam of silver atoms. Hence, either quantum 
mechanics is incorrect or the model is in need of refinement.
 In 1927, T. E. Phipps and J. B. Taylor repeated the Stern–Gerlach experiment 
using a beam of hydrogen atoms. Their experiment was important because it 
involved an atom containing a single electron in its ground state, for which the 
quantum theory makes reliable predictions. Recall that , 5 0 for hydrogen in its 
ground state, so m, 5 0. Therefore, we would not expect the beam to be deflected 

S
S

S
S

z z

a b

�e �e

Figure 42.15  The spin of an 
electron can be either (a) up or 
(b) down relative to a specified z 
axis. As in the case of orbital angular 
momentum, the x and y components 
of the spin angular momentum vec-
tor are not quantized.

Pitfall Prevention 42.5
The Electron Is Not Spinning
Although the concept of a spinning 
electron is conceptually useful, it 
should not be taken literally. The 
spin of the Earth is a mechanical 
rotation. On the other hand, elec-
tron spin is a purely quantum effect 
that gives the electron an angular 
momentum as if it were physically 
spinning.

A beam of silver atoms is 
split in two by a nonuniform 
magnetic field.

The shapes of the pole 
faces create a nonuniform 
magnetic field.

The pattern on the 
screen predicted by a 
classical analysis

The actual pattern 
observed in the 
experiment

Oven

Photographic
plate

Figure 42.16  The technique used 
by Stern and Gerlach to verify space 
quantization.
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by the magnetic field at all because the magnetic moment mS of the atom is zero. 
The beam in the Phipps–Taylor experiment, however, was again split into two com-
ponents! On the basis of that result, we must conclude that something other than 
the electron’s orbital motion is contributing to the atomic magnetic moment.
 As we learned earlier, Goudsmit and Uhlenbeck had proposed that the electron 
has an intrinsic angular momentum, spin, apart from its orbital angular momen-
tum. In other words, the total angular momentum of the electron in a particular 
electronic state contains both an orbital contribution L

S
 and a spin contribution S

S
. 

The Phipps–Taylor result confirmed the hypothesis of Goudsmit and Uhlenbeck.
 In 1929, Dirac used the relativistic form of the total energy of a system to solve 
the relativistic wave equation for the electron in a potential well. His analysis con-
firmed the fundamental nature of electron spin. (Spin, like mass and charge, is an 
intrinsic property of a particle, independent of its surroundings.) Furthermore, the 
analysis showed that electron spin9 can be described by a single quantum number 
s, whose value can be only s 5 1

2. The spin angular momentum of the electron never 
changes. This notion contradicts classical laws, which dictate that a rotating charge 
slows down in the presence of an applied magnetic field because of the Faraday 
emf that accompanies the changing field. Furthermore, if the electron is viewed 
as a spinning ball of charge subject to classical laws, parts of the electron near its 
surface would be rotating with speeds exceeding the speed of light. Therefore, the 
classical picture must not be pressed too far; ultimately, spin of an electron is a 
quantum entity defying any simple classical description.
 Because spin is a form of angular momentum, it must follow the same quantum 
rules as orbital angular momentum. In accordance with Equation 42.27, the magni-
tude of the spin angular momentum S

S
 for the electron is

 S 5 "s 1s 1 1 2 U 5
!3
2

 U (42.30)

 Like orbital angular momentum L
S

, spin angular momentum S
S

 exhibits space 
quantization as described in Figure 42.17. It can have two orientations relative to 
a z axis, specified by the spin magnetic quantum number ms 5 61

2. Similar to 
Equation 42.28 for orbital angular momentum, the z component of spin angular 
momentum is

 Sz 5 msU 5 61
2 U  (42.31)

The two values 6"/2 for Sz correspond to the two possible orientations for S
S

 shown 
in Figure 42.17. The value ms 5 11

2 refers to the spin-up case, and ms 5 21
2 refers 

to the spin-down case. Notice that Equations 42.30 and 42.31 do not allow the spin 
vector to lie along the z axis. The actual direction of S

S
 is at a relatively large angle 

with respect to the z axis as shown in Figures 42.15 and 42.17.
 As discussed in the What if? feature of Example 42.4, there are 2, 1 1 possible 
values of m, for orbital angular momentum. Similarly, for spin angular momen-
tum, there are 2s 1 1 values of ms. For a spin of s 5 1

2, the number of values of ms is 
2s 1 1 5 2. These two possibilities for ms lead to the splitting of the beams into two 
components in the Stern–Gerlach and Phipps–Taylor experiments.
 The spin magnetic moment mSspin of the electron is related to its spin angular 
momentum S

S
 by the expression

 m
S

spin 5 2
e

me
 S
S

 (42.32)

where e is the electronic charge and me is the mass of the electron. Because Sz 5 61
2U, 

the z component of the spin magnetic moment can have the values

 m
S

spin,z 5 6
e U

2me
 (42.33)

 Magnitude of the spin angular  
momentum of an electron

Allowed values of  Sz

9Scientists often use the word spin when referring to the spin angular momentum quantum number. For example, it 
is common to say, “The electron has a spin of one half.”

Figure 42.17  Spin angular momen-
tum S

S
 exhibits space quantization. 

This figure shows the two allowed 
orientations of the spin angular 
momentum vector S

S
 and the spin 

magnetic moment mSspin for a spin-12 
particle, such as the electron.
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As we learned in Section 30.6, the quantity e"/2me is the Bohr magneton mB 5 
9.27 3 10224 J/T. The ratio of magnetic moment to angular momentum is twice as 
great for spin angular momentum (Eq. 42.32) as it is for orbital angular momen-
tum (Eq. 30.22). The factor of 2 is explained in a relativistic treatment first carried 
out by Dirac.
 Today, physicists explain the Stern–Gerlach and Phipps–Taylor experiments as 
follows. The observed magnetic moments for both silver and hydrogen are due to 
spin angular momentum only, with no contribution from orbital angular momen-
tum. In the Phipps–Taylor experiment, the single electron in the hydrogen atom has 
its electron spin quantized in the magnetic field in such a way that the z component 
of spin angular momentum is either 1

2U or 21
2 U, corresponding to ms 5 61

2. Elec-
trons with spin 11

2 are deflected downward, and those with spin 21
2 are deflected 

upward. In the Stern–Gerlach experiment, 46 of a silver atom’s 47 electrons are in 
filled subshells with paired spins. Therefore, these 46 electrons have a net zero con-
tribution to both orbital and spin angular momentum for the atom. The angular 
momentum of the atom is due to only the 47th electron. This electron lies in the 5s 
subshell, so there is no contribution from orbital angular momentum. As a result, 
the silver atoms have angular momentum due to just the spin of one electron and 
behave in the same way in a nonuniform magnetic field as the hydrogen atoms in 
the Phipps–Taylor experiment.
 The Stern–Gerlach experiment provided two important results. First, it verified 
the concept of space quantization. Second, it showed that spin angular momen-
tum exists, even though this property was not recognized until four years after the 
experiments were performed.
 As mentioned earlier, there are eight quantum states corresponding to n 5 2 in 
the hydrogen atom, not four as found in Example 42.2. Each of the four states in 
Example 42.2 is actually two states because of the two possible values of ms. Table 
42.4 shows the quantum numbers corresponding to these eight states.

42.7 The Exclusion Principle and the Periodic Table
We have found that the state of a hydrogen atom is specified by four quantum num-
bers: n, ,, m,, and ms. As it turns out, the number of states available to other atoms 
may also be predicted by this same set of quantum numbers. In fact, these four 
quantum numbers can be used to describe all the electronic states of an atom, 
regardless of the number of electrons in its structure.
 For our discussion of atoms with many electrons, it is often easiest to assign the 
quantum numbers to the electrons in the atom as opposed to the entire atom. An 
obvious question that arises here is, “How many electrons can be in a particular 
quantum state?” Pauli answered this important question in 1925, in a statement 
known as the exclusion principle:

Quantum Numbers for the n 5 2 State of Hydrogen
      Number of States
n < m< ms Subshell Shell in Subshell

2 0 0 1
2 

2 0 0 21
2 

2s L 2

2 1 1 1
2

2 1 1 21
2

2 1 0 1
2

2 1 0 21
2 

2p L 6

2 1 21 1
2 

2 1 21 21
2 

TABLE 42.4

w

v

Pitfall Prevention 42.6
The Exclusion Principle Is More 
General
A more general form of the exclu-
sion principle, discussed in Chapter 
46, states that no two fermions can be 
in the same quantum state. Fermions 
are particles with half-integral spin 
(1

2, 32 , 52 , and so on).
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No two electrons can ever be in the same quantum state; therefore, no two 
electrons in the same atom can have the same set of quantum numbers.

If this principle were not valid, an atom could radiate energy until every electron in 
the atom is in the lowest possible energy state and therefore the chemical behavior 
of the elements would be grossly modified. Nature as we know it would not exist.
 In reality, we can view the electronic structure of complex atoms as a succession 
of filled levels increasing in energy. As a general rule, the order of filling of an 
atom’s subshells is as follows. Once a subshell is filled, the next electron goes into 
the lowest-energy vacant subshell. We can understand this behavior by recognizing 
that if the atom were not in the lowest energy state available to it, it would radiate 
energy until it reached this state.
 Before we discuss the electronic configuration of various elements, it is conve-
nient to define an orbital as the atomic state characterized by the quantum numbers 
n, ,, and m,. The exclusion principle tells us that only two electrons can be pres-
ent in any orbital. One of these electrons has a spin magnetic quantum number 
ms 5 11

2, and the other has ms 5 21
2. Because each orbital is limited to two elec-

trons, the number of electrons that can occupy the various shells is also limited.
 Table 42.5 shows the allowed quantum states for an atom up to n 5 3. The arrows 
pointing upward indicate an electron described by ms 5 11

2, and those pointing down-
ward indicate that ms 5 21

2. The n 5 1 shell can accommodate only two electrons 
because m, 5 0 means that only one orbital is allowed. (The three quantum numbers 
describing this orbital are n 5 1, , 5 0, and m, 5 0.) The n 5 2 shell has two subshells, 
one for , 5 0 and one for , 5 1. The , 5 0 subshell is limited to two electrons because 
m, 5 0. The , 5 1 subshell has three allowed orbitals, corresponding to m, 5 1, 0, and 
21. Because each orbital can accommodate two electrons, the , 5 1 subshell can hold 
six electrons. Therefore, the n 5 2 shell can contain eight electrons as shown in Table 
42.4. The n 5 3 shell has three subshells (, 5 0, 1, 2) and nine orbitals, accommodat-
ing up to 18 electrons. In general, each shell can accommodate up to 2n2 electrons.
 The exclusion principle can be illustrated by examining the electronic arrange-
ment in a few of the lighter atoms. The atomic number Z of any element is the 
number of protons in the nucleus of an atom of that element. A neutral atom of 
that element has Z electrons. Hydrogen (Z 5 1) has only one electron, which, in the 
ground state of the atom, can be described by either of two sets of quantum num-
bers n, ,, m,, ms: 1, 0, 0, 12 or 1, 0, 0, 21

2. This electronic configuration is often written 
1s1. The notation 1s refers to a state for which n 5 1 and , 5 0, and the superscript 
indicates that one electron is present in the s subshell.
 Helium (Z 5 2) has two electrons. In the ground state, their quantum numbers 
are 1, 0, 0, 1

2 and 1, 0, 0, 21
2. No other possible combinations of quantum numbers 

exist for this level, and we say that the K shell is filled. This electronic configuration 
is written 1s2.
 Lithium (Z 5 3) has three electrons. In the ground state, two of them are in the 
1s subshell. The third is in the 2s subshell because this subshell is slightly lower in 
energy than the 2p subshell.10 Hence, the electronic configuration for lithium is 
1s22s1.

