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In Chapter 39, we discussed that New-

tonian mechanics must be replaced by  

Einstein’s special theory of relativity when 

dealing with particle speeds comparable 

to the speed of light. As the 20th cen-

tury progressed, many experimental and 

theoretical problems were resolved by the 

special theory of relativity. For many other 

problems, however, neither relativity nor 

classical physics could provide a theoretical 

answer. Attempts to apply the laws of classi-

cal physics to explain the behavior of matter 

on the atomic scale were consistently unsuc-

cessful. For example, the emission of discrete wavelengths of light from atoms in a high-

 temperature gas could not be explained within the framework of classical physics.

 As physicists sought new ways to solve these puzzles, another revolution took place 

in physics between 1900 and 1930. A new theory called quantum mechanics was highly 

successful in explaining the behavior of particles of microscopic size. Like the special 

This lightbulb filament glows with an orange color. Why? Classical physics is 
unable to explain the experimentally observed wavelength distribution of 
electromagnetic radiation from a hot object. A theory proposed in 1900 and 
describing the radiation from such objects represents the dawn of quantum 
physics. (Steve Cole/Getty Images)
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theory of relativity, the quantum theory requires a modification of our ideas concerning 

the physical world.

 The first explanation of a phenomenon using quantum theory was introduced by Max 

Planck. Many subsequent mathematical developments and interpretations were made 

by a number of distinguished physicists, including Einstein, Bohr, de Broglie, Schrödinger, 

and Heisenberg. Despite the great success of the quantum theory, Einstein frequently 

played the role of its critic, especially with regard to the manner in which the theory was 

interpreted.

 Because an extensive study of quantum theory is beyond the scope of this book, this 

chapter is simply an introduction to its underlying principles.

40.1 Blackbody Radiation and Planck’s Hypothesis
An object at any temperature emits electromagnetic waves in the form of thermal 
radiation from its surface as discussed in Section 20.7. The characteristics of this 
radiation depend on the temperature and properties of the object’s surface. Careful 
study shows that the radiation consists of a continuous distribution of wavelengths 
from all portions of the electromagnetic spectrum. If the object is at room temper-
ature, the wavelengths of thermal radiation are mainly in the infrared region and 
hence the radiation is not detected by the human eye. As the surface temperature 
of the object increases, the object eventually begins to glow visibly red, like the coils 
of a toaster. At sufficiently high temperatures, the glowing object appears white, as 
in the hot tungsten filament of an incandescent lightbulb.
 From a classical viewpoint, thermal radiation originates from accelerated 
charged particles in the atoms near the surface of the object; those charged par-
ticles emit radiation much as small antennas do. The thermally agitated particles 
can have a distribution of energies, which accounts for the continuous spectrum of 
radiation emitted by the object. By the end of the 19th century, however, it became 
apparent that the classical theory of thermal radiation was inadequate. The basic 
problem was in understanding the observed distribution of wavelengths in the 
radiation emitted by a black body. As defined in Section 20.7, a black body is an 
ideal system that absorbs all radiation incident on it. The electromagnetic radiation 
emitted by the black body is called blackbody radiation.
 A good approximation of a black body is a small hole leading to the inside of 
a hollow object as shown in Figure 40.1. Any radiation incident on the hole from 
outside the cavity enters the hole and is reflected a number of times on the interior 
walls of the cavity; hence, the hole acts as a perfect absorber. The nature of the 
radiation leaving the cavity through the hole depends only on the temperature of 
the cavity walls and not on the material of which the walls are made. The spaces 
between lumps of hot charcoal (Fig. 40.2) emit light that is very much like black-
body radiation.
 The radiation emitted by oscillators in the cavity walls experiences boundary 
conditions. As the radiation reflects from the cavity’s walls, standing electromag-
netic waves are established within the three-dimensional interior of the cavity. 
Many standing-wave modes are possible, and the distribution of the energy in the 
cavity among these modes determines the wavelength distribution of the radiation 
leaving the cavity through the hole.
 The wavelength distribution of radiation from cavities was studied experimen-
tally in the late 19th century. Active Figure 40.3 shows how the intensity of black-
body radiation varies with temperature and wavelength. The following two consis-
tent experimental findings were seen as especially significant:

Pitfall Prevention 40.1
Expect to Be Challenged
If the discussions of quantum phys-
ics in this and subsequent chapters 
seem strange and confusing to you, 
it’s because your whole life experi-
ence has taken place in the macro-
scopic world, where quantum effects 
are not evident.

Figure 40.2  The glow emanating 
from the spaces between these hot 
charcoal briquettes is, to a close 
approximation, blackbody radia-
tion. The color of the light depends 
only on the temperature of the 
briquettes.
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The opening to a cavity 
inside a hollow object is a 
good approximation of a 
black body: the hole acts as 
a perfect absorber.

Figure 40.1  A physical model of a 
black body.
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 1. The total power of the emitted radiation increases with temperature. We 
discussed this behavior briefly in Chapter 20, where we introduced Stefan’s 
law:

 P 5 sAeT 4 (40.1)

  where P is the power in watts radiated at all wavelengths from the  surface 
of an object, s 5 5.670 3 1028 W/m2 ? K4 is the Stefan–Boltzmann constant, 
A is the surface area of the object in square meters, e is the emissivity of the 
surface, and T is the surface temperature in kelvins. For a black body, the 
emissivity is e 5 1 exactly.

 2. The peak of the wavelength distribution shifts to shorter wavelengths as 
the temperature increases. This behavior is described by the following rela-
tionship, called Wien’s displacement law:

 lmax T 5 2.898 3 1023 m ? K (40.2)

  where lmax is the wavelength at which the curve peaks and T is the absolute 
temperature of the surface of the object emitting the radiation. The wave-
length at the curve’s peak is inversely proportional to the absolute tempera-
ture; that is, as the temperature increases, the peak is “displaced” to shorter 
wavelengths (Active Fig. 40.3).

 Wien’s displacement law is consistent with the behavior of the object mentioned 
at the beginning of this section. At room temperature, the object does not appear 
to glow because the peak is in the infrared region of the electromagnetic spectrum. 
At higher temperatures, it glows red because the peak is in the near infrared with 
some radiation at the red end of the visible spectrum, and at still higher tempera-
tures, it glows white because the peak is in the visible so that all colors are emitted.

Quick Quiz 40.1  Figure 40.4 shows two stars in the constellation Orion. Betel-
geuse appears to glow red, whereas Rigel looks blue in color. Which star has 
a higher surface temperature? (a) Betelgeuse (b) Rigel (c) both the same 
(d) impossible to determine

 A successful theory for blackbody radiation must predict the shape of the curves 
in Active Figure 40.3, the temperature dependence expressed in Stefan’s law, and 
the shift of the peak with temperature described by Wien’s displacement law. Early 
attempts to use classical ideas to explain the shapes of the curves in Active Figure 
40.3 failed.
 Let’s consider one of these early attempts. To describe the distribution of energy 
from a black body, we define I(l,T) dl to be the intensity, or power per unit area, 

Stefan’s law 

Wien’s displacement law 
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W mavelength (   m)

4 000 K

3 000 K

2 000 K

The 4 000-K curve has a peak 
near the visible range. This curve 
represents an object that would 
glow with a yellowish-white 
appearance.

Intensity of blackbody radiation 
versus wavelength at three tem-
peratures. The visible range of 
wavelengths is between 0.4 mm and 
0.7 mm. At approximately 6 000 K, 
the peak is in the center of the vis-
ible wavelengths and the object 
appears white.

ACTIVE FIGURE 40.3Betelgeuse
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Figure 40.4  (Quick Quiz 40.1) 
Which star is hotter, Betelgeuse 
or Rigel?
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emitted in the wavelength interval dl. The result of a calculation based on a classi-
cal theory of blackbody radiation known as the Rayleigh–Jeans law is

 I 1l,T 2 5 2pck BT

l4  (40.3)

where kB is Boltzmann’s constant. The black body is modeled as the hole leading 
into a cavity (Fig. 40.1), resulting in many modes of oscillation of the electromag-
netic field caused by accelerated charges in the cavity walls and the emission of 
electromagnetic waves at all wavelengths. In the classical theory used to derive 
Equation 40.3, the average energy for each wavelength of the standing-wave modes 
is assumed to be proportional to kBT, based on the theorem of equipartition of 
energy discussed in Section 21.1.
 An experimental plot of the blackbody radiation spectrum, together with the 
theoretical prediction of the Rayleigh–Jeans law, is shown in Figure 40.5. At long 
wavelengths, the Rayleigh–Jeans law is in reasonable agreement with experimental 
data, but at short wavelengths, major disagreement is apparent.
 As l approaches zero, the function I(l,T) given by Equation 40.3 approaches 
infinity. Hence, according to classical theory, not only should short wavelengths 
predominate in a blackbody spectrum, but also the energy emitted by any black 
body should become infinite in the limit of zero wavelength. In contrast to this 
prediction, the experimental data plotted in Figure 40.5 show that as l approaches 
zero, I(l,T) also approaches zero. This mismatch of theory and experiment was so 
disconcerting that scientists called it the ultraviolet catastrophe. (This “catastrophe”—
infinite energy—occurs as the wavelength approaches zero; the word ultraviolet was 
applied because ultraviolet wavelengths are short.)
 In 1900, Max Planck developed a theory of blackbody radiation that leads to an 
equation for I(l,T) that is in complete agreement with experimental results at all 
wavelengths. Planck assumed the cavity radiation came from atomic oscillators in 
the cavity walls in Figure 40.1. Planck made two bold and controversial assumptions 
concerning the nature of the oscillators in the cavity walls:

• The energy of an oscillator can have only certain discrete values En:

 En 5 nhf (40.4)

 where n is a positive integer called a quantum number,1 f is the oscillator’s 
frequency, and h is a parameter Planck introduced that is now called Planck’s 
constant. Because the energy of each oscillator can have only discrete values 
given by Equation 40.4, we say the energy is quantized. Each discrete energy 
value corresponds to a different quantum state, represented by the quantum 
number n. When the oscillator is in the n 5 1 quantum state, its energy is hf ; 
when it is in the n 5 2 quantum state, its energy is 2hf ; and so on.

• The oscillators emit or absorb energy when making a transition from one 
quantum state to another. The entire energy difference between the initial 
and final states in the transition is emitted or absorbed as a single quantum 
of radiation. If the transition is from one state to a lower adjacent state—say, 
from the n 5 3 state to the n 5 2 state—Equation 40.4 shows that the amount 
of energy emitted by the oscillator and carried by the quantum of radiation is

 E 5 hf (40.5)

 An oscillator emits or absorbs energy only when it changes quantum states. If it 
remains in one quantum state, no energy is absorbed or emitted. Figure 40.6 is an 
energy-level diagram showing the quantized energy levels and allowed transitions 
proposed by Planck. This important semigraphical representation is used often in 

Rayleigh–Jeans law 
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The classical theory 
(red-brown curve) shows 
intensity growing without 
bound for short wavelengths, 
unlike the experimental data 
(blue curve).

Figure 40.5  Comparison of 
experimental results and the curve 
predicted by the Rayleigh–Jeans law 
for the distribution of blackbody 
radiation.