Allowed Quantum States for an Atom Up to n 5 3

Shell n 1 2 3

Subshell , 0 0 1 0 1 2

Orbital m,
0 0 1 0 21 0 1 0 21 2 1 0 21 22

ms c T c T c T c T c T c T c T c T c T c T c T c T c T c T

TABLE 42.5

Wolfgang Pauli
Austrian Theoretical Physicist 
(1900–1958)
An extremely talented theoretician who made 
important contributions in many areas of 
modern physics, Pauli gained public recogni-
tion at the age of 21 with a masterful review 
article on relativity that is still considered one 
of the finest and most comprehensive intro-
ductions to the subject. His other major con-
tributions were the discovery of the exclusion 
principle, the explanation of the connection 
between particle spin and statistics, theories 
of relativistic quantum electrodynamics, the 
neutrino hypothesis, and the hypothesis of 
nuclear spin.
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10To a first approximation, energy depends only on the quantum number n, as we have discussed. Because of the 
effect of the electronic charge shielding the nuclear charge, however, energy depends on , also in multielectron 
atoms. We shall discuss these shielding effects in Section 42.8.
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 The electronic configurations of lithium and the next several elements are pro-
vided in Figure 42.18. The electronic configuration of beryllium (Z 5 4), with its 
four electrons, is 1s22s2, and boron (Z 5 5) has a configuration of 1s22s22p1. The 2p 
electron in boron may be described by any of the six equally probable sets of quan-
tum numbers listed in Table 42.4. In Figure 42.18, we show this electron in the left-
most 2p box with spin up, but it is equally likely to be in any 2p box with spin either 
up or down.
 Carbon (Z 5 6) has six electrons, giving rise to a question concerning how to 
assign the two 2p electrons. Do they go into the same orbital with paired spins (c T), 
or do they occupy different orbitals with unpaired spins (c c)? Experimental data 
show that the most stable configuration (that is, the one with the lowest energy) is 
the latter, in which the spins are unpaired. Hence, the two 2p electrons in carbon 
and the three 2p electrons in nitrogen (Z 5 7) have unpaired spins as Figure 42.18 
shows. The general rule that governs such situations, called Hund’s rule, states 
that

when an atom has orbitals of equal energy, the order in which they are filled 
by electrons is such that a maximum number of electrons have unpaired 
spins.

Some exceptions to this rule occur in elements having subshells that are close to 
being filled or half-filled.
 In 1871, long before quantum mechanics was developed, the Russian chemist 
Dmitri Mendeleev (1834–1907) made an early attempt at finding some order among 
the chemical elements. He was trying to organize the elements for the table of con-
tents of a book he was writing. He arranged the atoms in a table similar to that 
shown in Figure 42.19, according to their atomic masses and chemical similarities. 
The first table Mendeleev proposed contained many blank spaces, and he boldly 
stated that the gaps were there only because the elements had not yet been discov-
ered. By noting the columns in which some missing elements should be located, 
he was able to make rough predictions about their chemical properties. Within 20 
years of this announcement, most of these elements were indeed discovered.
 The elements in the periodic table (Fig. 42.19) are arranged so that all those in 
a column have similar chemical properties. For example, consider the elements in 
the last column, which are all gases at room temperature: He (helium), Ne (neon), 

Atom

Li

Be

B

C

N

O

F

Ne

1s 2s 2p
Electronic

configuration

1s22s1

1s22s2

1s22s22p1

1s22s22p2

1s22s22p3

1s22s22p4

1s22s22p5

1s22s22p6

Figure 42.18  The filling of elec-
tronic states must obey both the 
exclusion principle and Hund’s rule.
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Ar (argon), Kr (krypton), Xe (xenon), and Rn (radon). The outstanding character-
istic of all these elements is that they do not normally take part in chemical reac-
tions; that is, they do not readily join with other atoms to form molecules. They are 
therefore called inert gases or noble gases.
 We can partially understand this behavior by looking at the electronic configu-
rations in Figure 42.19. The chemical behavior of an element depends on the out-
ermost shell that contains electrons. The electronic configuration for helium is 
1s2, and the n 5 1 shell (which is the outermost shell because it is the only shell) 
is filled. Also, the energy of the atom in this configuration is considerably lower 
than the energy for the configuration in which an electron is in the next available 
level, the 2s subshell. Next, look at the electronic configuration for neon, 1s22s22p6. 
Again, the outermost shell (n 5 2 in this case) is filled and a wide gap in energy 
occurs between the filled 2p subshell and the next available one, the 3s subshell. 
Argon has the configuration 1s22s22p63s23p6. Here, it is only the 3p subshell that is 
filled, but again a wide gap in energy occurs between the filled 3p subshell and the 
next available one, the 3d subshell. This pattern continues through all the noble 
gases. Krypton has a filled 4p subshell, xenon a filled 5p subshell, and radon a filled 
6p subshell.
 The column to the left of the noble gases in the periodic table consists of a group 
of elements called the halogens: fluorine, chlorine, bromine, iodine, and astatine. At 
room temperature, fluorine and chlorine are gases, bromine is a liquid, and iodine 
and astatine are solids. In each of these atoms, the outer subshell is one electron 
short of being filled. As a result, the halogens are chemically very active, readily 
accepting an electron from another atom to form a closed shell. The halogens tend 
to form strong ionic bonds with atoms at the other side of the periodic table. (We 
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Figure 42.19  The periodic table of the elements is an organized tabular representation of the elements that shows their periodic chemical 
behavior. Elements in a given column have similar chemical behavior. This table shows the chemical symbol for the element, the atomic number, 
and the electron configuration. A more complete periodic table is available in Appendix C.
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shall discuss ionic bonds in Chapter 43.) In a halogen lightbulb, bromine or iodine 
atoms combine with tungsten atoms evaporated from the filament and return them 
to the filament, resulting in a longer-lasting lightbulb. In addition, the filament can 
be operated at a higher temperature than in ordinary lightbulbs, giving a brighter 
and whiter light.
 At the left side of the periodic table, the Group I elements consist of hydrogen 
and the alkali metals: lithium, sodium, potassium, rubidium, cesium, and francium. 
Each of these atoms contains one electron in a subshell outside of a closed sub-
shell. Therefore, these elements easily form positive ions because the lone electron 
is bound with a relatively low energy and is easily removed. Therefore, the alkali 
metal atoms are chemically active and form very strong bonds with halogen atoms. 
For example, table salt, NaCl, is a combination of an alkali metal and a halogen. 
Because the outer electron is weakly bound, pure alkali metals tend to be good 
electrical conductors. Because of their high chemical activity, however, they are not 
generally found in nature in pure form.
 It is interesting to plot ionization energy versus atomic number Z as in Figure 
42.20. Notice the pattern of DZ 5 2, 8, 8, 18, 18, 32 for the various peaks. This pat-
tern follows from the exclusion principle and helps explain why the elements repeat 
their chemical properties in groups. For example, the peaks at Z 5 2, 10, 18, and 
36 correspond to the noble gases helium, neon, argon, and krypton, respectively, 
which, as we have mentioned, all have filled outermost shells. These elements have 
relatively high ionization energies and similar chemical behavior.

42.8 More on Atomic Spectra: Visible and X-Ray
In Section 42.1, we discussed the observation and early interpretation of visible 
spectral lines from gases. These spectral lines have their origin in transitions 
between quantized atomic states. We shall investigate these transitions more deeply 
in these final three sections of this chapter.
 A modified energy-level diagram for hydrogen is shown in Figure 42.21. In this 
diagram, the allowed values of , for each shell are separated horizontally. Figure 
42.21 shows only those states up to , 5 2; the shells from n 5 4 upward would 
have more sets of states to the right, which are not shown. Transitions for which 
, does not change are very unlikely to occur and are called forbidden transitions. 
(Such transitions actually can occur, but their probability is very low relative to the 
probability of “allowed” transitions.) The various diagonal lines represent allowed 
transitions between stationary states. Whenever an atom makes a transition from a 
higher energy state to a lower one, a photon of light is emitted. The frequency of 
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this photon is f 5 DE/h, where DE is the energy difference between the two states 
and h is Planck’s constant. The selection rules for the allowed transitions are

 D, 5 61    and    Dm, 5 0, 61 (42.34)

 Because the orbital angular momentum of an atom changes when a photon is 
emitted or absorbed (that is, as a result of a transition between states) and because 
angular momentum of the isolated atom–photon system must be conserved, we 
conclude that the photon involved in the process must carry angular momentum. 
In fact, the photon has an angular momentum equivalent to that of a particle hav-
ing a spin of 1. Therefore, a photon has energy, linear momentum, and angular 
momentum.
 Recall from Equation 42.19 that the allowed energies for one-electron atoms and 
ions, such as hydrogen and He1, are

 En 5 2
k ee

2

2a0
aZ 2

n2 b 5 2
113.6 eV 2Z 2

n2  (42.35)

This equation was developed from the Bohr theory, but it serves as a good first 
approximation in quantum theory as well. For multielectron atoms, the positive 
nuclear charge Ze is largely shielded by the negative charge of the inner-shell elec-
trons. Therefore, the outer electrons interact with a net charge that is smaller than 
the nuclear charge. The expression for the allowed energies for multielectron 
atoms has the same form as Equation 42.35 with Z replaced by an effective atomic 
number Zeff :

 En 5 2
113.6 eV 2Z eff

2

n2  (42.36)

where Zeff depends on n and ,.