Max Planck
German Physicist (1858–1947)
Planck introduced the concept of “quantum of 
action” (Planck’s constant, h) in an attempt 
to explain the spectral distribution of black-
body radiation, which laid the foundations for 
quantum theory. In 1918, he was awarded the 
Nobel Prize in Physics for this discovery of the 
quantized nature of energy.
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1A quantum number is generally an integer (although half-integer quantum numbers can occur) that describes an 
allowed state of a system, such as the values of n describing the normal modes of oscillation of a string fixed at both 
ends, as discussed in Section 18.3.
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quantum physics.2 The vertical axis is linear in energy, and the allowed energy lev-
els are represented as horizontal lines. The quantized system can have only the 
energies represented by the horizontal lines.
 The key point in Planck’s theory is the radical assumption of quantized energy 
states. This development—a clear deviation from classical physics—marked the 
birth of the quantum theory.
 In the Rayleigh–Jeans model, the average energy associated with a particular 
wavelength of standing waves in the cavity is the same for all wavelengths and is 
equal to kBT. Planck used the same classical ideas as in the Rayleigh–Jeans model 
to arrive at the energy density as a product of constants and the average energy for 
a given wavelength, but the average energy is not given by the equipartition theo-
rem. A wave’s average energy is the average energy difference between levels of the 
oscillator, weighted according to the probability of the wave being emitted. This weighting 
is based on the occupation of higher-energy states as described by the Boltzmann 
distribution law, which was discussed in Section 21.5. According to this law, the 
probability of a state being occupied is proportional to the factor e2E/kBT, where E is 
the energy of the state.
 At low frequencies, the energy levels are close together as on the right in Active 
Figure 40.7, and many of the energy states are excited because the Boltzmann factor 
e2E/kBT is relatively large for these states. Therefore, there are many contributions to 
the outgoing radiation, although each contribution has very low energy. Now, con-
sider high-frequency radiation, that is, radiation with short wavelength. To obtain 
this radiation, the allowed energies are very far apart as on the left in Active Figure 
40.7. The probability of thermal agitation exciting these high energy levels is small 
because of the small value of the Boltzmann factor for large values of E. At high 
frequencies, the low probability of excitation results in very little contribution to 
the total energy, even though each quantum is of large energy. This low probability 
“turns the curve over” and brings it down to zero again at short wavelengths.

2We first saw an energy-level diagram in Section 21.4.

Pitfall Prevention 40.2
n Is Again an Integer
In the preceding chapters on optics, 
we used the symbol n for the index 
of refraction, which was not an inte-
ger. Here we are again using n as 
we did in Chapter 18 to indicate the 
standing-wave mode on a string or in 
an air column. In quantum physics, 
n is often used as an integer quan-
tum number to identify a particular 
quantum state of a system.
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Figure 40.6  Allowed energy levels 
for an oscillator with frequency f. 
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Somewhere between very short and 
very long wavelengths, the product of 
increasing probability of transitions and 
decreasing energy per transition results 
in a maximum in the intensity.

At long wavelengths, there is a small 
separation between energy levels, 
leading to a high probability of 
excited states and many downward 
transitions. The low energy in each 
transition leads to low intensity.

At short wavelengths, there is a 
large separation between energy 
levels, leading to a low probability 
of excited states and few downward 
transitions.  The low probability of 
transitions leads to low intensity.
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In Planck’s model, the average 
energy associated with a given wave-
length is the product of the energy 
of a transition and a factor related 
to the probability of the transition 
occurring. 

ACTIVE FIGURE 40.7
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 Using this approach, Planck generated a theoretical expression for the wave-
length distribution that agreed remarkably well with the experimental curves in 
Active Figure 40.3:

 I 1l,T 2 5 2phc 2

l5 1ehc/lkBT 2 1 2  (40.6)

 This function includes the parameter h, which Planck adjusted so that his curve 
matched the experimental data at all wavelengths. The value of this parameter is 
found to be independent of the material of which the black body is made and inde-
pendent of the temperature; it is a fundamental constant of nature. The value of h, 
Planck’s constant, which was first introduced in Chapter 35, is

 h 5 6.626 3 10234 J ? s (40.7)

At long wavelengths, Equation 40.6 reduces to the Rayleigh–Jeans expression, 
Equation 40.3 (see Problem 14), and at short wavelengths, it predicts an exponen-
tial decrease in I(l,T) with decreasing wavelength, in agreement with experimental 
results.
 When Planck presented his theory, most scientists (including Planck!) did not 
consider the quantum concept to be realistic. They believed it was a mathematical 
trick that happened to predict the correct results. Hence, Planck and others con-
tinued to search for a more “rational” explanation of blackbody radiation. Subse-
quent developments, however, showed that a theory based on the quantum concept 
(rather than on classical concepts) had to be used to explain not only blackbody 
radiation but also a number of other phenomena at the atomic level.
 In 1905, Einstein rederived Planck’s results by assuming the oscillations of the 
electromagnetic field were themselves quantized. In other words, he proposed that 
quantization is a fundamental property of light and other electromagnetic radia-
tion, which led to the concept of photons as shall be discussed in Section 40.2. 
Critical to the success of the quantum or photon theory was the relation between 
energy and frequency, which classical theory completely failed to predict.
 You may have had your body temperature measured at the doctor’s office by an 
ear thermometer, which can read your temperature very quickly (Fig. 40.8). In a frac-
tion of a second, this type of thermometer measures the amount of infrared radia-
tion emitted by the eardrum. It then converts the amount of radiation into a tem-
perature reading. This thermometer is very sensitive because temperature is raised 
to the fourth power in Stefan’s law. Suppose you have a fever 1°C above normal. 
Because absolute temperatures are found by adding 273 to Celsius temperatures, 
the ratio of your fever temperature to normal body temperature of 37°C is

Tfever

Tnormal
5

38°C 1 273°C
37°C 1 273°C

5 1.003 2

which is only a 0.32% increase in temperature. The increase in radiated power, 
however, is proportional to the fourth power of temperature, so

Pfever

Pnormal
5 a38°C 1 273°C

37°C 1 273°C
b

4

5 1.013

The result is a 1.3% increase in radiated power, which is easily measured by modern 
infrared radiation sensors.

 Planck’s wavelength  
distribution function

Planck’s constant 

Figure 40.8  An ear thermometer 
measures a patient’s temperature by 
detecting the intensity of infrared 
radiation leaving the eardrum.
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Example 40.1 Thermal Radiation from Different Objects

(A)  Find the peak wavelength of the blackbody radiation emitted by the human body when the skin temperature is 
35°C.



40.1 cont.

 40.1 | Blackbody Radiation and Planck’s Hypothesis 1191

SOLUTION

Conceptualize  Thermal radiation is emitted from the surface of any object. The peak wavelength is related to the sur-
face temperature through Wien’s displacement law (Eq. 40.2).

Categorize  We evaluate results using an equation developed in this section, so we categorize this example as a substitu-
tion problem.

Substitute the surface temperature: lmax 5
2.898 3 1023 m ? K

308 K
5 9.41 mm

Solve Equation 40.2 for lmax: (1)   lmax 5
2.898 3 1023 m ? K

T

This radiation is in the infrared region of the spectrum and is invisible to the human eye. Some animals (pit vipers, for 
instance) are able to detect radiation of this wavelength and therefore can locate warm-blooded prey even in the dark.

(B)  Find the peak wavelength of the blackbody radiation emitted by the tungsten filament of a lightbulb, which oper-
ates at 2 000 K.

SOLUTION

Substitute the filament temperature into Equation (1): lmax 5
2.898 3 1023 m ? K

2 000 K
5 1.45 mm

This radiation is also in the infrared, meaning that most of the energy emitted by a lightbulb is not visible to us.

(C)  Find the peak wavelength of the blackbody radiation emitted by the Sun, which has a surface temperature of 
approximately 5 800 K.

SOLUTION

Substitute the surface temperature into Equation (1): lmax 5
2.898 3 1023 m ? K

5 800 K
5 0.500 mm

This radiation is near the center of the visible spectrum, near the color of a yellow-green tennis ball. Because it is the 
most prevalent color in sunlight, our eyes have evolved to be most sensitive to light of approximately this wavelength.

Example 40.2 The Quantized Oscillator 

A 2.00-kg block is attached to a massless spring that has a force constant of k 5 25.0 N/m. The spring is stretched 0.400 m 
from its equilibrium position and released from rest.

(A)  Find the total energy of the system and the frequency of oscillation according to classical calculations.

SOLUTION

Conceptualize  We understand the details of the block’s motion from our study of simple harmonic motion in Chapter 
15. Review that material if you need to.

Categorize  The phrase “according to classical calculations” tells us to categorize this part of the problem as a classical 
analysis of the oscillator. We model the block as a particle in simple harmonic motion.

Analyze  Based on the way the block is set into motion, its amplitude is 0.400 m.

continued

Evaluate the total energy of the block–spring system 
using Equation 15.21:

E 5 1
2kA2 5 1

2 125.0 N/m 2 10.400 m 22 5 2.00 J

Evaluate the frequency of oscillation from 
Equation 15.14: f 5

1
2pÅ

k
m
5

1
2pÅ

25.0 N/m
2.00 kg

5 0.563 Hz
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40.2 cont.

(B)  Assuming the energy of the oscillator is quantized, find the quantum number n for the system oscillating with this 
amplitude.

SOLUTION

Categorize  This part of the problem is categorized as a quantum analysis of the oscillator. We model the block–spring 
system as a Planck oscillator.

Substitute numerical values: n 5
2.00 J

16.626 3 10234 J ? s 2 10.563 Hz 2 5 5.36 3 1033

Analyze  Solve Equation 40.4 for the quantum number n: n 5
En

hf

Finalize  Notice that 5.36 3 1033 is a very large quantum number, which is typical for macroscopic systems. Changes 
between quantum states for the oscillator are explored next.

WHAT IF?  Suppose the oscillator makes a transition from the n 5 5.36 3 1033 state to the state corresponding to n 5 
5.36 3 1033 2 1. By how much does the energy of the oscillator change in this one-quantum change?

Answer  From Equation 40.5, the energy carried away due to the transition between states differing in n by 1 is

E 5 hf 5 16.626 3 10234 J ? s 2 10.563 Hz 2 5 3.73 3 10234 J

This energy change due to a one-quantum change is fractionally equal to 3.73 3 10234 J/2.00 J, or on the order of one 
part in 1034! It is such a small fraction of the total energy of the oscillator that it cannot be detected. Therefore, even 
though the energy of a macroscopic block–spring system is quantized and does indeed decrease by small quantum 
jumps, our senses perceive the decrease as continuous. Quantum effects become important and detectable only on the 
submicroscopic level of atoms and molecules.

40.2 The Photoelectric Effect
Blackbody radiation was the first phenomenon to be explained with a quantum 
model. In the latter part of the 19th century, at the same time that data were taken 
on thermal radiation, experiments showed that light incident on certain metallic 
surfaces causes electrons to be emitted from those surfaces. This phenomenon, 
which was first discussed in Section 35.1, is known as the photoelectric effect, and 
the emitted electrons are called photoelectrons.3

 Active Figure 40.9 is a diagram of an apparatus for studying the photoelectric 
effect. An evacuated glass or quartz tube contains a metallic plate E (the emitter) 
connected to the negative terminal of a battery and another metallic plate C (the 
collector) that is connected to the positive terminal of the battery. When the tube 
is kept in the dark, the ammeter reads zero, indicating no current in the circuit. 
However, when plate E is illuminated by light having an appropriate wavelength, 
a current is detected by the ammeter, indicating a flow of charges across the gap 
between plates E and C. This current arises from photoelectrons emitted from plate 
E and collected at plate C.
 Active Figure 40.10 is a plot of photoelectric current versus potential difference 
DV applied between plates E and C for two light intensities. At large values of DV, the 
current reaches a maximum value; all the electrons emitted from E are collected 
at C, and the current cannot increase further. In addition, the maximum cur-
rent increases as the intensity of the incident light increases, as you might expect, 
because more electrons are ejected by the higher-intensity light. Finally, when DV is 

3Photoelectrons are not different from other electrons. They are given this name solely because of their ejection 
from a metal by light in the photoelectric effect.

C

Light

E

A

V

When light strikes plate E (the 
emitter), photoelectrons are 
ejected from the plate. 

Variable power
supply

Electrons moving from 
plate E to plate C (the 
collector) constitute a 
current in the circuit.

A circuit diagram for studying the 
photoelectric effect. 