X-Ray Spectra

X-rays are emitted when high-energy electrons or any other charged particles bom-
bard a metal target. The x-ray spectrum typically consists of a broad continuous 
band containing a series of sharp lines as shown in Figure 42.22. In Section 34.6, 
we mentioned that an accelerated electric charge emits electromagnetic radiation. 
The x-rays in Figure 42.22 are the result of the slowing down of high-energy elec-
trons as they strike the target. It may take several interactions with the atoms of the 
target before the electron loses all its kinetic energy. The amount of kinetic energy 
lost in any given interaction can vary from zero up to the entire kinetic energy of 
the electron. Therefore, the wavelength of radiation from these interactions lies 
in a continuous range from some minimum value up to infinity. It is this general 
slowing down of the electrons that provides the continuous curve in Figure 42.22, 
which shows the cutoff of x-rays below a minimum wavelength value that depends 
on the kinetic energy of the incoming electrons. X-ray radiation with its origin 
in the slowing down of electrons is called bremsstrahlung, the German word for 
“braking radiation.”
 Extremely high-energy bremsstrahlung can be used for the treatment of cancer-
ous tissues. Figure 42.23 shows a machine that uses a linear accelerator to accelerate 
electrons up to 18 MeV and smash them into a tungsten target. The result is a beam 
of photons, up to a maximum energy of 18 MeV, which is actually in the gamma-ray 
range in Figure 34.13. This radiation is directed at the tumor in the patient.
 The discrete lines in Figure 42.22, called characteristic x-rays and discovered in 
1908, have a different origin. Their origin remained unexplained until the details 
of atomic structure were understood. The first step in the production of charac-
teristic x-rays occurs when a bombarding electron collides with a target atom. The 
electron must have sufficient energy to remove an inner-shell electron from the 
atom. The vacancy created in the shell is filled when an electron in a higher level 
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drops down into the level containing the vacancy. The time interval for that to hap-
pen is very short, less than 1029 s. This transition is accompanied by the emission 
of a photon whose energy equals the difference in energy between the two levels. 
Typically, the energy of such transitions is greater than 1 000 eV and the emitted 
x-ray photons have wavelengths in the range of 0.01 nm to 1 nm.
 Let’s assume the incoming electron has dislodged an atomic electron from the 
innermost shell, the K shell. If the vacancy is filled by an electron dropping from 
the next higher shell—the L shell—the photon emitted has an energy correspond-
ing to the Ka characteristic x-ray line on the curve of Figure 42.22. In this notation, 
K refers to the final level of the electron and the subscript a, as the first letter of the 
Greek alphabet, refers to the initial level as the first one above the final level. Figure 
42.24 shows this transition as well as others discussed below. If the vacancy in the K 
shell is filled by an electron dropping from the M shell, the Kb line in Figure 42.22 
is produced.
 Other characteristic x-ray lines are formed when electrons drop from upper lev-
els to vacancies other than those in the K shell. For example, L lines are produced 
when vacancies in the L shell are filled by electrons dropping from higher shells. 
An La line is produced as an electron drops from the M shell to the L shell, and an 
Lb line is produced by a transition from the N shell to the L shell.
 Although multielectron atoms cannot be analyzed exactly with either the Bohr 
model or the Schrödinger equation, we can apply Gauss’s law from Chapter 24 to 
make some surprisingly accurate estimates of expected x-ray energies and wave-
lengths. Consider an atom of atomic number Z in which one of the two electrons 
in the K shell has been ejected. Imagine drawing a gaussian sphere immediately 
inside the most probable radius of the L electrons. The electric field at the position 
of the L electrons is a combination of the fields created by the nucleus, the single K 
electron, the other L electrons, and the outer electrons. The wave functions of the 
outer electrons are such that the electrons have a very high probability of being far-
ther from the nucleus than the L electrons are. Therefore, the outer electrons are 
much more likely to be outside the gaussian surface than inside and, on average, do 
not contribute significantly to the electric field at the position of the L electrons. 
The effective charge inside the gaussian surface is the positive nuclear charge and 
one negative charge due to the single K electron. Ignoring the interactions between 
L electrons, a single L electron behaves as if it experiences an electric field due to a 
charge (Z 2 1)e enclosed by the gaussian surface. The nuclear charge is shielded by 
the electron in the K shell such that Zeff in Equation 42.36 is Z 2 1. For higher-level 
shells, the nuclear charge is shielded by electrons in all the inner shells.
 We can now use Equation 42.36 to estimate the energy associated with an elec-
tron in the L shell:

EL 5 2 1Z 2 1 2 2 13.6 eV
22

After the atom makes the transition, there are two electrons in the K shell. We can 
approximate the energy associated with one of these electrons as that of a one-
electron atom. (In reality, the nuclear charge is reduced somewhat by the negative 
charge of the other electron, but let’s ignore this effect.) Therefore,

 EK < 2Z 2(13.6 eV) (42.37)

As Example 42.5 shows, the energy of the atom with an electron in an M shell can 
be estimated in a similar fashion. Taking the energy difference between the initial 
and final levels, we can then calculate the energy and wavelength of the emitted 
photon.
 In 1914, Henry G. J. Moseley (1887–1915) plotted !1/l versus the Z values for 
a number of elements where l is the wavelength of the Ka line of each element. 
He found that the plot is a straight line as in Figure 42.25, which is consistent with 
rough calculations of the energy levels given by Equation 42.37. From this plot, 
Moseley determined the Z values of elements that had not yet been discovered and 
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produced a periodic table in excellent agreement with the known chemical proper-
ties of the elements. Until that experiment, atomic numbers had been merely place-
holders for the elements that appeared in the periodic table, the elements being 
ordered according to mass.

Quick Quiz 42.5  In an x-ray tube, as you increase the energy of the electrons 
striking the metal target, do the wavelengths of the characteristic x-rays 
(a) increase, (b) decrease, or (c) remain constant?

Quick Quiz 42.6  True or False: It is possible for an x-ray spectrum to show 
the continuous spectrum of x-rays without the presence of the characteristic 
x-rays.

Example 42.5 Estimating the Energy of an X-Ray

Estimate the energy of the characteristic x-ray emitted from a tungsten target when an electron drops from an M shell 
(n 5 3 state) to a vacancy in the K shell (n 5 1 state). The atomic number for tungsten is Z 5 74.

SOLUTION

Conceptualize  Imagine an accelerated electron striking a tungsten atom and ejecting an electron from the K shell. 
Subsequently, an electron in the M shell drops down to fill the vacancy and the energy difference between the states is 
emitted as an x-ray photon.

Categorize  We estimate the results using equations developed in this section, so we categorize this example as a substitu-
tion problem.

Find the energy of the emitted x-ray photon: hf 5 EM 2 EK < 26.4 3 103 eV 2 (27.4 3 104 eV)

< 6.8 3 104 eV 5 68 keV

Use Equation 42.36 and that nine electrons shield the 
nuclear charge (eight electrons in the n 5 2 state and 
one electron in the n 5 1 state) to estimate the energy 
of the M shell:

EM < 2
113.6 eV 2 174 2 9 22

13 22 < 26.4 3 103 eV

Use Equation 42.37 and Z 5 74 for tungsten to estimate 
the energy associated with the electron in the K shell:

EK < 2(74)2(13.6 eV) 5 27.4 3 104 eV

 Consultation of x-ray tables shows that the M–K transition energies in tungsten vary from 66.9 keV to 67.7 keV, where 
the range of energies is due to slightly different energy values for states of different ,. Therefore, our estimate differs 
from the midpoint of this experimentally measured range by approximately 1%.

42.9 Spontaneous and Stimulated Transitions
We have seen that an atom absorbs and emits electromagnetic radiation only at 
frequencies that correspond to the energy differences between allowed states. Let’s 
now examine more details of these processes. Consider an atom having the allowed 
energy levels labeled E1, E2, E3, . . . .When radiation is incident on the atom, only 
those photons whose energy hf matches the energy separation DE between two 
energy levels can be absorbed by the atom as represented in Active Figure 42.26 
on page 1280. This process is called stimulated absorption because the photon 
stimulates the atom to make the upward transition. At ordinary temperatures, most 
of the atoms in a sample are in the ground state. If a vessel containing many atoms 
of a gaseous element is illuminated with radiation of all possible photon frequen-
cies (that is, a continuous spectrum), only those photons having energy E2 2 E1, 
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E3 2 E1, E4 2 E1, and so on are absorbed by the atoms. As a result of this absorption, 
some of the atoms are raised to excited states.
 Once an atom is in an excited state, the excited atom can make a transition back 
to a lower energy level, emitting a photon in the process as in Active Figure 42.27. 
This process is known as spontaneous emission because it happens naturally, with-
out requiring an event to trigger the transition. Typically, an atom remains in an 
excited state for only about 1028 s.
 In addition to spontaneous emission, stimulated emission occurs. Suppose an 
atom is in an excited state E2 as in Active Figure 42.28. If the excited state is a 
metastable state—that is, if its lifetime is much longer than the typical 1028 s lifetime 
of excited states—the time interval until spontaneous emission occurs is relatively 
long. Let’s imagine that during that interval a photon of energy hf 5 E2 2 E1 is 
incident on the atom. One possibility is that the photon energy is sufficient for the 
photon to ionize the atom. Another possibility is that the interaction between the 
incoming photon and the atom causes the atom to return to the ground state11 and 
thereby emit a second photon with energy hf 5 E2 2 E1. In this process, the incident 
photon is not absorbed; therefore, after the stimulated emission, two photons with 
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identical energy exist: the incident photon and the emitted photon. The two are 
in phase and travel in the same direction, which is an important consideration in 
lasers, discussed next.

42.10 Lasers
In this section, we explore the nature of laser light and a variety of applications of 
lasers in our technological society. The primary properties of laser light that make 
it useful in these technological applications are the following:

• Laser light is coherent. The individual rays of light in a laser beam maintain a 
fixed phase relationship with one another.

• Laser light is monochromatic. Light in a laser beam has a very narrow range 
of wavelengths.

• Laser light has a small angle of divergence. The beam spreads out very little, 
even over large distances.