ACTIVE FIGURE 40.9
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negative—that is, when the battery in the circuit is reversed to make plate E positive 
and plate C negative—the current drops because many of the photoelectrons emit-
ted from E are repelled by the now negative plate C. In this situation, only those 
photoelectrons having a kinetic energy greater than e|DV | reach plate C, where e is 
the magnitude of the charge on the electron. When DV is equal to or more negative 
than 2DVs, where DVs is the stopping potential, no photoelectrons reach C and the 
current is zero.
 Let’s model the combination of the electric field between the plates and an elec-
tron ejected from plate E as an isolated system. Suppose this electron stops just as it 
reaches plate C. Because the system is isolated, the total mechanical energy of the 
system must be conserved, so we have

Ki + Ui = Kf + Uf

where the initial configuration i refers to the instant the electron leaves the metal 
with kinetic energy Ki and the final configuration f is when the electron stops just 
before touching plate C. If we define the electric potential energy of the system in 
configuration i to be zero, we have

Ki + 0 = 0 + (2 e)(2DV)

Now suppose the potential difference DV is increased in the negative direction just 
until the current is zero. In this case, the electron that stops immediately before 
reaching plate C has the maximum possible kinetic energy upon leaving the metal 
surface and DV equals the stopping potential DVs. The previous equation can then 
be written as

 Kmax 5 e DVs (40.8)

This equation allows us to measure Kmax experimentally by determining the voltage 
DVs at which the current drops to zero.
 Several features of the photoelectric effect are listed below. For each feature, we 
compare the predictions made by a classical approach, using the wave model for 
light, with the experimental results.

 1. Dependence of photoelectron kinetic energy on light intensity

  Classical prediction: Electrons should absorb energy continuously from 
the electromagnetic waves. As the light intensity incident on a metal is 
increased, energy should be transferred into the metal at a higher rate and 
the electrons should be ejected with more kinetic energy.

  Experimental result: The maximum kinetic energy of photoelectrons is inde-
pendent of light intensity as shown in Active Figure 40.10 with both curves 
falling to zero at the same negative voltage. (According to Equation 40.8, 
the maximum kinetic energy is proportional to the stopping potential.)

High intensity

Low intensity

Applied
voltage

CurrentAt voltages 
equal to or 
more negative 
than ��Vs,  the 
current is zero.

The current increases with 
intensity but reaches a 
saturation level for large 
values of �V.

��Vs

Photoelectric current versus applied 
potential difference for two light 
intensities. 

ACTIVE FIGURE 40.10
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 2. Time interval between incidence of light and ejection of photoelectrons

  Classical prediction: At low light intensities, a measurable time interval should 
pass between the instant the light is turned on and the time an electron is 
ejected from the metal. This time interval is required for the electron to 
absorb the incident radiation before it acquires enough energy to escape 
from the metal.

  Experimental result: Electrons are emitted from the surface of the metal 
almost instantaneously (less than 1029 s after the surface is illuminated), 
even at very low light intensities.

 3. Dependence of ejection of electrons on light frequency

  Classical prediction: Electrons should be ejected from the metal at any inci-
dent light frequency, as long as the light intensity is high enough, because 
energy is transferred to the metal regardless of the incident light frequency.

  Experimental result: No electrons are emitted if the incident light frequency 
falls below some cutoff frequency fc, whose value is characteristic of the 
material being illuminated. No electrons are ejected below this cutoff fre-
quency regardless of the light intensity.

 4. Dependence of photoelectron kinetic energy on light frequency

  Classical prediction: There should be no relationship between the frequency 
of the light and the electron kinetic energy. The kinetic energy should be 
related to the intensity of the light.

  Experimental result: The maximum kinetic energy of the photoelectrons 
increases with increasing light frequency.

 For these features, experimental results contradict all four classical predictions. A 
successful explanation of the photoelectric effect was given by Einstein in 1905, the 
same year he published his special theory of relativity. As part of a general paper on 
electromagnetic radiation, for which he received a Nobel Prize in Physics in 1921, 
Einstein extended Planck’s concept of quantization to electromagnetic waves as men-
tioned in Section 40.1. Einstein assumed light (or any other electromagnetic wave) 
of frequency f from any source can be considered a stream of quanta. Today we call 
these quanta photons. Each photon has an energy E given by Equation 40.5, E 5 hf, 
and each moves in a vacuum at the speed of light c, where c 5 3.00 3 108 m/s.

Quick Quiz 40.2  While standing outdoors one evening, you are exposed to 
the following four types of electromagnetic radiation: yellow light from a 
sodium street lamp, radio waves from an AM radio station, radio waves from 
an FM radio station, and microwaves from an antenna of a communications 
system. Rank these types of waves in terms of photon energy from highest to 
lowest.

 In Einstein’s model of the photoelectric effect, a photon of the incident light 
gives all its energy hf to a single electron in the metal. Therefore, the absorption 
of energy by the electrons is not a continuous absorption process as envisioned in 
the wave model; rather, it is a discontinuous process in which energy is delivered 
to the electrons in discrete bundles. The energy transfer is accomplished via a one 
photon–one electron event.4

 Electrons ejected from the surface of the metal and not making collisions with 
other metal atoms before escaping possess the maximum kinetic energy Kmax. 
According to Einstein, the maximum kinetic energy for these liberated electrons is

 Kmax 5 hf 2 f (40.9)Photoelectric effect equation 

4In principle, two photons could combine to provide an electron with their combined energy. That is highly improb-
able, however, without the high intensity of radiation available from very strong lasers.
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where f is called the work function of the metal. The work function represents the 
minimum energy with which an electron is bound in the metal and is on the order 
of a few electron volts. Table 40.1 lists work functions for various metals.
 We can understand Equation 40.9 by rearranging it as follows:

Kmax 1 f 5 hf

In this form, Einstein’s equation is equivalent to Equation 8.2 applied to the non-
isolated system of the electron and the metal. Here, Kmax is the change DK in kinetic 
energy of the electron, assuming it begins at rest; f is the change DU in potential 
energy of the system, assuming the potential energy is defined to be zero when the 
electron is within the metal; and hf is the transfer of energy into the system by elec-
tromagnetic radiation (TER).
 Using the photon model of light, one can explain the observed features of the 
photoelectric effect that are incorrectly predicted by classical concepts:

 1. Dependence of photoelectron kinetic energy on light intensity

  Equation 40.9 shows that Kmax is independent of the light intensity. The 
maximum kinetic energy of any one electron, which equals hf 2 f, depends 
only on the light frequency and the work function. If the light intensity is 
doubled, the number of photons arriving per unit time is doubled, which 
doubles the rate at which photoelectrons are emitted. The maximum 
kinetic energy of any one photoelectron, however, is unchanged.

 2. Time interval between incidence of light and ejection of photoelectrons

  Near-instantaneous emission of electrons is consistent with the photon 
model of light. The incident energy appears in small packets, and there is a 
one-to-one interaction between photons and electrons. If the incident light 
has very low intensity, there are very few photons arriving per unit time 
interval; each photon, however, can have sufficient energy to eject an elec-
tron immediately.

 3. Dependence of ejection of electrons on light frequency

  Because the photon must have energy greater than the work function f 
to eject an electron, the photoelectric effect cannot be observed below a 
certain cutoff frequency. If the energy of an incoming photon does not 
 satisfy this requirement, an electron cannot be ejected from the surface, 
even though many photons per unit time are incident on the metal in a 
very intense light beam.

 4. Dependence of photoelectron kinetic energy on light frequency

  A photon of higher frequency carries more energy and therefore ejects 
a photoelectron with more kinetic energy than does a photon of lower 
frequency.

 Einstein’s model predicts a linear relationship (Eq. 40.9) between the maximum 
electron kinetic energy Kmax and the light frequency f. Experimental observation of 
a linear relationship between Kmax and f would be a final confirmation of Einstein’s 
theory. Indeed, such a linear relationship is observed as sketched in Active Figure 
40.11 on page 1196, and the slope of the lines in such a plot is Planck’s constant 
h. The intercept on the horizontal axis gives the cutoff frequency below which no 
photoelectrons are emitted. The cutoff frequency is related to the work function 
through the relationship fc 5 f/h. The cutoff frequency corresponds to a cutoff 
wavelength lc, where

 lc 5
c
fc
5

c
f/h

5
hc
f

 (40.10)

and c is the speed of light. Wavelengths greater than lc incident on a material hav-
ing a work function f do not result in the emission of photoelectrons.

Cutoff wavelength 

Work Functions 
of Selected Metals

Metal f (eV)

Na 2.46
Al 4.08
Fe 4.50
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14

Note: Values are typical for metals listed. 
Actual values may vary depending on 
whether the metal is a single crystal or 
polycrystalline. Values may also depend on 
the face from which electrons are ejected 
from crystalline metals. Furthermore, 
different experimental procedures may 
produce differing values.

TABLE 40.1
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 The combination hc in Equation 40.10 often occurs when relating a photon’s 
energy to its wavelength. A common shortcut when solving problems is to express 
this combination in useful units according to the following approximation:

hc 5 1 240 eV ? nm

 One of the first practical uses of the photoelectric effect was as the detector in 
a camera’s light meter. Light reflected from the object to be photographed strikes 
a photoelectric surface in the meter, causing it to emit photoelectrons that then 
pass through a sensitive ammeter. The magnitude of the current in the ammeter 
depends on the light intensity.
 The phototube, another early application of the photoelectric effect, acts much 
like a switch in an electric circuit. It produces a current in the circuit when light of 
sufficiently high frequency falls on a metal plate in the phototube, but produces no 
current in the dark. Phototubes were used in burglar alarms and in the detection 
of the soundtrack on motion picture film. Modern semiconductor devices have now 
replaced older devices based on the photoelectric effect.
 Today, the photoelectric effect is used in the operation of photomultiplier tubes. 
Figure 40.12 shows the structure of such a device. A photon striking the photocath-
ode ejects an electron by means of the photoelectric effect. This electron acceler-
ates across the potential difference between the photocathode and the first dynode, 
shown as being at 1200 V relative to the photocathode in Figure 40.12. This high-
energy electron strikes the dynode and ejects several more electrons. The same 
process is repeated through a series of dynodes at ever higher potentials until an 
electrical pulse is produced as millions of electrons strike the last dynode. The tube 
is therefore called a multiplier: one photon at the input has resulted in millions of 
electrons at the output.
 The photomultiplier tube is used in nuclear detectors to detect photons pro-
duced by the interaction of energetic charged particles or gamma rays with certain 
materials. It is also used in astronomy in a technique called photoelectric photometry. 
In that technique, the light collected by a telescope from a single star is allowed 
to fall on a photomultiplier tube for a time interval. The tube measures the total 
energy transferred by light during the time interval, which can then be converted 
to a luminosity of the star.
 The photomultiplier tube is being replaced in many astronomical observations 
with a charge-coupled device (CCD), which is the same device used in a digital cam-
era (Section 36.6). Half of the 2009 Nobel Prize in Physics was awarded to Willard 
S. Boyle (b. 1924) and George E. Smith (b. 1930) for their 1969 invention of the 
charge-coupled device. In a CCD, an array of pixels is formed on the silicon surface 
of an integrated circuit (Section 43.7). When the surface is exposed to light from an 

A plot of Kmax for photoelectrons 
versus frequency of incident light 
in a typical photoelectric effect 
experiment. 

ACTIVE FIGURE 40.11 Metal 1 Metal 2 Metal 3Kmax
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The data show a 
linear relationship 
between Kmax and f, 
with the slope the 
same for all metals.

Photons with frequency less than 
the cutoff frequency for a given 
metal do not have sufficient energy 
to eject an electron from the metal.

An incoming particle enters the 
scintillation crystal, where a 
collision results in a photon. The 
photon strikes the photocathode, 
which emits an electron by the 
photoelectric effect. 
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Figure 40.12  The multiplication of 
electrons in a photomultiplier tube.
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astronomical scene through a telescope or a terrestrial scene through a digital cam-
era, electrons generated by the photoelectric effect are caught in “traps” beneath 
the surface. The number of electrons is related to the intensity of the light striking 
the surface. A signal processor measures the number of electrons associated with 
each pixel and converts this information into a digital code that a computer can 
use to reconstruct and display the scene.
 The electron bombardment CCD camera allows higher sensitivity than a conventional 
CCD. In this device, electrons ejected from a photocathode by the photoelectric 
effect are accelerated through a high voltage before striking a CCD array. The 
higher energy of the electrons results in a very sensitive detector of low-intensity 
radiation.