To understand the origin of these properties, let’s combine our knowledge of atomic 
energy levels from this chapter with some special requirements for the atoms that 
emit laser light.
 We have described how an incident photon can cause atomic energy transitions 
either upward (stimulated absorption) or downward (stimulated emission). The 
two processes are equally probable. When light is incident on a collection of atoms, 
a net absorption of energy usually occurs because when the system is in thermal 
equilibrium, many more atoms are in the ground state than in excited states. If 
the situation can be inverted so that more atoms are in an excited state than in the 
ground state, however, a net emission of photons can result. Such a condition is 
called population inversion.
 Population inversion is, in fact, the fundamental principle involved in the opera-
tion of a laser (an acronym for light amplification by stimulated emission of radia-
tion). The full name indicates one of the requirements for laser light: to achieve 
laser action, the process of stimulated emission must occur.
 Suppose an atom is in the excited state E2 as in Active Figure 42.28 and a pho-
ton with energy hf 5 E2 2 E1 is incident on it. As described in Section 42.9, the 
incoming photon can stimulate the excited atom to return to the ground state and 
thereby emit a second photon having the same energy hf and traveling in the same 
direction. The incident photon is not absorbed, so after the stimulated emission, 
there are two identical photons: the incident photon and the emitted photon. The 
emitted photon is in phase with the incident photon. These photons can stimulate 
other atoms to emit photons in a chain of similar processes. The many photons pro-
duced in this fashion are the source of the intense, coherent light in a laser.
 For the stimulated emission to result in laser light, there must be a buildup of 
photons in the system. The following three conditions must be satisfied to achieve 
this buildup:

• The system must be in a state of population inversion: there must be more 
atoms in an excited state than in the ground state. That must be true because 
the number of photons emitted must be greater than the number absorbed.

• The excited state of the system must be a metastable state, meaning that its life-
time must be long compared with the usually short lifetimes of excited states, 
which are typically 1028 s. In this case, the population inversion can be estab-
lished and stimulated emission is likely to occur before spontaneous emission.

• The emitted photons must be confined in the system long enough to enable 
them to stimulate further emission from other excited atoms. That is 
achieved by using reflecting mirrors at the ends of the system. One end is 
made totally reflecting, and the other is partially reflecting. A fraction of the 
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light intensity passes through the partially reflecting end, forming the beam 
of laser light (Fig. 42.29).

 One device that exhibits stimulated emission of radiation is the helium–neon gas 
laser. Figure 42.30 is an energy-level diagram for the neon atom in this system. The 
mixture of helium and neon is confined to a glass tube that is sealed at the ends 
by mirrors. A voltage applied across the tube causes electrons to sweep through 
the tube, colliding with the atoms of the gases and raising them into excited states. 
Neon atoms are excited to state E3* through this process (the asterisk indicates a 
metastable state) and also as a result of collisions with excited helium atoms. Stimu-
lated emission occurs, causing neon atoms to make transitions to state E2. Neigh-
boring excited atoms are also stimulated. The result is the production of coherent 
light at a wavelength of 632.8 nm.

Applications

Since the development of the first laser in 1960, tremendous growth has occurred 
in laser technology. Lasers that cover wavelengths in the infrared, visible, and ultra-
violet regions are now available. Applications include surgical “welding” of detached 
retinas, precision surveying and length measurement, precision cutting of metals 
and other materials (such as the fabric in Fig. 42.31), and telephone communica-
tion along optical fibers. These and other applications are possible because of the 
unique characteristics of laser light. In addition to being highly monochromatic, 
laser light is also highly directional and can be sharply focused to produce regions 
of extremely intense light energy (with energy densities 1012 times the density in the 
flame of a typical cutting torch).
 Lasers are used in precision long-range distance measurement (range finding). 
In recent years, it has become important in astronomy and geophysics to measure 
as precisely as possible the distances from various points on the surface of the Earth 
to a point on the Moon’s surface. To facilitate these measurements, the Apollo astro-
nauts set up a 0.5-m square of reflector prisms on the Moon, which enables laser 
pulses directed from an Earth-based station to be retroreflected to the same station 
(see Fig. 35.8a). Using the known speed of light and the measured round-trip travel 
time of a laser pulse, the Earth–Moon distance can be determined to a precision of 
better than 10 cm.
 Because various laser wavelengths can be absorbed in specific biological tis-
sues, lasers have a number of medical applications. For example, certain laser pro-
cedures have greatly reduced blindness in patients with glaucoma and diabetes. 
Glaucoma is a widespread eye condition characterized by a high fluid pressure in 
the eye, a condition that can lead to destruction of the optic nerve. A simple laser 
operation (iridectomy) can “burn” open a tiny hole in a clogged membrane, reliev-
ing the destructive pressure. A serious side effect of diabetes is neovascularization, 
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the proliferation of weak blood vessels, which often leak blood. When neovascular-
ization occurs in the retina, vision deteriorates (diabetic retinopathy) and finally 
is destroyed. Today, it is possible to direct the green light from an argon ion laser 
through the clear eye lens and eye fluid, focus on the retina edges, and photoco-
agulate the leaky vessels. Even people who have only minor vision defects such as 
nearsightedness are benefiting from the use of lasers to reshape the cornea, chang-
ing its focal length and reducing the need for eyeglasses.
 Laser surgery is now an everyday occurrence at hospitals and medical clinics 
around the world. Infrared light at 10 mm from a carbon dioxide laser can cut 
through muscle tissue, primarily by vaporizing the water contained in cellular 
material. Laser power of approximately 100 W is required in this technique. The 
advantage of the “laser knife” over conventional methods is that laser radiation cuts 
tissue and coagulates blood at the same time, leading to a substantial reduction in 
blood loss. In addition, the technique virtually eliminates cell migration, an impor-
tant consideration when tumors are being removed.
 A laser beam can be trapped in fine optical fiber light guides (endoscopes) by 
means of total internal reflection. An endoscope can be introduced through natu-
ral orifices, conducted around internal organs, and directed to specific interior 
body locations, eliminating the need for invasive surgery. For example, bleeding 
in the gastrointestinal tract can be optically cauterized by endoscopes inserted 
through the patient’s mouth.
 In biological and medical research, it is often important to isolate and collect 
unusual cells for study and growth. A laser cell separator exploits the tagging of 
specific cells with fluorescent dyes. All cells are then dropped from a tiny charged 
nozzle and laser-scanned for the dye tag. If triggered by the correct light-emitting 
tag, a small voltage applied to parallel plates deflects the falling electrically charged 
cell into a collection beaker.
 An exciting area of research and technological applications arose in the 1990s 
with the development of laser trapping of atoms. One scheme, called optical molasses 
and developed by Steven Chu of Stanford University and his colleagues, involves 
focusing six laser beams onto a small region in which atoms are to be trapped. Each 
pair of lasers is along one of the x, y, and z axes and emits light in opposite direc-
tions (Fig. 42.32). The frequency of the laser light is tuned to be slightly below the 
absorption frequency of the subject atom. Imagine that an atom has been placed 
into the trap region and moves along the positive x axis toward the laser that is 
emitting light toward it (the rightmost laser in Fig. 42.32). Because the atom is mov-
ing, the light from the laser appears Doppler-shifted upward in frequency in the 
reference frame of the atom. Therefore, a match between the Doppler-shifted laser 
frequency and the absorption frequency of the atom exists and the atom absorbs 
photons.12 The momentum carried by these photons results in the atom being 
pushed back to the center of the trap. By incorporating six lasers, the atoms are 
pushed back into the trap regardless of which way they move along any axis.
 In 1986, Chu developed optical tweezers, a device that uses a single tightly focused 
laser beam to trap and manipulate small particles. In combination with micro-
scopes, optical tweezers have opened up many new possibilities for biologists. Opti-
cal tweezers have been used to manipulate live bacteria without damage, move 
chromosomes within a cell nucleus, and measure the elastic properties of a single 
DNA molecule. Chu shared the 1997 Nobel Prize in Physics with two of his col-
leagues for the development of the techniques of optical trapping.
 An extension of laser trapping, laser cooling, is possible because the normal high 
speeds of the atoms are reduced when they are restricted to the region of the trap. 
As a result, the temperature of the collection of atoms can be reduced to a few 
microkelvins. The technique of laser cooling allows scientists to study the behavior 
of atoms at extremely low temperatures (Fig. 42.33).

cS
cS

cS
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cS

cS

xz

y

Figure 42.32  An optical trap for 
atoms is formed at the intersection 
point of six counterpropagating 
laser beams along mutually perpen-
dicular axes.

12The laser light traveling in the same direction as the atom is Doppler-shifted further downward in frequency, so 
there is no absorption. Therefore, the atom is not pushed out of the trap by the diametrically opposed laser.

Figure 42.33  A staff member of 
the National Institute of Standards 
and Technology views a sample of 
trapped sodium atoms cooled to a 
temperature of less than 1 mK.

The orange dot is the sample 
of trapped sodium atoms.
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Summary

The wavelengths of spectral lines from 
hydrogen, called the Balmer series, can be 
described by the equation

1
l

5 RHa
1
22 2

1
n2b n 5 3, 4, 5, c  (42.1)

where RH is the Rydberg constant. The 
spectral lines corresponding to values of 
n from 3 to 6 are in the visible range of 
the electromagnetic spectrum. Values of 
n higher than 6 correspond to spectral 
lines in the ultraviolet region of the 
spectrum.

The Bohr model of the atom is successful in describing some details 
of the spectra of atomic hydrogen and hydrogen-like ions. One 
basic assumption of the model is that the electron can exist only in 
discrete orbits such that the angular momentum of the electron is 
an integral multiple of h/2p 5 ". When we assume circular orbits 
and a simple Coulomb attraction between electron and proton, the 
energies of the quantum states for hydrogen are calculated to be

 En 5 2
k e e

2

2a0
a 1

n2b n 5 1, 2, 3, c  (42.13)

where n is an integer called the quantum number, ke is the Coulomb 
constant, e is the electronic charge, and a0 5 0.052 9 nm is the Bohr 
radius.
 If the electron in a hydrogen atom makes a transition from an 
orbit whose quantum number is ni to one whose quantum number 
is nf, where nf , ni, a photon is emitted by the atom. The frequency 
of this photon is

 f 5
k e e

2

2a0h
a 1

n f
2 2

1
n i

2b  (42.15)

Concepts and Principles

Quantum mechanics can be applied to the hydrogen atom by the use 
of the potential energy function U(r) 5 2kee2/r in the Schrödinger 
equation. The solution to this equation yields wave functions for 
allowed states and allowed energies:

En 5 2ak e e
2

2a0
b 1

n2 5 2
13.606 eV

n2  n 5 1, 2, 3, c  (42.21)

where n is the principal quantum number. The allowed wave func-
tions depend on three quantum numbers: n, ,, and m,, where , is the 
orbital quantum number and m, is the orbital magnetic quantum 
number. The restrictions on the quantum numbers are

 n 5 1, 2, 3, . . .

 , 5 0, 1, 2, . . . , n 2 1

 m, 5 2,, 2, 1 1, . . . , 2 1, ,

All states having the same principal quantum number n form a shell, 
identified by the letters K, L, M, . . . (corresponding to n 5 1, 2, 3, . . .). 
All states having the same values of n and , form a subshell, desig-
nated by the letters s, p, d, f, . . . (corresponding to , 5 0, 1, 2, 3, . . .).

An atom in a state characterized by a 
specific value of n can have the following 
values of L, the magnitude of the atom’s 
orbital angular momentum L

S
:

 L 5 ", 1 , 1 1 2 U
 , 5 0, 1, 2, . . . , n 2 1 (42.27)

The allowed values of the projection of L
S

 
along the z axis are

 Lz 5 m," (42.28)

Only discrete values of Lz are allowed as 
determined by the restrictions on m,. 
This quantization of Lz is referred to as 
space quantization.
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wavelength of the photon the atom emits in this process? 
(a) 2.28 3 1026 m (b) 8.20 3 1027 m (c) 3.64 3 1027 m 
(d) 1.28 3 1026 m (e) 5.92 3 1025 m

 4. Consider the n 5 3 energy level in a hydrogen atom. How 
many electrons can be placed in this level? (a) 1 (b) 2 (c) 8 
(d) 9 (e) 18

 5. Which of the following is not one of the basic assump-
tions of the Bohr model of hydrogen? (a) Only certain 
electron orbits are stable and allowed. (b) The electron 
moves in circular orbits about the proton under the influ-
ence of the Coulomb force. (c) The charge on the electron 
is quantized. (d) Radiation is emitted by the atom when 

 1. When an electron collides with an atom, it can transfer all 
or some of its energy to the atom. A hydrogen atom is in its 
ground state. Incident on the atom are several electrons, 
each having a kinetic energy of 10.5 eV. What is the result? 
(a) The atom can be excited to a higher allowed state. 
(b) The atom is ionized. (c) The electrons pass by the atom 
without interaction.

 2. (a) Can a hydrogen atom in the ground state absorb a pho-
ton of energy less than 13.6 eV? (b) Can this atom absorb a 
photon of energy greater than 13.6 eV?

 3. An electron in the n 5 5 energy level of hydrogen under-
goes a transition to the n 5 3 energy level. What is the 

The exclusion principle states that no two electrons in 
an atom can be in the same quantum state. In other 
words, no two electrons can have the same set of quan-
tum numbers n, ,, m,, and ms. Using this principle, the 
electronic configurations of the elements can be deter-
mined. This principle serves as a basis for understand-
ing atomic structure and the chemical properties of the 
elements.

The magnetic moment mSspin associated with the spin 
angular momentum of an electron is

 m
S

spin 5 2
e

me
 S
S

 (42.32)

The z component of mSspin can have the values

 mspin,z 5 6
e U

2me
 (42.33)

The electron has an intrinsic angular momentum called the spin angular momentum. Electron spin can be described 
by a single quantum number s 5 1

2. To describe a quantum state completely, it is necessary to include a fourth quantum 
number ms, called the spin magnetic quantum number. This quantum number can have only two values, 61

2. The mag-
nitude of the spin angular momentum is

S 5
"3
2

 U  (42.30)

and the z component of S
S

 is

 Sz 5 msU 5 61
2U  (42.31)

That is, the spin angular momentum is also quantized in space, as specified by the spin magnetic quantum number 
ms 5 61

2.

The x-ray spectrum of a metal target consists of a set 
of sharp characteristic lines superimposed on a broad 
continuous spectrum. Bremsstrahlung is x-radiation 
with its origin in the slowing down of high-energy 
electrons as they encounter the target. Characteristic 
x-rays are emitted by atoms when an electron under-
goes a transition from an outer shell to a vacancy in 
an inner shell.

Atomic transitions can be described with three processes: 
stimulated absorption, in which an incoming photon 
raises the atom to a higher energy state; spontaneous 
emission, in which the atom makes a transition to a lower 
energy state, emitting a photon; and stimulated emission, 
in which an incident photon causes an excited atom to 
make a downward transition, emitting a photon identical 
to the incident one.

Objective Questions denotes answer available in Student 
Solutions Manual/Study Guide
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 11. (i) Rank the following transitions for a hydrogen atom 
from the transition with the greatest gain in energy to 
that with the greatest loss, showing any cases of equal-
ity. (a) ni 5 2; nf 5 5 (b) ni 5 5; nf 5 3 (c) ni 5 7; nf 5 4 
(d) ni 5 4; nf 5 7 (ii) Rank the same transitions as in part 
(i) according to the wavelength of the photon absorbed or 
emitted by an otherwise isolated atom from greatest wave-
length to smallest.

 12. Let 2E represent the energy of a hydrogen atom. (i) What 
is the kinetic energy of the electron? (a) 2E (b) E (c) 0 
(d) 2E (e) 22E (ii) What is the potential energy of the 
atom? Choose from the same possibilities (a) through (e).

 13. (a) In the hydrogen atom, can the quantum number n 
increase without limit? (b) Can the frequency of possible 
discrete lines in the spectrum of hydrogen increase with-
out limit? (c) Can the wavelength of possible discrete lines 
in the spectrum of hydrogen increase without limit?

 14. Consider the quantum numbers (a) n, (b) ,, (c) m,, and 
(d) ms. (i) Which of these quantum numbers are fractional 
as opposed to being integers? (ii) Which can sometimes 
attain negative values? (iii) Which can be zero?

 15. (i) What is the principal quantum number of the initial 
state of an atom as it emits an Mb line in an x-ray spectrum? 
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (ii) What is the principal quan-
tum number of the final state for this transition? Choose 
from the same possibilities as in part (i).

the electron moves from a higher energy state to a lower 
energy state. (e) The angular momentum associated with 
the electron’s orbital motion is quantized.

 6. When an atom emits a photon, what happens? (a) One of 
its electrons leaves the atom. (b) The atom moves to a state 
of higher energy. (c) The atom moves to a state of lower 
energy. (d) One of its electrons collides with another par-
ticle. (e) None of those events occur.

 7. The periodic table is based on which of the following prin-
ciples? (a) The uncertainty principle. (b) All electrons in 
an atom must have the same set of quantum numbers. 
(c) Energy is conserved in all interactions. (d) All electrons 
in an atom are in orbitals having the same energy. (e) No 
two electrons in an atom can have the same set of quantum 
numbers.

 8. If an electron in an atom has the quantum numbers n 5 3, 
, 5 2, m, 5 1, and ms 5 1

2, what state is it in? (a) 3s (b) 3p 
(c) 3d (d) 4d (e) 3f

 9. Which of the following electronic configurations are not 
allowed for an atom? Choose all correct answers. (a) 2s22p6 
(b) 3s23p7 (c) 3d74s2 (d) 3d104s24p6 (e) 1s22s22d1

 10. What can be concluded about a hydrogen atom with its 
electron in the d state? (a) The atom is ionized. (b) The 
orbital quantum number is , 5 1. (c) The principal quan-
tum number is n 5 2. (d) The atom is in its ground state. 
(e) The orbital angular momentum of the atom is not 
zero.

Conceptual Questions denotes answer available in Student 
Solutions Manual/Study Guide

 1. Suppose the electron in the hydrogen atom obeyed clas-
sical mechanics rather than quantum mechanics. Why 
should a gas of such hypothetical atoms emit a continuous 
spectrum rather than the observed line spectrum?

 2. (a) According to Bohr’s model of the hydrogen atom, what 
is the uncertainty in the radial coordinate of the electron? 
(b) What is the uncertainty in the radial component of the 
velocity of the electron? (c) In what way does the model 
violate the uncertainty principle?

 3. Why are three quantum numbers needed to describe the 
state of a one-electron atom (ignoring spin)?

 4. Compare the Bohr theory and the Schrödinger treatment 
of the hydrogen atom, specifically commenting on their 
treatment of total energy and orbital angular momentum 
of the atom.

 5. Could the Stern–Gerlach experiment be performed with 
ions rather than neutral atoms? Explain.

 6. Why is a nonuniform magnetic field used in the Stern– 
Gerlach experiment?

 7. Discuss some consequences of the exclusion principle.

 8. An energy of about 21 eV is required to excite an electron 
in a helium atom from the 1s state to the 2s state. The same 
transition for the He1 ion requires approximately twice as 
much energy. Explain.

 9. Why do lithium, potassium, and sodium exhibit similar 
chemical properties?

 10. It is easy to understand how two electrons (one spin up, 
one spin down) fill the n 5 1 or K shell for a helium atom. 
How is it possible that eight more electrons are allowed in 
the n 5 2 shell, filling the K and L shells for a neon atom?

 11. Why is stimulated emission so important in the operation 
of a laser?

 12. Does the intensity of light from a laser fall off as 1/r 2? 
Explain.
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series? (c) Could this wavelength be associated with the 
Balmer series?

Section 42.2  Early Models of the Atom

 6. According to classical physics, a charge e moving with an 
acceleration a radiates energy at a rate

dE
dt

5 2
1

6pP0
  

e 2a 2

c 3

  (a) Show that an electron in a classical hydrogen atom (see 
Fig. 42.5) spirals into the nucleus at a rate

dr
dt

5 2
e4

12p 2P0
2me

2c 3 a 1
r 2b

  (b) Find the time interval over which the electron reaches 
r 5 0, starting from r0 5 2.00 3 10210 m.

 7. Review. In the Rutherford scattering experiment, 4.00-MeV 
alpha particles scatter off gold nuclei (containing 79 pro-
tons and 118 neutrons). Assume a particular alpha par-
ticle moves directly toward the gold nucleus and scatters 
backward at 180°, and that the gold nucleus remains fixed 
throughout the entire process. Determine (a) the distance 
of closest approach of the alpha particle to the gold nucleus 
and (b) the maximum force exerted on the alpha particle.

Section 42.3  Bohr’s Model of the Hydrogen Atom

Note: In this section, unless otherwise indicated, assume 
the hydrogen atom is treated with the Bohr model.

 8. What is the energy of a photon that, when absorbed by a 
hydrogen atom, could cause an electronic transition from 
(a) the n 5 2 state to the n 5 5 state and (b) the n 5 4 state 
to the n 5 6 state?

 9. A photon is emitted when a hydrogen atom undergoes a 
transition from the n 5 5 state to the n 5 3 state. Calculate 

Section 42.1  Atomic Spectra of Gases

 1. The wavelengths of the Lyman series for hydrogen are 
given by

1
l

5 RHa1 2
1
n2b n 5 2, 3, 4, c

  (a) Calculate the wavelengths of the first three lines in this 
series. (b) Identify the region of the electromagnetic spec-
trum in which these lines appear.