Quick Quiz 40.3  Consider one of the curves in Active Figure 40.10. Suppose 
the intensity of the incident light is held fixed but its frequency is increased. 
Does the stopping potential in Active Figure 40.10 (a) remain fixed, (b) move 
to the right, or (c) move to the left?

Quick Quiz 40.4  Suppose classical physicists had the idea of plotting Kmax 
versus f as in Active Figure 40.11. Draw a graph of what the expected plot 
would look like, based on the wave model for light.

Example 40.3 The Photoelectric Effect for Sodium

A sodium surface is illuminated with light having a wavelength of 300 nm. As indicated in Table 40.1, the work function 
for sodium metal is 2.46 eV.

(A) Find the maximum kinetic energy of the ejected photoelectrons.

SOLUTION

Conceptualize  Imagine a photon striking the metal surface and ejecting an electron. The electron with the maximum 
energy is one near the surface that experiences no interactions with other particles in the metal that would reduce its 
energy on its way out of the metal.

Categorize  We evaluate the results using equations developed in this section, so we categorize this example as a substitu-
tion problem.

From Equation 40.9, find the maximum kinetic energy 
of an electron:

Kmax 5
hc
l
2 f 5

1 240 eV ? nm
300 nm

2 2.46 eV 5 1.67 eV

Calculate lc using Equation 40.10: lc 5
hc
f
5

1 240 eV ? nm
2.46 eV

5 504 nm

Find the energy of each photon in the illuminating light 
beam from Equation 40.5:

E 5 hf 5
hc
l

(B)  Find the cutoff wavelength lc for sodium.

SOLUTION

40.3 The Compton Effect
In 1919, Einstein concluded that a photon of energy E travels in a single direc-
tion and carries a momentum equal to E/c 5 hf/c. In 1923, Arthur Holly Compton 
(1892–1962) and Peter Debye (1884–1966) independently carried Einstein’s idea of 
photon momentum further.
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 Prior to 1922, Compton and his coworkers had accumulated evidence show-
ing that the classical wave theory of light failed to explain the scattering of x-rays 
from electrons. According to classical theory, electromagnetic waves of frequency 
f incident on electrons should have two effects: (1) radiation pressure (see Section 
34.5) should cause the electrons to accelerate in the direction of propagation of 
the waves, and (2) the oscillating electric field of the incident radiation should set 
the electrons into oscillation at the apparent frequency f 9, where f 9 is the frequency 
in the frame of the moving electrons. This apparent frequency is different from 
the frequency f of the incident radiation because of the Doppler effect (see Section 
17.4). Each electron first absorbs radiation as a moving particle and then reradi-
ates as a moving particle, thereby exhibiting two Doppler shifts in the frequency of 
radiation.
 Because different electrons move at different speeds after the interaction, 
depending on the amount of energy absorbed from the electromagnetic waves, 
the scattered wave frequency at a given angle to the incoming radiation should 
show a distribution of Doppler-shifted values. Contrary to this prediction, Comp-
ton’s experiments showed that at a given angle only one frequency of radiation is 
observed. Compton and his coworkers explained these experiments by treating 
photons not as waves but rather as point-like particles having energy hf and momen-
tum hf/c and by assuming the energy and momentum of the isolated system of the 
colliding photon–electron pair are conserved. Compton adopted a particle model 
for something that was well known as a wave, and today this scattering phenom-
enon is known as the Compton effect. Figure 40.13 shows the quantum picture of 
the collision between an individual x-ray photon of frequency f0 and an electron. 
In the quantum model, the electron is scattered through an angle f with respect 
to this direction as in a billiard-ball type of collision. (The symbol f used here is 
an angle and is not to be confused with the work function, which was discussed in 
the preceding section.) Compare Figure 40.13 with the two-dimensional collision 
shown in Active Figure 9.11.
 Figure 40.14 is a schematic diagram of the apparatus used by Compton. The 
x-rays, scattered from a carbon target, were diffracted by a rotating crystal spec-
trometer, and the intensity was measured with an ionization chamber that gen-
erated a current proportional to the intensity. The incident beam consisted of 
monochromatic x-rays of wavelength l0 5 0.071 nm. The experimental intensity-
versus- wavelength plots observed by Compton for four scattering angles (corre-
sponding to u in Fig. 40.13) are shown in Figure 40.15. The graphs for the three 
nonzero angles show two peaks, one at l0 and one at l9 . l0. The shifted peak at 
l9 is caused by the scattering of x-rays from free electrons, which was predicted by 
Compton to depend on scattering angle as

Arthur Holly Compton
American Physicist (1892–1962)
Compton was born in Wooster, Ohio, and 
attended Wooster College and Princeton 
University. He became the director of the 
laboratory at the University of Chicago, where 
experimental work concerned with sustained 
nuclear chain reactions was conducted. 
This work was of central importance to the 
construction of the first nuclear weapon. His 
discovery of the Compton effect led to his 
sharing of the 1927 Nobel Prize in Physics 
with Charles Wilson.
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The electron recoils just as if 
struck by a classical particle, 
revealing the particle-like 
nature of the photon.

Figure 40.13  The quantum model 
for x-ray scattering from an electron. 

The target scatters 
x-rays from the source 
through an angle u. 
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scattered radiation by 
measuring the angle a. 
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Figure 40.14  Schematic diagram 
of Compton’s apparatus. 
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 l r 2 l0 5
h

mec
11 2 cos u 2   (40.11)

where me is the mass of the electron. This expression is known as the Compton shift 
equation. The factor h/mec, called the Compton wavelength of the electron, has a 
currently accepted value of

lC 5
h

mec
5 0.002 43 nm

 The unshifted peak at l0 in Figure 40.15 is caused by x-rays scattered from elec-
trons tightly bound to the target atoms. This unshifted peak also is predicted by 
Equation 40.11 if the electron mass is replaced with the mass of a carbon atom, 
which is approximately 23 000 times the mass of the electron. Therefore, there is a 
wavelength shift for scattering from an electron bound to an atom, but it is so small 
that it was undetectable in Compton’s experiment.
 Compton’s measurements were in excellent agreement with the predictions of 
Equation 40.11. These results were the first to convince many physicists of the fun-
damental validity of quantum theory.

Quick Quiz 40.5  For any given scattering angle u, Equation 40.11 gives the 
same value for the Compton shift for any wavelength. Keeping that in mind, 
for which of the following types of radiation is the fractional shift in wave-
length at a given scattering angle the largest? (a) radio waves (b) microwaves 
(c) visible light (d) x-rays

Derivation of the Compton Shift Equation

We can derive the Compton shift equation by assuming the photon behaves like a 
particle and collides elastically with a free electron initially at rest as shown in Fig-
ure 40.13. The photon is treated as a particle having energy E 5 hf 5 hc/l and zero 
rest energy. We apply the isolated system models for energy and momentum to the 
photon and the electron. In the scattering process, the total energy and total linear 
momentum of the system are conserved. Applying the principle of conservation of 
energy to this process gives

hc
l0
5

hc
l r
1 Ke

where hc/l0 is the energy of the incident photon, hc/l9 is the energy of the scattered 
photon, and Ke is the kinetic energy of the recoiling electron. Because the electron 
may recoil at a speed comparable to that of light, we must use the relativistic expres-
sion Ke 5 (g 2 1)mec2 (Eq. 39.23). Therefore,

 
hc
l0
5

hc
l r
1 1g 2 1 2mec

2  (40.12)

where g 5 1/!1 2 1u2 /c 2 2  and u is the speed of the electron.
 Next, let’s apply the law of conservation of momentum to this collision, noting 
that the x and y components of momentum are each conserved independently. 
Equation 39.28 shows that the momentum of a photon has a magnitude p 5 E/c, 
and we know from Equation 40.5 that E 5 hf. Therefore, p 5 hf/c. Substituting lf 
for c (Eq. 16.12) in this expression gives p 5 h/l. Because the relativistic expression 
for the momentum of the recoiling electron is pe 5 gmeu (Eq. 39.19), we obtain the 
following expressions for the x and y components of linear momentum, where the 
angles are as described in Figure 40.13:

 x component: 
h
l0
5

h
l r

  cos u 1 gmeu cos f  (40.13)
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Figure 40.15  Scattered x-ray inten-
sity versus wavelength for Compton 
scattering at u 5 0°, 45°, 90°, and 
135°.
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 y component: 0 5
h
l r

  sin u 2 gmeu sin f  (40.14)

Eliminating u and f from Equations 40.12 through 40.14 gives a single expression 
that relates the remaining three variables (l9, l0, and u). After some algebra (see 
Problem 62), we obtain Equation 40.11.

Example 40.4 Compton Scattering at 45°

X-rays of wavelength l0 5 0.200 000 nm are scattered from a block of material. The scattered x-rays are observed at an 
angle of 45.0° to the incident beam. Calculate their wavelength.

SOLUTION

Conceptualize  Imagine the process in Figure 40.13, with the photon scattered at 45° to its original direction.

Categorize  We evaluate the result using an equation developed in this section, so we categorize this example as a substi-
tution problem.

Substitute numerical values: l r 5 0.200 000 3 1029 m 1
16.626 3 10234 J ? s 2 11 2 cos 45.0° 2
19.11 3 10231 kg 2 13.00 3 108 m/s 2

5 0.200 000 3 1029 m 1 7.10 3 10213 m 5 0.200 710 nm

Solve Equation 40.11 for the wavelength of the 
scattered x-ray:

(1)   l r 5 l0 1
h 11 2 cos u 2

mec

WHAT IF?  What if the detector is moved so that scattered x-rays are detected at an angle larger than 45°? Does the 
wavelength of the scattered x-rays increase or decrease as the angle u increases?

Answer  In Equation (1), if the angle u increases, cos u decreases. Consequently, the factor (1 2 cos u) increases. There-
fore, the scattered wavelength increases.
 We could also apply an energy argument to achieve this same result. As the scattering angle increases, more energy 
is transferred from the incident photon to the electron. As a result, the energy of the scattered photon decreases with 
increasing scattering angle. Because E 5 hf, the frequency of the scattered photon decreases, and because l 5 c/f, the 
wavelength increases.

40.4 The Nature of Electromagnetic Waves
In Section 36.1, we introduced the notion of competing models of light: particles 
and waves. Let’s expand on that earlier discussion. Phenomena such as the photo-
electric effect and the Compton effect offer ironclad evidence that when light (or 
other forms of electromagnetic radiation) and matter interact, the light behaves as 
if it were composed of particles having energy hf and momentum h/l. How can light 
be considered a photon (in other words, a particle) when we know it is a wave? On 
the one hand, we describe light in terms of photons having energy and momentum. 
On the other hand, light and other electromagnetic waves exhibit interference and 
diffraction effects, which are consistent only with a wave interpretation.
 Which model is correct? Is light a wave or a particle? The answer depends on the 
phenomenon being observed. Some experiments can be explained either better or 
solely with the photon model, whereas others are explained either better or solely 
with the wave model. We must accept both models and admit that the true nature of 
light is not describable in terms of any single classical picture. The same light beam 
that can eject photoelectrons from a metal (meaning that the beam consists of pho-
tons) can also be diffracted by a grating (meaning that the beam is a wave). In other 
words, the particle model and the wave model of light complement each other.
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 The success of the particle model of light in explaining the photoelectric effect 
and the Compton effect raises many other questions. If light is a particle, what is 
the meaning of the “frequency” and “wavelength” of the particle, and which of 
these two properties determines its energy and momentum? Is light simultaneously a 
wave and a particle? Although photons have no rest energy (a nonobservable quan-
tity because a photon cannot be at rest), is there a simple expression for the effective 
mass of a moving photon? If photons have effective mass, do they experience gravi-
tational attraction? What is the spatial extent of a photon, and how does an elec-
tron absorb or scatter one photon? Some of these questions can be answered, but 
others demand a view of atomic processes that is too pictorial and literal. Many of 
them stem from classical analogies such as colliding billiard balls and ocean waves 
breaking on a seashore. Quantum mechanics gives light a more flexible nature 
by treating the particle model and the wave model of light as both necessary and 
complementary. Neither model can be used exclusively to describe all properties of 
light. A complete understanding of the observed behavior of light can be attained 
only if the two models are combined in a complementary manner.