 2. The wavelengths of the Paschen series for hydrogen are 
given by

1
l

5 RHa 1
32 2

1
n2b n 5 4, 5, 6, c

  (a) Calculate the wavelengths of the first three lines in this 
series. (b) Identify the region of the electromagnetic spec-
trum in which these lines appear.

 3. An isolated atom of a certain element emits light of wave-
length 520 nm when the atom falls from its fifth excited 
state into its second excited state. The atom emits a photon 
of wavelength 410 nm when it drops from its sixth excited 
state into its second excited state. Find the wavelength of 
the light radiated when the atom makes a transition from 
its sixth to its fifth excited state.

 4.  An isolated atom of a certain element emits light 
of wavelength lm1 when the atom falls from its state with 
quantum number m into its ground state of quantum num-
ber 1. The atom emits a photon of wavelength ln1 when the 
atom falls from its state with quantum number n into its 
ground state. (a) Find the wavelength of the light radiated 
when the atom makes a transition from the m state to the 
n state. (b) Show that kmn 5 ukm1 2 kn1u, where kij 5 2p/lij is 
the wave number of the photon. This problem exemplifies 
the Ritz combination principle, an empirical rule formulated 
in 1908.

 5. (a) What value of ni is associated with the 94.96-nm spec-
tral line in the Lyman series of hydrogen? (b) What If? 
Could this wavelength be associated with the Paschen 

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

denotes Master It tutorial available in Enhanced WebAssign

denotes guided problem

denotes “paired problems” that develop reasoning with 
symbols and numerical values

 The problems found in this chapter may be assigned 
online in Enhanced WebAssign
1. denotes straightforward problem; 2. denotes intermediate problem; 
3. denotes challenging problem 
1.  full solution available in the Student Solutions Manual/Study Guide

1.  denotes problems most often assigned in Enhanced WebAssign; 
these provide students with targeted feedback and either a Master It 
tutorial or a Watch It solution video.

shaded

Problems
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 16.  An electron is in the nth Bohr orbit of the hydrogen 
atom. (a) Show that the period of the electron is T 5 n3t0 
and determine the numerical value of t0. (b) On average, 
an electron remains in the n 5 2 orbit for approximately 
10 ms before it jumps down to the n 5 1 (ground-state) 
orbit. How many revolutions does the electron make in the 
excited state? (c) Define the period of one revolution as an 
electron year, analogous to an Earth year being the period 
of the Earth’s motion around the Sun. Explain whether we 
should think of the electron in the n 5 2 orbit as “living for 
a long time.”

 17. (a) Construct an energy-level diagram for the He1 ion, for 
which Z 5 2, using the Bohr model. (b) What is the ioniza-
tion energy for He1?

Section 42.4  The Quantum Model of the Hydrogen Atom

 18. A general expression for the energy levels of one-electron 
atoms and ions is

En 5 2
mk e

2q1
2q2

2

2U2n2

  Here m is the reduced mass of the atom, given by m 5 
m1m2/(m1 1 m2), where m1 is the mass of the electron and 
m2 is the mass of the nucleus; ke is the Coulomb constant; 
and q1 and q2 are the charges of the electron and the 
nucleus, respectively. The wavelength for the n 5 3 to n 5 
2 transition of the hydrogen atom is 656.3 nm (visible red 
light). What are the wavelengths for this same transition in 
(a) positronium, which consists of an electron and a posi-
tron, and (b) singly ionized helium? Note: A positron is a 
positively charged electron.

 19. Atoms of the same element but with different numbers 
of neutrons in the nucleus are called isotopes. Ordinary 
hydrogen gas is a mixture of two isotopes containing either 
one- or two-particle nuclei. These isotopes are hydrogen-1, 
with a proton nucleus, and hydrogen-2, called deuterium, 
with a deuteron nucleus. A deuteron is one proton and one 
neutron bound together. Hydrogen-1 and deuterium have 
identical chemical properties, but they can be separated 
via an ultracentrifuge or by other methods. Their emission 
spectra show lines of the same colors at very slightly dif-
ferent wavelengths. (a) Use the equation given in Problem 
18 to show that the difference in wavelength between the 
hydrogen-1 and deuterium spectral lines associated with a 
particular electron transition is given by

lH 2 lD 5 a1 2
mH

mD
blH

  (b) Find the wavelength difference for the Balmer alpha 
line of hydrogen, with wavelength 656.3 nm, emitted by an 
atom making a transition from an n 5 3 state to an n 5 2 
state. Harold Urey observed this wavelength difference in 
1931 and so confirmed his discovery of deuterium.

(a) the energy (in electron volts), (b) the wavelength, and 
(c) the frequency of the emitted photon.

 10. The Balmer series for the hydrogen atom corresponds 
to electronic transitions that terminate in the state with 
quantum number n 5 2 as shown in Figure P42.10. Con-
sider the photon of longest wavelength corresponding to 
a transition shown in the figure. Determine (a) its energy 
and (b) its wavelength. Consider the spectral line of short-
est wavelength corresponding to a transition shown in the 
figure. Find (c) its photon energy and (d) its wavelength. 
(e) What is the shortest possible wavelength in the Balmer 
series?

5
4
3

2
Balmer
series
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Figure P42.10

 11. For a hydrogen atom in its ground state, compute (a) the 
orbital speed of the electron, (b) the kinetic energy of the 
electron, and (c) the electric potential energy of the atom.

 12.  A monochromatic beam of light is absorbed by a col-
lection of ground-state hydrogen atoms in such a way that 
six different wavelengths are observed when the hydrogen 
relaxes back to the ground state. (a) What is the wavelength 
of the incident beam? Explain the steps in your solution. 
(b) What is the longest wavelength in the emission spec-
trum of these atoms? (c) To what portion of the electro-
magnetic spectrum and (d) to what series does it belong? 
(e) What is the shortest wavelength? (f) To what portion of 
the electromagnetic spectrum and (g) to what series does 
it belong?

 13. A hydrogen atom is in its second excited state, correspond-
ing to n 5 3. Find (a) the radius of the electron’s Bohr orbit 
and (b) the de Broglie wavelength of the electron in this 
orbit.

 14. A hydrogen atom is in its first excited state (n 5 2). Calcu-
late (a) the radius of the orbit, (b) the linear momentum 
of the electron, (c) the angular momentum of the elec-
tron, (d) the kinetic energy of the electron, (e) the poten-
tial energy of the system, and (f) the total energy of the 
system.

 15. A photon with energy 2.28 eV is absorbed by a hydrogen 
atom. Find (a) the minimum n for a hydrogen atom that 
can be ionized by such a photon and (b) the speed of the 
electron released from the state in part (a) when it is far 
from the nucleus.
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 25. In an experiment, a large number of electrons are fired 
at a sample of neutral hydrogen atoms and observations 
are made of how the incident particles scatter. The elec-
tron in the ground state of a hydrogen atom is found to be 
momentarily at a distance a0/2 from the nucleus in 1 000 
of the observations. In this set of trials, how many times 
is the atomic electron observed at a distance 2a0 from the 
nucleus?

Section 42.6  Physical Interpretation of the Quantum Numbers

 26. List the possible sets of quantum numbers for the hydro-
gen atom associated with (a) the 3d subshell and (b) the 3p 
subshell.

 27. Calculate the magnitude of the orbital angular momentum 
for a hydrogen atom in (a) the 4d state and (b) the 6f state.

 28. Find all possible values of (a) L, (b) Lz, and (c) u for a 
hydrogen atom in a 3d state.

 29. An electron in a sodium atom is in the N shell. Deter-
mine the maximum value the z component of its angular 
momentum could have.

 30. How many sets of quantum numbers are possible for a 
hydrogen atom for which (a) n 5 1, (b) n 5 2, (c) n 5 3, 
(d) n 5 4, and (e) n 5 5?

 31. A hydrogen atom is in its fifth excited state, with princi-
pal quantum number 6. The atom emits a photon with a 
wavelength of 1 090 nm. Determine the maximum possible 
magnitude of the orbital angular momentum of the atom 
after emission.

 32.  (a) Find the mass density of a proton, modeling it as 
a solid sphere of radius 1.00 3 10215 m. (b) What If? Con-
sider a classical model of an electron as a uniform solid 
sphere with the same density as the proton. Find its radius. 
(c) Imagine that this electron possesses spin angular 
momentum Iv 5 "/2 because of classical rotation about 
the z axis. Determine the speed of a point on the equator 
of the electron. (d) State how this speed compares with the 
speed of light.

 33.  The r2 meson has a charge of 2e, a spin quantum 
number of 1, and a mass 1 507 times that of the electron. 
The possible values for its spin magnetic quantum number 
are 21, 0, and 1. What If? Imagine that the electrons in 
atoms are replaced by r2 mesons. List the possible sets of 
quantum numbers for r2 mesons in the 3d subshell.

 34. Why is the following situation impossible? A photon of wave-
length 88.0 nm strikes a clean aluminum surface, ejecting 
a photoelectron. The photoelectron then strikes a hydro-
gen atom in its ground state, transferring energy to it and 
exciting the atom to a higher quantum state.

Section 42.7 The Exclusion Principle and the Periodic Table

 35. (a) Write out the electronic configuration of the ground 
state for nitrogen (Z 5 7). (b) Write out the values for the 

 20.   An electron of momentum p is at a distance r 
from a stationary proton. The electron has kinetic energy 
K 5 p2/2me. The atom has potential energy U 5 2kee2/r 
and total energy E 5 K 1 U. If the electron is bound to 
the proton to form a hydrogen atom, its average posi-
tion is at the proton but the uncertainty in its position is 
approximately equal to the radius r of its orbit. The elec-
tron’s average vector momentum is zero, but its average 
squared momentum is approximately equal to the squared 
uncertainty in its momentum as given by the uncertainty 
principle. Treating the atom as a one-dimensional system, 
(a) estimate the uncertainty in the electron’s momentum 
in terms of r. Estimate the electron’s (b) kinetic energy and 
(c) total energy in terms of r. The actual value of r is the 
one that minimizes the total energy, resulting in a stable atom. 
Find (d) that value of r and (e) the resulting total energy. 
(f) State how your answers compare with the predictions of 
the Bohr theory.

Section 42.5  The Wave Functions for Hydrogen

 21. Plot the wave function c1s(r) versus r (see Eq. 42.22) and 
the radial probability density function P1s(r) versus r (see 
Eq. 42.25) for hydrogen. Let r range from 0 to 1.5a0, where 
a0 is the Bohr radius.

 22. The ground-state wave function for the electron in a hydro-
gen atom is

c1s 1r 2 5
1

"pa 0
3
 e2r/a0

  where r is the radial coordinate of the electron and a0 is 
the Bohr radius. (a) Show that the wave function as given 
is normalized. (b) Find the probability of locating the elec-
tron between r1 5 a0/2 and r2 5 3a0/2.

 23.  The wave function for an electron in the 2p state of 
hydrogen is

c2p 5
1

!3 12a 0 23/2   
r

a 0
 e2r/2a0

  What is the most likely distance from the nucleus to find 
an electron in the 2p state?

 24.  For a spherically symmetric state of a hydrogen atom, 
the Schrödinger equation in spherical coordinates is

2
U2

2me
ad 2c

dr 2 1
2
r
  

dc

dr
b 2

k ee
2

r
 c 5 E c

  (a) Show that the 1s wave function for an electron in 
hydrogen,

c1s 1r 2 5
1

"pa 0
3
 e2r/a0

  satisfies the Schrödinger equation. (b) What is the energy 
of the atom for this state?
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Section 42.8  More on Atomic Spectra: Visible and X-Ray

 43. What minimum accelerating voltage would be required to 
produce an x-ray with a wavelength of 70.0 pm?

 44. A tungsten target is struck by electrons that have been accel-
erated from rest through a 40.0-keV potential difference. 
Find the shortest wavelength of the radiation emitted.

 45. A bismuth target is struck by electrons, and x-rays are emit-
ted. Estimate (a) the M- to L-shell transitional energy for 
bismuth and (b) the wavelength of the x-ray emitted when 
an electron falls from the M shell to the L shell.

 46.  The 3p level of sodium has an energy of 23.0 eV, and 
the 3d level has an energy of 21.5 eV. (a) Determine Zeff for 
each of these states. (b) Explain the difference.

 47. (a) Determine the possible values of the quantum numbers 
, and m, for the He1 ion in the state corresponding to n 5 
3. (b) What is the energy of this state?

 48. The K series of the discrete x-ray spectrum of tungsten 
contains wavelengths of 0.018 5 nm, 0.020 9 nm, and 
0.021 5 nm. The K-shell ionization energy is 69.5 keV. 
(a) Determine the ionization energies of the L, M, and N 
shells. (b) Draw a diagram of the transitions.

 49.  Use the method illustrated in Example 42.5 to calcu-
late the wavelength of the x-ray emitted from a molybde-
num target (Z 5 42) when an electron moves from the L 
shell (n 5 2) to the K shell (n 5 1).

 50.  In x-ray production, electrons are accelerated 
through a high voltage and then decelerated by striking a 
target. (a) To make possible the production of x-rays of 
wavelength l, what is the minimum potential difference DV 
through which the electrons must be accelerated? (b) State 
in words how the required potential difference depends 
on the wavelength. (c) Explain whether your result predicts 
the correct minimum wavelength in Figure 42.22. (d) Does 
the relationship from part (a) apply to other kinds of elec-
tromagnetic radiation besides x-rays? (e) What does the 
potential difference approach as l goes to zero? (f) What 
does the potential difference approach as l increases with-
out limit?

 51. When an electron drops from the M shell (n 5 3) to a 
vacancy in the K shell (n 5 1), the measured wavelength 
of the emitted x-ray is found to be 0.101 nm. Identify the 
element.

Section 42.9  Spontaneous and Stimulated Transitions

Section 42.10  Lasers

 52. Figure P42.52 shows portions of the energy-level diagrams 
of the helium and neon atoms. An electrical discharge 
excites the He atom from its ground state (arbitrarily 
assigned the energy E1 5 0) to its excited state of 20.61 eV. 

possible set of quantum numbers n, ,, m,, and ms for the 
electrons in nitrogen.

 36.  (a) As we go down the periodic table, which subshell 
is filled first, the 3d or the 4s subshell? (b) Which electronic 
configuration has a lower energy, [Ar]3d 44s2 or [Ar]3d 54s1? 
Note: The notation [Ar] represents the filled configura-
tion for argon. Suggestion: Which has the greater number 
of unpaired spins? (c) Identify the element with the elec-
tronic configuration in part (b).

 37. A certain element has its outermost electron in a 3p sub-
shell. It has valence 13 because it has three more electrons 
than a certain noble gas. What element is it?

 38. Devise a table similar to that shown in Figure 42.18 for 
atoms containing 11 through 19 electrons. Use Hund’s rule 
and educated guesswork.

 39. Two electrons in the same atom both have n 5 3 and , 5 1. 
Assume the electrons are distinguishable, so that inter-
changing them defines a new state. (a) How many states 
of the atom are possible considering the quantum num-
bers these two electrons can have? (b) What If? How many 
states would be possible if the exclusion principle were 
inoperative?

 40. Scanning through Figure 42.19 in order of increasing 
atomic number, notice that the electrons usually fill the 
subshells in such a way that those subshells with the low-
est values of n 1 , are filled first. If two subshells have the 
same value of n 1 ,, the one with the lower value of n is 
generally filled first. Using these two rules, write the order 
in which the subshells are filled through n 1 , 5 7.

 41. For a neutral atom of element 110, what would be the prob-
able ground-state electronic configuration?

 42. Review. For an electron with magnetic moment mSs in a 
magnetic field B

S
, Section 29.5 showed the following. The 

electron–field system can be in a higher energy state with 
the z component of the electron’s magnetic moment oppo-
site the field or a lower energy state with the z component 
of the magnetic moment in the direction of the field. The 
difference in energy between the two states is 2mBB.

   Under high resolution, many spectral lines are observed 
to be doublets. The most famous doublet is the pair of two 
yellow lines in the spectrum of sodium (the D lines), with 
wavelengths of 588.995 nm and 589.592 nm. Their exis-
tence was explained in 1925 by Goudsmit and Uhlenbeck, 
who postulated that an electron has intrinsic spin angu-
lar momentum. When the sodium atom is excited with its 
outermost electron in a 3p state, the orbital motion of the 
outermost electron creates a magnetic field. The atom’s 
energy is somewhat different depending on whether the 
electron is itself spin-up or spin-down in this field. Then 
the photon energy the atom radiates as it falls back into its 
ground state depends on the energy of the excited state. 
Calculate the magnitude of the internal magnetic field, 
mediating this so-called spin-orbit coupling.
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by transmission through one mirror. The mirrors forming 
the resonant cavity can be made of layers of silicon dioxide 
(index of refraction n 5 1.458) and titanium dioxide (index 
of refraction varies between 1.9 and 2.6). (b) How thick a 
layer of silicon dioxide, between layers of titanium diox-
ide, would minimize reflection of the red light? (c) What 
should be the thickness of a similar but separate layer of 
silicon dioxide to maximize reflection of the green light?

 55.  A ruby laser delivers a 10.0-ns pulse of 1.00-MW aver-
age power. If the photons have a wavelength of 694.3 nm, 
how many are contained in the pulse?

 56.  The number N of atoms in a particular state is called 
the population of that state. This number depends on the 
energy of that state and the temperature. In thermal equi-
librium, the population of atoms in a state of energy En is 
given by a Boltzmann distribution expression

N 5 Nge2(En2Eg)/kBT

  where Ng is the population of the ground state of energy 
Eg, kB is Boltzmann’s constant, and T is the absolute tem-
perature. For simplicity, assume each energy level has only 
one quantum state associated with it. (a) Before the power 
is switched on, the neon atoms in a laser are in thermal 
equilibrium at 27.0°C. Find the equilibrium ratio of the 
populations of the states E4* and E3 shown for the red tran-
sition in Figure P42.54. Lasers operate by a clever artificial 
production of a “population inversion” between the upper 
and lower atomic energy states involved in the lasing transi-
tion. This term means that more atoms are in the upper 
excited state than in the lower one. Consider the E4*2E3 
transition in Figure P42.54. Assume 2% more atoms occur 
in the upper state than in the lower. (b) To demonstrate 
how unnatural such a situation is, find the temperature for 
which the Boltzmann distribution describes a 2.00% popu-
lation inversion. (c) Why does such a situation not occur 
naturally?

 57. A neodymium–yttrium–aluminum garnet laser used in eye 
surgery emits a 3.00-mJ pulse in 1.00 ns, focused to a spot 
30.0 mm in diameter on the retina. (a) Find (in SI units) 
the power per unit area at the retina. (In the optics indus-
try, this quantity is called the irradiance.) (b) What energy 
is delivered by the pulse to an area of molecular size, taken 
as a circular area 0.600 nm in diameter?

Additional Problems

 58. The force on a magnetic moment mz in a nonuniform mag-
netic field Bz is given by Fz 5 mz(dBz/dz). If a beam of silver 
atoms travels a horizontal distance of 1.00 m through such 
a field and each atom has a speed of 100 m/s, how strong 
must be the field gradient dBz/dz to deflect the beam 
1.00 mm?

 59. How much energy is required to ionize a hydrogen atom 
when it is in (a) the ground state and (b) the n 5 3 state?

The excited He atom collides with a Ne atom in its ground 
state and excites this atom to the state at 20.66 eV. Lasing 
action takes place for electron transitions from E3* to E2 in 
the Ne atoms. From the data in the figure, show that the 
wavelength of the red He–Ne laser light is approximately 
633 nm.
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G
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Figure P42.52

 53. The carbon dioxide laser is one of the most powerful devel-
oped. The energy difference between the two laser levels 
is 0.117 eV. Determine (a) the frequency and (b) the wave-
length of the radiation emitted by this laser. (c) In what 
portion of the electromagnetic spectrum is this radiation?

 54. Review. A helium–neon laser can produce a green laser 
beam instead of a red one. Figure P42.54 shows the transi-
tions involved to form the red beam and the green beam. 
After a population inversion is established, neon atoms 
make a variety of downward transitions in falling from the 
state labeled E4* down eventually to level E1 (arbitrarily 
assigned the energy E1 5 0). The atoms emit both red light 
with a wavelength of 632.8 nm in a transition E4* 2 E3 and 
green light with a wavelength of 543 nm in a competing 
transition E4* 2 E2. (a) What is the energy E2? Assume the 
atoms are in a cavity between mirrors designed to reflect 
the green light with high efficiency but to allow the red 
light to leave the cavity immediately. Then stimulated emis-
sion can lead to the buildup of a collimated beam of green 
light between the mirrors having a greater intensity than 
that of the red light. To constitute the radiated laser beam, 
a small fraction of the green light is permitted to escape 
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Figure P42.54 Problems 54 and 56.
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walls of its container. Microwave radiation was introduced 
to excite the electron. Calculate (c) the frequency and 
(d) the wavelength of the photon the electron absorbed as 
it jumped to its second energy level. Measurement of the 
resonant absorption frequency verified the theory and per-
mitted precise determination of properties of the electron.