40.5 The Wave Properties of Particles
Students introduced to the dual nature of light often find the concept difficult 
to accept. In the world around us, we are accustomed to regarding such things as 
baseballs solely as particles and other things such as sound waves solely as forms 
of wave motion. Every large-scale observation can be interpreted by considering 
either a wave explanation or a particle explanation, but in the world of photons and 
electrons, such distinctions are not as sharply drawn.
 Even more disconcerting is that, under certain conditions, the things we unam-
biguously call “particles” exhibit wave characteristics. In his 1923 doctoral disserta-
tion, Louis de Broglie postulated that because photons have both wave and par-
ticle characteristics, perhaps all forms of matter have both properties. This highly 
revolutionary idea had no experimental confirmation at the time. According to 
de Broglie, electrons, just like light, have a dual particle–wave nature.
 In Section 40.3, we found that the momentum of a photon can be expressed as

p 5
h
l

This equation shows that the photon wavelength can be specified by its momentum: 
l 5 h/p. De Broglie suggested that material particles of momentum p have a char-
acteristic wavelength that is given by the same expression. Because the magnitude 
of the momentum of a particle of mass m and speed u is p 5 mu, the de Broglie 
 wavelength of that particle is5

 l 5
h
p
5

h
mu

 (40.15)

 Furthermore, in analogy with photons, de Broglie postulated that particles obey 
the Einstein relation E 5 hf, where E is the total energy of the particle. The fre-
quency of a particle is then

 f 5
E
h

 (40.16)

The dual nature of matter is apparent in Equations 40.15 and 40.16 because each 
contains both particle quantities (p and E) and wave quantities (l and f ).
 The problem of understanding the dual nature of matter and radiation is con-
ceptually difficult because the two models seem to contradict each other. This 

Louis de Broglie
French Physicist (1892–1987)
De Broglie was born in Dieppe, France. At 
the Sorbonne in Paris, he studied history in 
preparation for what he hoped would be a 
career in the diplomatic service. The world of 
science is lucky he changed his career path 
to become a theoretical physicist. De Broglie 
was awarded the Nobel Prize in Physics in 
1929 for his prediction of the wave nature of 
electrons.
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5The de Broglie wavelength for a particle moving at any speed u is l 5 h/gmu, where g 5 [1 2 (u2/c2)]21/2.
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problem as it applies to light was discussed earlier. The principle of complementar-
ity states that 

the wave and particle models of either matter or radiation complement each 
other.

Neither model can be used exclusively to describe matter or radiation adequately. 
Because humans tend to generate mental images based on their experiences from 
the everyday world (baseballs, water waves, and so forth), we use both descriptions 
in a complementary manner to explain any given set of data from the quantum 
world.

The Davisson–Germer Experiment

De Broglie’s 1923 proposal that matter exhibits both wave and particle properties 
was regarded as pure speculation. If particles such as electrons had wave proper-
ties, under the correct conditions they should exhibit diffraction effects. Only three 
years later, C. J. Davisson (1881–1958) and L. H. Germer (1896–1971) succeeded 
in measuring the wavelength of electrons. Their important discovery provided the 
first experimental confirmation of the waves proposed by de Broglie.
 Interestingly, the intent of the initial Davisson–Germer experiment was not to 
confirm the de Broglie hypothesis. In fact, their discovery was made by accident (as 
is often the case). The experiment involved the scattering of low-energy electrons 
(approximately 54 eV) from a nickel target in a vacuum. During one experiment, 
the nickel surface was badly oxidized because of an accidental break in the vacuum 
system. After the target was heated in a flowing stream of hydrogen to remove the 
oxide coating, electrons scattered by it exhibited intensity maxima and minima at 
specific angles. The experimenters finally realized that the nickel had formed large 
crystalline regions upon heating and that the regularly spaced planes of atoms in 
these regions served as a diffraction grating for electrons. (See the discussion of 
diffraction of x-rays by crystals in Section 38.5.)
 Shortly thereafter, Davisson and Germer performed more extensive diffrac-
tion measurements on electrons scattered from single-crystal targets. Their results 
showed conclusively the wave nature of electrons and confirmed the de Broglie 
relationship p 5 h/l. In the same year, G. P. Thomson (1892–1975) of Scotland 
also observed electron diffraction patterns by passing electrons through very thin 
gold foils. Diffraction patterns have since been observed in the scattering of helium 
atoms, hydrogen atoms, and neutrons. Hence, the wave nature of particles has been 
established in various ways.

Quick Quiz 40.6  An electron and a proton both moving at nonrelativistic 
speeds have the same de Broglie wavelength. Which of the following quan-
tities are also the same for the two particles? (a) speed (b) kinetic energy 
(c) momentum (d) frequency

Pitfall Prevention 40.3
What’s Waving?
If particles have wave properties, 
what’s waving? You are familiar with 
waves on strings, which are very 
concrete. Sound waves are more 
abstract, but you are likely comfort-
able with them. Electromagnetic 
waves are even more abstract, but at 
least they can be described in terms 
of physical variables and electric 
and magnetic fields. In contrast, 
waves associated with particles are 
completely abstract and cannot be 
associated with a physical variable. 
In Chapter 41, we describe the wave 
associated with a particle in terms of 
probability.

Example 40.5 Wavelengths for Microscopic and Macroscopic Objects

(A)  Calculate the de Broglie wavelength for an electron (me 5 9.11 3 10231 kg) moving at 1.00 3 107 m/s.

SOLUTION

Conceptualize  Imagine the electron moving through space. From a classical viewpoint, it is a particle under constant 
velocity. From the quantum viewpoint, the electron has a wavelength associated with it.

Categorize  We evaluate the result using an equation developed in this section, so we categorize this example as a substi-
tution problem.
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The Electron Microscope

A practical device that relies on the wave characteristics of electrons is the electron 
microscope. A transmission electron microscope, used for viewing flat, thin samples, 
is shown in Figure 40.16. In many respects, it is similar to an optical microscope; 
the electron microscope, however, has a much greater resolving power because it 
can accelerate electrons to very high kinetic energies, giving them very short wave-
lengths. No microscope can resolve details that are significantly smaller than the 
wavelength of the waves used to illuminate the object. Typically, the wavelengths 

Evaluate the wavelength using 
Equation  40.15: l 5

h
meu

5
6.63 3 10234 J ? s

19.11 3 10231 kg 2 11.00 3 107 m/s 2 5 7.27 3 10211 m

Evaluate the de Broglie wavelength using 
Equation 40.15:

l 5
h

mu
5

6.63 3 10234 J ? s

150 3 1023 kg 2 140 m/s 2 5 3.3 3 10234 m

The wave nature of this electron could be detected by diffraction techniques such as those in the Davisson–Germer 
experiment.

(B)  A rock of mass 50 g is thrown with a speed of 40 m/s. What is its de Broglie wavelength?

SOLUTION

This wavelength is much smaller than any aperture through which the rock could possibly pass. Hence, we could not 
observe diffraction effects, and as a result, the wave properties of large-scale objects cannot be observed.

Figure 40.16  (a) Diagram of a transmission electron microscope for viewing a thinly sectioned sample. The “lenses” that control the electron 
beam are magnetic deflection coils. (b) An electron microscope in use.
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of electrons are approximately 100 times shorter than those of the visible light 
used in optical microscopes. As a result, an electron microscope with ideal lenses 
would be able to distinguish details approximately 100 times smaller than those 
distinguished by an optical microscope. (Electromagnetic radiation of the same 
wavelength as the electrons in an electron microscope is in the x-ray region of the 
spectrum.)
 The electron beam in an electron microscope is controlled by electrostatic or 
magnetic deflection, which acts on the electrons to focus the beam and form an 
image. Rather than examining the image through an eyepiece as in an optical 
microscope, the viewer looks at an image formed on a monitor or other type of 
display screen. Figure 40.17 shows the amazing detail available with an electron 
microscope.

40.6 A New Model: The Quantum Particle
Because in the past we considered the particle and wave models to be distinct, the 
discussions presented in previous sections may be quite disturbing. The notion that 
both light and material particles have both particle and wave properties does not 
fit with this distinction. Experimental evidence shows, however, that this conclu-
sion is exactly what we must accept. The recognition of this dual nature leads to 
a new model, the quantum particle, which is a combination of the particle model 
introduced in Chapter 2 and the wave model discussed in Chapter 16. In this new 
model, entities have both particle and wave characteristics, and we must choose one 
appropriate behavior—particle or wave—to understand a particular phenomenon.
 In this section, we shall explore this model in a way that might make you more 
comfortable with this idea. We shall do so by demonstrating that an entity that 
exhibits properties of a particle can be constructed from waves.
 Let’s first recall some characteristics of ideal particles and ideal waves. An ideal 
particle has zero size. Therefore, an essential feature of a particle is that it is local-
ized in space. An ideal wave has a single frequency and is infinitely long as suggested 
by Figure 40.18a. Therefore, an ideal wave is unlocalized in space. A localized entity 
can be built from infinitely long waves as follows. Imagine drawing one wave along 
the x axis, with one of its crests located at x 5 0, as at the top of Figure 40.18b. Now 
draw a second wave, of the same amplitude but a different frequency, with one of 
its crests also at x 5 0. As a result of the superposition of these two waves, beats exist 
as the waves are alternately in phase and out of phase. (Beats were discussed in 

Figure 40.17  A color-enhanced 
electron microscope photograph 
shows significant detail of a storage 
mite, Lepidoglyphus destructor. The 
mite is so small, with a maximum 
length of 0.75 mm, that ordinary 
microscopes do not reveal minute 
anatomical details.
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Wave 1:

Wave 2:

Superposition:

x

x

x

The regions of space at which 
there is constructive interference 
are different from those at which 
there is destructive interference.

a

b

Figure 40.18  (a) An idealized wave 
of an exact single frequency is the 
same throughout space and time. 
(b)  If two ideal waves with slightly 
different frequencies are combined, 
beats result (Section 18.7). 
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Section 18.7.) The bottom curve in Figure 40.18b shows the results of superposing 
these two waves.
 Notice that we have already introduced some localization by superposing the 
two waves. A single wave has the same amplitude everywhere in space; no point 
in space is any different from any other point. By adding a second wave, however, 
there is something different about the in-phase points compared with the out-of-
phase points.
 Now imagine that more and more waves are added to our original two, each new 
wave having a new frequency. Each new wave is added so that one of its crests is at 
x 5 0 with the result that all the waves add constructively at x 5 0. When we add a 
large number of waves, the probability of a positive value of a wave function at any 
point x 2 0 is equal to the probability of a negative value, and there is destructive 
interference everywhere except near x 5 0, where all the crests are superposed. The 
result is shown in Active Figure 40.19. The small region of constructive interference 
is called a wave packet. This localized region of space is different from all other 
regions. We can identify the wave packet as a particle because it has the localized 
nature of a particle! The location of the wave packet corresponds to the particle’s 
position.
 The localized nature of this entity is the only characteristic of a particle that was 
generated with this process. We have not addressed how the wave packet might 
achieve such particle characteristics as mass, electric charge, and spin. Therefore, 
you may not be completely convinced that we have built a particle. As further evi-
dence that the wave packet can represent the particle, let’s show that the wave 
packet has another characteristic of a particle.
 To simplify the mathematical representation, we return to our combination of 
two waves. Consider two waves with equal amplitudes but different angular frequen-
cies v1 and v2. We can represent the waves mathematically as

y1 5 A cos (k1x 2 v1t)    and    y2 5 A cos (k2x 2 v2t)

where, as in Chapter 16, k 5 2p/l and v 5 2pf. Using the superposition principle, 
let’s add the waves:

y 5 y1 1 y2 5 A cos (k1x 2 v1t) 1 A cos (k2x 2 v2t)

It is convenient to write this expression in a form that uses the trigonometric 
identity

cos a 1 cos b 5 2 cos aa 2 b
2

b cos aa 1 b
2

b

Letting a 5 k1x 2 v1t and b 5 k2x 2 v2t gives

y 5 2A cos c 1k 1x 2 v1t 2 2 1k 2x 2 v2t 2
2

d  cos c 1k 1x 2 v1t 2 1 1k 2x 2 v2t 2
2

d

 y 5 c2A cos aDk
2

 x 2
Dv

2
 tb d  cos ak 1 1 k 2

2
 x 2

v1 1 v2

2
 tb  (40.17)

where Dk 5 k1 2 k2 and Dv 5 v1 2 v2. The second cosine factor represents a wave 
with a wave number and frequency that are equal to the averages of the values for 
the individual waves.

x

If a large number of waves are com-
bined, the result is a wave packet, 
which represents a particle.

ACTIVE FIGURE 40.19
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 In Equation 40.17, the factor in square brackets represents the envelope of the 
wave as shown by the dashed curve in Active Figure 40.20. This factor also has the 
mathematical form of a wave. This envelope of the combination can travel through 
space with a different speed than the individual waves. As an extreme example of 
this possibility, imagine combining two identical waves moving in opposite direc-
tions. The two waves move with the same speed, but the envelope has a speed of zero 
because we have built a standing wave, which we studied in Section 18.2.
 For an individual wave, the speed is given by Equation 16.11,

 vphase 5
v

k
 (40.18)

This speed is called the phase speed because it is the rate of advance of a crest on 
a single wave, which is a point of fixed phase. Equation 40.18 can be interpreted as 
follows: the phase speed of a wave is the ratio of the coefficient of the time variable 
t to the coefficient of the space variable x in the equation representing the wave, 
y 5 A cos (kx 2 vt).
 The factor in brackets in Equation 40.17 is of the form of a wave, so it moves with 
a speed given by this same ratio:

vg 5
coefficient of time variable t

coefficient of space variable x
5
1Dv/2 2
1Dk/2 2 5

Dv

Dk

The subscript g on the speed indicates that it is commonly called the group speed, 
or the speed of the wave packet (the group of waves) we have built. We have gener-
ated this expression for a simple addition of two waves. When a large number of 
waves are superposed to form a wave packet, this ratio becomes a derivative:

 vg 5
dv
dk

 (40.19)

Multiplying the numerator and the denominator by U, where U 5 h/2p, gives

 vg 5
Udv
Udk

5
d 1Uv 2
d 1Uk 2  (40.20)

Let’s look at the terms in the parentheses of Equation 40.20 separately. For the 
numerator,

U v 5
h

2p
12pf 2 5 hf 5 E

For the denominator,

U k 5
h

2p
a2p
l
b 5 h

l
5 p

Therefore, Equation 40.20 can be written as

 vg 5
d 1Uv 2
d 1U k 2 5

dE
dp

 (40.21)

Phase speed of a wave  
in a wave packet

Group speed of a wave packet 

x

The envelope function 
is described by

–
2
k( x )2

ωt2A cos .� �
The beat pattern of Figure 40.18b, 
with an envelope function (dashed 
curve) superimposed.

ACTIVE FIGURE 40.20
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Because we are exploring the possibility that the envelope of the combined waves 
represents the particle, consider a free particle moving with a speed u that is small 
compared with the speed of light. The energy of the particle is its kinetic energy:

E 5 1
2mu2 5

p2

2m

Differentiating this equation with respect to p gives

 vg 5
dE
dp
5

d
dp
a p2

2m
b 5 1

2m
12p 2 5 u  (40.22)

Therefore, the group speed of the wave packet is identical to the speed of the par-
ticle that it is modeled to represent, giving us further confidence that the wave 
packet is a reasonable way to build a particle.

Quick Quiz 40.7  As an analogy to wave packets, consider an “automobile 
packet” that occurs near the scene of an accident on a freeway. The phase 
speed is analogous to the speed of individual automobiles as they move 
through the backup caused by the accident. The group speed can be identi-
fied as the speed of the leading edge of the packet of cars. For the automo-
bile packet, is the group speed (a) the same as the phase speed, (b) less than 
the phase speed, or (c) greater than the phase speed?

40.7 The Double-Slit Experiment Revisited
Wave–particle duality is now a firmly accepted concept reinforced by experimental 
results, including those of the Davisson–Germer experiment. As with the postu-
lates of special relativity, however, this concept often leads to clashes with familiar 
thought patterns we hold from everyday experience.
 One way to crystallize our ideas about the electron’s wave–particle duality is 
through an experiment in which electrons are fired at a double slit. Consider a 
parallel beam of mono-energetic electrons incident on a double slit as in Figure 
40.21. Let’s assume the slit widths are small compared with the electron wavelength 
so that we need not worry about diffraction maxima and minima as discussed for 
light in Section 38.2. An electron detector screen is positioned far from the slits at 
a distance much greater than d, the separation distance of the slits. If the detector 
screen collects electrons for a long enough time, we find a typical wave interference 
pattern for the counts per minute, or probability of arrival of electrons. Such an 
interference pattern would not be expected if the electrons behaved as classical 
particles, giving clear evidence that electrons are interfering, a distinct wave-like 
behavior.
 If we measure the angles u at which the maximum intensity of electrons arrives at 
the detector screen in Figure 40.21, we find they are described by exactly the same 

Detector
screen

d

Electrons

u

u

The curve 
represents 
the number 
of electrons 
detected per 
unit time.

Figure 40.21  Electron interfer-
ence. The slit separation d is much 
greater than the individual slit 
widths and much less than the dis-
tance between the slit and the detec-
tor screen.
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equation as that for light, d sin u 5 ml (Eq. 37.2), where m is the order number and 
l is the electron wavelength. Therefore, the dual nature of the electron is clearly 
shown in this experiment: the electrons are detected as particles at a localized spot 
on the detector screen at some instant of time, but the probability of arrival at that 
spot is determined by finding the intensity of two interfering waves.
 Now imagine that we lower the beam intensity so that one electron at a time 
arrives at the double slit. It is tempting to assume the electron goes through either 
slit 1 or slit 2. You might argue that there are no interference effects because there 
is not a second electron going through the other slit to interfere with the first. 
This assumption places too much emphasis on the particle model of the electron, 
however. The interference pattern is still observed if the time interval for the mea-
surement is sufficiently long for many electrons to arrive at the detector screen! 
This situation is illustrated by the computer-simulated patterns in Active Figure 
40.22 where the interference pattern becomes clearer as the number of electrons 
reaching the detector screen increases. Hence, our assumption that the electron is 
localized and goes through only one slit when both slits are open must be wrong (a 
painful conclusion!).
 To interpret these results, we are forced to conclude that an electron interacts 
with both slits simultaneously. If you try to determine experimentally which slit the 
electron goes through, the act of measuring destroys the interference pattern. It 
is impossible to determine which slit the electron goes through. In effect, we can 
say only that the electron passes through both slits! The same arguments apply to 
photons.
 If we restrict ourselves to a pure particle model, it is an uncomfortable notion 
that the electron can be present at both slits at once. From the quantum particle 
model, however, the particle can be considered to be built from waves that exist 
throughout space. Therefore, the wave components of the electron are present at 
both slits at the same time, and this model leads to a more comfortable interpreta-
tion of this experiment.

40.8 The Uncertainty Principle
Whenever one measures the position or velocity of a particle at any instant, exper-
imental uncertainties are built into the measurements. According to classical 
mechanics, there is no fundamental barrier to an ultimate refinement of the appa-
ratus or experimental procedures. In other words, it is possible, in principle, to 
make such measurements with arbitrarily small uncertainty. Quantum theory pre-
dicts, however, that it is fundamentally impossible to make simultaneous measure-
ments of a particle’s position and momentum with infinite accuracy.
 In 1927, Werner Heisenberg (1901–1976) introduced this notion, which is now 
known as the Heisenberg uncertainty principle:

If a measurement of the position of a particle is made with uncertainty Dx and 
a simultaneous measurement of its x component of momentum is made with 
uncertainty Dpx, the product of the two uncertainties can never be smaller 
than U/2:

 Dx Dpx $
U
2

 (40.23)

That is, it is physically impossible to measure simultaneously the exact position and 
exact momentum of a particle. Heisenberg was careful to point out that the ines-
capable uncertainties Dx and Dpx do not arise from imperfections in practical mea-
suring instruments. Rather, the uncertainties arise from the quantum structure of 
matter.
 To understand the uncertainty principle, imagine that a particle has a single 
wavelength that is known exactly. According to the de Broglie relation, l 5 h/p, we 

After just 28 electrons, no 
regular pattern appears

After 1 000 electrons, a pattern 
of fringes begins to appear.

Two-slit electron pattern
(experimental results)

After 10 000 electrons, the 
pattern looks very much 
like the experimental 
results shown in      .d
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(a)–(c) Computer-simulated interfer-
ence patterns for a beam of electrons 
incident on a double slit. (d) Photo-
graph of a double-slit interference 
pattern produced by electrons.

ACTIVE FIGURE 40.22
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would therefore know the momentum to be precisely p 5 h/l. In reality, a single-
wavelength wave would exist throughout space. Any region along this wave is the 
same as any other region (Fig. 40.18a). Suppose we ask, Where is the particle this 
wave represents? No special location in space along the wave could be identified 
with the particle; all points along the wave are the same. Therefore, we have infinite 
uncertainty in the position of the particle, and we know nothing about its location. 
Perfect knowledge of the particle’s momentum has cost us all information about its 
location.
 In comparison, now consider a particle whose momentum is uncertain so that it 
has a range of possible values of momentum. According to the de Broglie relation, 
the result is a range of wavelengths. Therefore, the particle is not represented by a 
single wavelength, but rather by a combination of wavelengths within this range. 
This combination forms a wave packet as we discussed in Section 40.6 and illus-
trated in Active Figure 40.19. If you were asked to determine the location of the 
particle, you could only say that it is somewhere in the region defined by the wave 
packet because there is a distinct difference between this region and the rest of 
space. Therefore, by losing some information about the momentum of the particle, 
we have gained information about its position.
 If you were to lose all information about the momentum, you would be adding 
together waves of all possible wavelengths, resulting in a wave packet of zero length. 
Therefore, if you know nothing about the momentum, you know exactly where the 
particle is.
 The mathematical form of the uncertainty principle states that the product of 
the uncertainties in position and momentum is always larger than some minimum 
value. This value can be calculated from the types of arguments discussed above, 
and the result is the value of U/2 in Equation 40.23.
 Another form of the uncertainty principle can be generated by reconsidering 
Active Figure 40.19. Imagine that the horizontal axis is time rather than spatial 
position x. We can then make the same arguments that were made about knowl-
edge of wavelength and position in the time domain. The corresponding variables 
would be frequency and time. Because frequency is related to the energy of the 
particle by E 5 hf, the uncertainty principle in this form is

 DE Dt $
U
2

 (40.24)

 The form of the uncertainty principle given in Equation 40.24 suggests that 
energy conservation can appear to be violated by an amount DE as long as it is only 
for a short time interval Dt consistent with that equation. We shall use this notion to 
estimate the rest energies of particles in Chapter 46.