 66.   As the Earth moves around the Sun, its orbits 
are quantized. (a) Follow the steps of Bohr’s analysis of the 
hydrogen atom to show that the allowed radii of the Earth’s 
orbit are given by

r 5
n2U2

GMSME
2

  where n is an integer quantum number, MS is the mass of 
the Sun, and ME is the mass of the Earth. (b) Calculate the 
numerical value of n for the Sun–Earth system. (c) Find 
the distance between the orbit for quantum number n and 
the next orbit out from the Sun corresponding to the quan-
tum number n 1 1. (d) Discuss the significance of your 
results from parts (b) and (c).

 67.  An elementary theorem in statistics states that the 
root-mean-square uncertainty in a quantity r is given by 
Dr 5 !8r 29 2 8r 92. Determine the uncertainty in the radial 
position of the electron in the ground state of the hydro-
gen atom. Use the average value of r found in Example 
42.3: 8r 9 5 3a 0/2. The average value of the squared dis-
tance between the electron and the proton is given by

8r 29 5  3
all space

 0c 0 2r 2 dV 5 3
`

0
 P 1r 2r 2 dr

 68. Example 42.3 calculates the most probable value and the 
average value for the radial coordinate r of the electron in 
the ground state of a hydrogen atom. For comparison with 
these modal and mean values, find the median value of r. 
Proceed as follows. (a) Derive an expression for the prob-
ability, as a function of r, that the electron in the ground 
state of hydrogen will be found outside a sphere of radius r 
centered on the nucleus. (b) Make a graph of the probabil-
ity as a function of r/a0. Choose values of r/a0 ranging from 
0 to 4.00 in steps of 0.250. (c) Find the value of r for which 
the probability of finding the electron outside a sphere of 
radius r is equal to the probability of finding the electron 
inside this sphere. You must solve a transcendental equa-
tion numerically, and your graph is a good starting point.

 69. (a) For a hydrogen atom making a transition from the 
n 5 4 state to the n 5 2 state, determine the wavelength 
of the photon created in the process. (b) Assuming the 
atom was initially at rest, determine the recoil speed of the 
hydrogen atom when it emits this photon.

 70.  Astronomers observe a series of spectral lines in the 
light from a distant galaxy. On the hypothesis that the lines 
form the Lyman series for a (new?) one-electron atom, they 

 60. Review. (a) How much energy is required to cause an elec-
tron in hydrogen to move from the n 5 1 state to the n 5 
2 state? (b) Suppose the atom gains this energy through 
collisions among hydrogen atoms at a high temperature. At 
what temperature would the average atomic kinetic energy 
3
2k BT  be great enough to excite the electron? Here kB is 
Boltzmann’s constant.

 61. Suppose a hydrogen atom is in the 2s state, with its wave 
function given by Equation 42.26. Taking r 5 a0, calculate 
values for (a) c2s(a0), (b) uc2s(a0)u2, and (c) P2s(a0).

 62. An electron in chromium moves from the n 5 2 state to 
the n 5 1 state without emitting a photon. Instead, the 
excess energy is transferred to an outer electron (one in 
the n 5 4 state), which is then ejected by the atom. In this 
Auger (pronounced “ohjay”) process, the ejected electron 
is referred to as an Auger electron. Use the Bohr theory to 
find the kinetic energy of the Auger electron.

 63.  In the technique known as electron spin resonance 
(ESR), a sample containing unpaired electrons is placed in 
a magnetic field. Consider a situation in which a single elec-
tron (not contained in an atom) is immersed in a magnetic 
field. In this simple situation, only two energy states are pos-
sible, corresponding to ms 5 61

2. In ESR, the absorption of 
a photon causes the electron’s spin magnetic moment to 
flip from the lower energy state to the higher energy state. 
According to Section 29.5, the change in energy is 2mBB. 
(The lower energy state corresponds to the case in which 
the z component of the magnetic moment mSspin is aligned 
with the magnetic field, and the higher energy state cor-
responds to the case in which the z component of mSspin 
is aligned opposite to the field.) What is the photon fre-
quency required to excite an ESR transition in a 0.350-T 
magnetic field?

 64. Why is the following situation impossible? An experiment is per-
formed on an atom. Measurements of the atom when it is in 
a particular excited state show five possible values of the z 
component of orbital angular momentum, ranging between 
3.16 3 10234 kg ? m2/s and 23.16 3 10234 kg ? m2/s.

 65. In the Bohr model of the hydrogen atom, an electron trav-
els in a circular path. Consider another case in which an 
electron travels in a circular path: a single electron moving 
perpendicular to a magnetic field B

S
. Lev Davidovich Lan-

dau (1908–1968) solved the Schrödinger equation for such 
an electron. The electron can be considered as a model 
atom without a nucleus or as the irreducible quantum limit 
of the cyclotron. Landau proved its energy is quantized 
in uniform steps of e "B/me. In 1999, a single electron was 
trapped by a Harvard University research team in an evacu-
ated centimeter-size metal can cooled to a temperature of 
80 mK. In a magnetic field of magnitude 5.26 T, the elec-
tron circulated for hours in its lowest energy level. (a) Eval-
uate the size of a quantum jump in the electron’s energy. 
(b) For comparison, evaluate kBT as a measure of the energy 
available to the electron in blackbody radiation from the 
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 74.  A pulsed laser emits light of wavelength l. For a pulse 
of duration Dt having energy TER, find (a) the physical 
length of the pulse as it travels through space and (b) the 
number of photons in it. (c) The beam has a circular cross 
section having diameter d. Find the number of photons 
per unit volume.

 75.  Assume three identical uncharged particles of mass 
m and spin 1

2 are contained in a one-dimensional box of 
length L. What is the ground-state energy of this system?

 76. Suppose the ionization energy of an atom is 4.10 eV. In 
the spectrum of this same atom, we observe emission lines 
with wavelengths 310 nm, 400 nm, and 1 377.8 nm. Use this 
information to construct the energy-level diagram with the 
fewest levels. Assume the higher levels are closer together.

 77. For hydrogen in the 1s state, what is the probability of find-
ing the electron farther than 2.50a0 from the nucleus?

 78.  For hydrogen in the 1s state, what is the probability of 
finding the electron farther than ba0 from the nucleus, 
where b is an arbitrary number?

Challenge Problems

 79. The positron is the antiparticle to the electron. It has the 
same mass and a positive electric charge of the same mag-
nitude as that of the electron. Positronium is a hydrogen-
like atom consisting of a positron and an electron revolv-
ing around each other. Using the Bohr model, find (a) the 
allowed distances between the two particles and (b) the 
allowed energies of the system.

 80. Review. Steven Chu, Claude Cohen-Tannoudji, and Wil-
liam Phillips received the 1997 Nobel Prize in Physics for 
“the development of methods to cool and trap atoms with 
laser light.” One part of their work was with a beam of 
atoms (mass , 10225 kg) that move at a speed on the order 
of 1 km/s, similar to the speed of molecules in air at room 
temperature. An intense laser light beam tuned to a visible 
atomic transition (assume 500 nm) is directed straight into 
the atomic beam; that is, the atomic beam and the light 
beam are traveling in opposite directions. An atom in the 
ground state immediately absorbs a photon. Total system 
momentum is conserved in the absorption process. After 
a lifetime on the order of 1028 s, the excited atom radiates 
by spontaneous emission. It has an equal probability of 
emitting a photon in any direction. Therefore, the average 
“recoil” of the atom is zero over many absorption and emis-
sion cycles. (a) Estimate the average deceleration of the 
atomic beam. (b) What is the order of magnitude of the 
distance over which the atoms in the beam are brought to a 
halt?

start to construct the energy-level diagram shown in Fig-
ure P42.70, which gives the wavelengths of the first four 
lines and the short-wavelength limit of this series. Based on 
this information, calculate (a) the energies of the ground 
state and first four excited states for this one-electron atom 
and (b) the wavelengths of the first three lines and the 
short-wavelength limit in the Balmer series for this atom. 
(c) Show that the wavelengths of the first four lines and the 
short-wavelength limit of the Lyman series for the hydro-
gen atom are all 60.0% of the wavelengths for the Lyman 
series in the one-electron atom in the distant galaxy. 
(d) Based on this observation, explain why this atom could 
be hydrogen.
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Figure P42.70

 71.   We wish to show that the most probable radial 
position for an electron in the 2s state of hydrogen is r 5 
5.236a0. (a) Use Equations 42.24 and 42.26 to find the 
radial probability density for the 2s state of hydrogen. 
(b) Calculate the derivative of the radial probability den-
sity with respect to r. (c) Set the derivative in part (b) equal 
to zero and identify three values of r that represent min-
ima in the function. (d) Find two values of r that represent 
maxima in the function. (e) Identify which of the values in 
part (c) represents the highest probability.

 72.  All atoms have the same size, to an order of mag-
nitude. (a) To demonstrate this fact, estimate the atomic 
diameters for aluminum (with molar mass 27.0 g/mol and 
density 2.70 g/cm3) and uranium (molar mass 238 g/mol 
and density 18.9 g/cm3). (b) What do the results of part (a) 
imply about the wave functions for inner-shell electrons as 
we progress to higher and higher atomic mass atoms?

 73. A pulsed ruby laser emits light at 694.3 nm. For a 14.0-ps 
pulse containing 3.00 J of energy, find (a) the physical 
length of the pulse as it travels through space and (b) the 
number of photons in it. (c) The beam has a circular cross 
section of diameter 0.600 cm. Find the number of photons 
per cubic millimeter.
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large quantum numbers. Show that as n S ,̀ this expres-
sion varies as 1/n3 and reduces to the classical frequency 
one expects the atom to emit. Suggestion: To calculate the 
classical frequency, note that the frequency of revolution is 
v/2pr, where v is the speed of the electron and r is given by 
Equation 42.10.

 81.  (a) Use Bohr’s model of the hydrogen atom to show 
that when the electron moves from the n state to the n 2 1 
state, the frequency of the emitted light is

f 5 a2p 2mek e
2e4

h3 b 2n 2 1
n2 1n 2 1 22

  (b) Bohr’s correspondence principle claims that quantum 
results should reduce to classical results in the limit of 