Quick Quiz 40.8  A particle’s location is measured and specified as being 
exactly at x 5 0, with zero uncertainty in the x direction. How does that loca-
tion affect the uncertainty of its velocity component in the y direction? (a) It 
does not affect it. (b) It makes it infinite. (c) It makes it zero.

Werner Heisenberg
German Theoretical Physicist 
(1901–1976)
Heisenberg obtained his Ph.D. in 1923 at the 
University of Munich. While other physicists 
tried to develop physical models of quan-
tum phenomena, Heisenberg developed an 
abstract mathematical model called matrix 
mechanics. The more widely accepted physi-
cal models were shown to be equivalent to 
matrix mechanics. Heisenberg made many 
other significant contributions to physics, 
including his famous uncertainty principle 
for which he received a Nobel Prize in Phys-
ics in 1932, the prediction of two forms of 
molecular hydrogen, and theoretical models 
of the nucleus.
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Pitfall Prevention 40.4
The Uncertainty Principle
Some students incorrectly interpret 
the uncertainty principle as meaning 
that a measurement interferes with 
the system. For example, if an elec-
tron is observed in a hypothetical 
experiment using an optical micro-
scope, the photon used to see the 
electron collides with it and makes 
it move, giving it an uncertainty in 
momentum. This scenario does not 
represent the basis of the uncer-
tainty principle. The uncertainty 
principle is independent of the mea-
surement process and is based on 
the wave nature of matter.

Example 40.6 Locating an Electron

The speed of an electron is measured to be 5.00 3 103 m/s to an accuracy of 0.003 00%. Find the minimum uncertainty 
in determining the position of this electron.

SOLUTION

Conceptualize  The fractional value given for the accuracy of the electron’s speed can be interpreted as the fractional 
uncertainty in its momentum. This uncertainty corresponds to a minimum uncertainty in the electron’s position through 
the uncertainty principle. continued
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40.6 cont.

Categorize  We evaluate the result using concepts developed in this section, so we categorize this example as a substitu-
tion problem.

Solve Equation 40.23 for the uncertainty 
in the electron’s position and substitute 
numerical values:

Dx $
U

2 Dpx
5

U
2mfvx

5
1.055 3 10234 J ? s

2 19.11 3 10231 kg 2 10.000 030 0 2 15.00 3 103 m/s 2
5 3.86 3 1024 m 5  0.386 mm

Assume the electron is moving along the 
x axis and find the uncertainty in px, let-
ting f represent the accuracy of the mea-
surement of its speed:

Dpx 5 m Dvx 5 mfvx

Example 40.7 The Line Width of Atomic Emissions

Atoms have quantized energy levels similar to those of Planck’s oscillators, although the energy levels of an atom are 
usually not evenly spaced. When an atom makes a transition between states, energy is emitted in the form of a photon. 
Although an excited atom can radiate at any time from t 5 0 to t 5 ,̀ the average time interval after excitation during 
which an atom radiates is called the lifetime t. If t 5 1.0 3 1028 s, use the uncertainty principle to compute the line 
width Df produced by this finite lifetime.

SOLUTION

Conceptualize  The lifetime t given for the excited state can be interpreted as the uncertainty Dt in the time at which 
the transition occurs. This uncertainty corresponds to a minimum uncertainty in the frequency of the radiated photon 
through the uncertainty principle.

Categorize  We evaluate the result using concepts developed in this section, so we categorize this example as a substitu-
tion problem.

Substitute for the lifetime of the excited state: Df $
1

4p 11.0 3 1028 s 2 5 8.0 3 106 Hz

Use Equation 40.24 to substitute for the uncertainty in 
the photon’s energy, giving the minimum value of Df:

Df $
1
h

  
U

2 Dt
5

1
h

  
h/2p
2 Dt

5
1

4p Dt
5

1
4pt

Use Equation 40.5 to relate the uncertainty in the pho-
ton’s frequency to the uncertainty in its energy:

E 5 hf   S   DE 5 h Df   S   Df 5
DE
h

WHAT IF?  What if this same lifetime were associated with a transition that emits a radio wave rather than a visible light 
wave from an atom? Is the fractional line width Df/f larger or smaller than for the visible light?

Answer  Because we are assuming the same lifetime for both transitions, Df is independent of the frequency of radiation. 
Radio waves have lower frequencies than light waves, so the ratio Df/f will be larger for the radio waves. Assuming a light-
wave frequency f of 6.00 3 1014 Hz, the fractional line width is

Df

f
 5

8.0 3 106 Hz
6.00 3 1014 Hz

5 1.3 3 1028

This narrow fractional line width can be measured with a sensitive interferometer. Usually, however, temperature and 
pressure effects overshadow the natural line width and broaden the line through mechanisms associated with the Dop-
pler effect and collisions.
 Assuming a radio-wave frequency f of 94.7 3 106 Hz, the fractional line width is

Df

f
5

8.0 3 106 Hz
94.7 3 106 Hz

5 8.4 3 1022

Therefore, for the radio wave, this same absolute line width corresponds to a fractional line width of more than 8%.
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Summary

The characteristics of blackbody radia-
tion cannot be explained using clas-
sical concepts. Planck introduced the 
quantum concept and Planck’s constant 
h when he assumed atomic oscillators 
existing only in discrete energy states 
were responsible for this radiation. In 
Planck’s model, radiation is emitted in 
single quantized packets whenever an 
oscillator makes a transition between 
discrete energy states. The energy of a 
packet is

E 5 hf (40.5)

where f is the frequency of the oscil-
lator. Einstein successfully extended 
Planck’s quantum hypothesis to the 
standing waves of electromagnetic radi-
ation in a cavity used in the blackbody 
radiation model.

The photoelectric effect is a process whereby electrons are ejected 
from a metal surface when light is incident on that surface. In Einstein’s 
model, light is viewed as a stream of particles, or photons, each having 
energy E 5 hf, where h is Planck’s constant and f is the frequency. The 
maximum kinetic energy of the ejected photoelectron is

 Kmax 5 hf 2 f (40.9)

where f is the work function of the metal.

Light has a dual nature in that it has both wave and 
particle characteristics. Some experiments can be 
explained either better or solely by the particle model, 
whereas others can be explained either better or solely 
by the wave model.

Every object of mass m and momentum p 5 mu has wave 
properties, with a de Broglie wavelength given by

 l 5
h
p
5

h
mu

 (40.15)

By combining a large number of waves, a single region of 
constructive interference, called a wave packet, can be cre-
ated. The wave packet carries the characteristic of localiza-
tion like a particle does, but it has wave properties because 
it is built from waves. For an individual wave in the wave 
packet, the phase speed is

vphase 5
v

k
 (40.18)

For the wave packet as a whole, the group speed is

 vg 5
dv
dk

 (40.19)

For a wave packet representing a particle, the group speed 
can be shown to be the same as the speed of the particle.

The Heisenberg uncertainty principle states that 
if a measurement of the position of a particle is 
made with uncertainty Dx and a simultaneous 
measurement of its linear momentum is made with 
uncertainty Dpx, the product of the two uncertain-
ties is restricted to

 Dx Dpx $
U
2

 (40.23)

Another form of the uncertainty principle relates 
measurements of energy and time:

 DE Dt $
U
2

 (40.24)

X-rays are scattered at various angles by electrons in a target. In such
a scattering event, a shift in wavelength is observed for the scattered
x-rays, a phenomenon known as the Compton effect. Classical phys-
ics does not predict the correct behavior in this effect. If the x-ray is 
treated as a photon, conservation of energy and linear momentum 
applied to the photon–electron collisions yields, for the Compton shift,

l r 2 l0 5
h

mec
11 2 cos u 2  (40.11)

where me is the mass of the electron, c is the speed of light, and u is the 
scattering angle.

Concepts and Principles
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the frequency of the scattered photon (a) lower, (b) higher, 
or (c) unchanged?

 9. Which of the following statements are true according to 
the uncertainty principle? More than one statement may 
be correct. (a) It is impossible to simultaneously determine 
both the position and the momentum of a particle along 
the same axis with arbitrary accuracy. (b) It is impossible 
to simultaneously determine both the energy and momen-
tum of a particle with arbitrary accuracy. (c) It is impossi-
ble to determine a particle’s energy with arbitrary accuracy 
in a finite amount of time. (d) It is impossible to measure 
the position of a particle with arbitrary accuracy in a finite 
amount of time. (e) It is impossible to simultaneously mea-
sure both the energy and position of a particle with arbi-
trary accuracy.

 10. A proton, an electron, and a helium nucleus all move at 
speed v. Rank their de Broglie wavelengths from largest to 
smallest.

 11. Consider (a) an electron (b) a photon, and (c) a proton, 
all moving in vacuum. Choose all correct answers for 
each question. (i) Which of the three possess rest energy? 
(ii) Which have charge? (iii) Which carry energy? (iv) Which 
carry momentum? (v) Which move at the speed of light? 
(vi) Which have a wavelength characterizing their motion?

 12. An electron and a proton, moving in opposite directions, 
are accelerated from rest through the same potential dif-
ference. Which particle has the longer wavelength? (a) The 
electron does. (b) The proton does. (c) Both are the same. 
(d) Neither has a wavelength.

 13. Rank the wavelengths of the following quantum particles 
from the largest to the smallest. If any have equal wave-
lengths, display the equality in your ranking. (a) a photon 
with energy 3 eV (b) an electron with kinetic energy 3 eV 
(c) a proton with kinetic energy 3 eV (d) a photon with 
energy 0.3 eV (e) an electron with momentum 3 eV/c

 14. Both an electron and a proton are accelerated to the same 
speed, and the experimental uncertainty in the speed is 
the same for the two particles. The positions of the two par-
ticles are also measured. Is the minimum possible uncer-
tainty in the electron’s position (a) less than the minimum 
possible uncertainty in the proton’s position, (b) the same 
as that for the proton, (c) more than that for the proton, or 
(d) impossible to tell from the given information?

 1. Which of the following phenomena most clearly demon-
strates the particle nature of light? (a) diffraction (b) the 
photoelectric effect (c) polarization (d) interference 
(e) refraction

 2. Which of the following phenomena most clearly demon-
strates the wave nature of electrons? (a) the photoelec-
tric effect (b) blackbody radiation (c) the Compton effect 
(d) diffraction of electrons by crystals (e) none of those 
answers

 3. In a Compton scattering experiment, a photon of energy 
E is scattered from an electron at rest. After the scatter-
ing event occurs, which of the following statements is 
true? (a) The frequency of the photon is greater than E/h. 
(b) The energy of the photon is less than E. (c) The wave-
length of the photon is less than hc/E. (d) The momentum 
of the photon increases. (e) None of those statements is 
true.

 4. In a certain experiment, a filament in an evacuated light-
bulb carries a current I1 and you measure the spectrum 
of light emitted by the filament, which behaves as a black 
body at temperature T1. The wavelength emitted with high-
est intensity (symbolized by lmax) has the value l1. You 
then increase the potential difference across the filament 
by a factor of 8, and the current increases by a factor of 2. 
(i) After this change, what is the new value of the tempera-
ture of the filament? (a) 16T1 (b) 8T1 (c) 4T1 (d) 2T1 (e) still 
T1 (ii) What is the new value of the wavelength emitted with 
highest intensity? (a) 4l1 (b) 2l1 (c) l1 (d) 12l1 (e) 14l1

 5. What is the de Broglie wavelength of an electron acceler-
ated from rest through a potential difference of 50.0 V? 
(a) 0.100 nm (b) 0.139 nm (c) 0.174 nm (d) 0.834 nm 
(e) none of those answers

 6. A monochromatic light beam is incident on a barium tar-
get that has a work function of 2.50 eV. If a potential differ-
ence of 1.00 V is required to turn back all the ejected elec-
trons, what is the wavelength of the light beam? (a) 355 nm 
(b) 497 nm (c) 744 nm (d) 1.42 pm (e) none of those 
answers

 7. Which of the following is most likely to cause sunburn by 
delivering more energy to individual molecules in skin 
cells? (a) infrared light (b) visible light (c) ultraviolet light 
(d) microwaves (e) Choices (a) through (d) are equally 
likely.

 8. An x-ray photon is scattered by an originally stationary elec-
tron. Relative to the frequency of the incident photon, is 

Objective Questions denotes answer available in Student 
Solutions Manual/Study Guide

Conceptual Questions denotes answer available in Student 
Solutions Manual/Study Guide

 1. The classical model of blackbody radiation given by the 
Rayleigh–Jeans law has two major flaws. (a) Identify the 
flaws and (b) explain how Planck’s law deals with them.

 2. All objects radiate energy. Why, then, are we not able to see 
all objects in a dark room?

 3. (a) What does the slope of the lines in Active Figure 40.11 
represent? (b) What does the y intercept represent? (c) How 
would such graphs for different metals compare with one 
another?

 4. If the photoelectric effect is observed for one metal, can 
you conclude that the effect will also be observed for 
another metal under the same conditions? Explain.
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as you turn an object. They are produced by a wide vari-
ety of intricate structures in different species. Problem 58 
in Chapter 38 describes the structures that produce iri-
descence in a peacock feather. These structures were all 
unknown until the invention of the electron microscope. 
Explain why light microscopes cannot reveal them.

 5. In the photoelectric effect, explain why the stopping 
potential depends on the frequency of light but not on the 
intensity.

 6. Why does the existence of a cutoff frequency in the photo-
electric effect favor a particle theory for light over a wave 
theory?

 7. Which has more energy, a photon of ultraviolet radiation 
or a photon of yellow light? Explain.

 8. How does the Compton effect differ from the photoelec-
tric effect?

 9. Is an electron a wave or a particle? Support your answer by 
citing some experimental results.

 10. Suppose a photograph were made of a person’s face using 
only a few photons. Would the result be simply a very faint 
image of the face? Explain your answer.

 11. Why is an electron microscope more suitable than an opti-
cal microscope for “seeing” objects less than 1 mm in size?

 12. Is light a wave or a particle? Support your answer by citing 
specific experimental evidence.

 13. If matter has a wave nature, why is this wave-like character-
istic not observable in our daily experiences?

 14. Why was the demonstration of electron diffraction by 
Davisson and Germer an important experiment?

 15. Iridescence is the phenomenon that gives shining colors to 
the feathers of peacocks, hummingbirds (see page 1084), 
resplendent quetzals, and even ducks and grackles. With-
out pigments, it colors Morpho butterflies (Fig. CQ40.15), 
Urania moths, some beetles and flies, rainbow trout, and 
mother-of-pearl in abalone shells. Iridescent colors change 

 16. In describing the passage of electrons through a slit and 
arriving at a screen, physicist Richard Feynman said that 
“electrons arrive in lumps, like particles, but the probabil-
ity of arrival of these lumps is determined as the intensity 
of the waves would be. It is in this sense that the electron 
behaves sometimes like a particle and sometimes like a 
wave.” Elaborate on this point in your own words. For fur-
ther discussion, see R. Feynman, The Character of Physical 
Law (Cambridge, MA: MIT Press, 1980), chap. 6.

 17. The opening photograph for this chapter shows a filament 
of a lightbulb in operation. Look carefully at the last turns 
of wire at the upper and lower ends of the filament. Why 
are these turns dimmer than the others?

Problems

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

denotes Master It tutorial available in Enhanced WebAssign

denotes guided problem

denotes “paired problems” that develop reasoning with 
symbols and numerical values

 The problems found in this chapter may be assigned 
online in Enhanced WebAssign
1. denotes straightforward problem; 2. denotes intermediate problem; 
3. denotes challenging problem 
1.  full solution available in the Student Solutions Manual/Study Guide

1.  denotes problems most often assigned in Enhanced WebAssign; 
these provide students with targeted feedback and either a Master It 
tutorial or a Watch It solution video.

shaded

Section 40.1  Blackbody Radiation and Planck’s Hypothesis

 1. The human eye is most sensitive to 560-nm (green) light. 
What is the temperature of a black body that would radiate 
most intensely at this wavelength?

 2.  Model the tungsten filament of a lightbulb as a black 
body at temperature 2 900 K. (a) Determine the wavelength 
of light it emits most strongly. (b) Explain why the answer 
to part (a) suggests that more energy from the lightbulb 
goes into infrared radiation than into visible light.

 3. Lightning produces a maximum air temperature on the 
order of 104 K, whereas a nuclear explosion produces a 
temperature on the order of 107 K. (a) Use Wien’s displace-
ment law to find the order of magnitude of the wavelength 
of the thermally produced photons radiated with greatest 
intensity by each of these sources. (b) Name the part of the 
electromagnetic spectrum where you would expect each to 
radiate most strongly.

 4.  Figure P40.4 on page 1214 shows the spectrum of 
light emitted by a firefly. (a) Determine the temperature of 

Figure CQ40.15
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 13. Review. This problem is about how strongly matter is 
coupled to radiation, the subject with which quantum 
mechanics began. For a simple model, consider a solid iron 
sphere 2.00 cm in radius. Assume its temperature is always 
uniform throughout its volume. (a) Find the mass of the 
sphere. (b) Assume the sphere is at 20.0°C and has emissiv-
ity 0.860. Find the power with which it radiates electromag-
netic waves. (c) If it were alone in the Universe, at what rate 
would the sphere’s temperature be changing? (d) Assume 
Wien’s law describes the sphere. Find the wavelength 
lmax of electromagnetic radiation it emits most strongly. 
Although it emits a spectrum of waves having all different 
wavelengths, assume its power output is carried by photons 
of wavelength lmax. Find (e) the energy of one photon and 
(f) the number of photons it emits each second.

 14.  Show that at long wavelengths, Planck’s radiation law 
(Eq. 40.6) reduces to the Rayleigh–Jeans law (Eq. 40.3).

 15. A simple pendulum has a length of 1.00 m and a mass of 
1.00 kg. The maximum horizontal displacement of the 
pendulum bob from equilibrium is 3.00 cm. Calculate the 
quantum number n for the pendulum.

Section 40.2  The Photoelectric Effect

 16. The work function for zinc is 4.31 eV. (a) Find the cutoff 
wavelength for zinc. (b) What is the lowest frequency of 
light incident on zinc that releases photoelectrons from its 
surface? (c) If photons of energy 5.50 eV are incident on 
zinc, what is the maximum kinetic energy of the ejected 
photoelectrons?

 17. Two light sources are used in a photoelectric experiment to 
determine the work function for a particular metal surface. 
When green light from a mercury lamp (l 5 546.1 nm) is 
used, a stopping potential of 0.376 V reduces the photocur-
rent to zero. (a) Based on this measurement, what is the 
work function for this metal? (b) What stopping poten-
tial would be observed when using the yellow light from a 
helium discharge tube (l 5 587.5 nm)?

 18.  Lithium, beryllium, and mercury have work functions 
of 2.30 eV, 3.90 eV, and 4.50 eV, respectively. Light with a 
wavelength of 400 nm is incident on each of these metals. 
(a) Determine which of these metals exhibit the photoelec-
tric effect for this incident light. Explain your reasoning. 
(b) Find the maximum kinetic energy for the photoelec-
trons in each case.

 19. Electrons are ejected from a metallic surface with speeds 
of up to 4.60 3 105 m/s when light with a wavelength of 
625 nm is used. (a) What is the work function of the sur-
face? (b) What is the cutoff frequency for this surface?

 20.  From the scattering of sunlight, J. J. Thomson calcu-
lated the classical radius of the electron as having the value 
2.82 3 10215 m. Sunlight with an intensity of 500 W/m2 
falls on a disk with this radius. Assume light is a classical 
wave and the light striking the disk is completely absorbed. 
(a) Calculate the time interval required to accumulate 
1.00 eV of energy. (b) Explain how your result for part (a) 
compares with the observation that photoelectrons are 
emitted promptly (within 1029 s).

 21. Review. An isolated copper sphere of radius 5.00 cm, ini-
tially uncharged, is illuminated by ultraviolet light of wave-

a black body that would emit radiation peaked at the same 
wavelength. (b) Based on your result, explain whether fire-
fly radiation is blackbody radiation.
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 5. The average threshold of dark-adapted (scotopic) vision is 
4.00 3 10211 W/m2 at a central wavelength of 500 nm. If 
light with this intensity and wavelength enters the eye and 
the pupil is open to its maximum diameter of 8.50 mm, 
how many photons per second enter the eye?

 6.  (i) Calculate the energy, in electron volts, of a pho-
ton whose frequency is (a) 620 THz, (b) 3.10 GHz, and 
(c) 46.0 MHz. (ii) Determine the corresponding wave-
lengths for the photons listed in part (i) and (iii) state the 
classification of each on the electromagnetic spectrum.

 7. (a) What is the surface temperature of Betelgeuse, a red 
giant star in the constellation Orion (Fig. 40.4), which radi-
ates with a peak wavelength of about 970 nm? (b) Rigel, a 
bluish-white star in Orion, radiates with a peak wavelength 
of 145 nm. Find the temperature of Rigel’s surface.

 8.  An FM radio transmitter has a power output of 150 kW 
and operates at a frequency of 99.7 MHz. How many pho-
tons per second does the transmitter emit?

 9. The temperature of an electric heating element is 150°C. 
At what wavelength does the radiation emitted from the 
heating element reach its peak?

 10. The radius of our Sun is 6.96 3 108 m, and its total power 
output is 3.85 3 1026 W. (a) Assuming the Sun’s surface 
emits as a black body, calculate its surface temperature. 
(b) Using the result of part (a), find lmax for the Sun.

 11. A black body at 7 500 K consists of an opening of diam-
eter 0.050 0 mm, looking into an oven. Find the number 
of photons per second escaping the opening and having 
wavelengths between 500 nm and 501 nm.

 12. Consider a black body of surface area 20.0 cm2 and tem-
perature 5 000 K. (a) How much power does it radiate? 
(b) At what wavelength does it radiate most intensely? 
Find the spectral power per wavelength interval at (c) this 
wavelength and at wavelengths of (d) 1.00 nm (an x- or 
gamma ray), (e) 5.00 nm (ultraviolet light or an x-ray), 
(f) 400 nm (at the boundary between UV and visible light), 
(g) 700 nm (at the boundary between visible and infrared 
light), (h) 1.00 mm (infrared light or a microwave), and 
(i) 10.0 cm (a microwave or radio wave). (j) Approximately 
how much power does the object radiate as visible light?
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 28.  A photon having energy E0 is scattered by a free elec-
tron initially at rest such that the scattering angle of the 
scattered electron is equal to that of the scattered pho-
ton as shown in Figure P40.27. (a) Determine the angle u. 
(b) Determine the energy and momentum of the scattered 
photon. (c) Determine the kinetic energy and momentum 
of the scattered electron.

 29. X-rays having an energy of 300 keV undergo Compton 
scattering from a target. The scattered rays are detected 
at 37.0° relative to the incident rays. Find (a) the Compton 
shift at this angle, (b) the energy of the scattered x-ray, and 
(c) the energy of the recoiling electron.

 30. After a 0.800-nm x-ray photon scatters from a free elec-
tron, the electron recoils at 1.40 3 106 m/s. (a) What is the 
Compton shift in the photon’s wavelength? (b) Through 
what angle is the photon scattered?

 31. In a Compton scattering experiment, an x-ray photon 
scatters through an angle of 17.4° from a free electron 
that is initially at rest. The electron recoils with a speed of 
2 180 km/s. Calculate (a) the wavelength of the incident 
photon and (b) the angle through which the electron 
scatters.

 32.  In a Compton scattering experiment, a photon is scat-
tered through an angle of 90.0° and the electron is set into 
motion in a direction at an angle of 20.0° to the original 
direction of the photon. (a) Explain how this information 
is sufficient to determine uniquely the wavelength of the 
scattered photon and (b) find this wavelength.

 33. Find the maximum fractional energy loss for a 0.511-MeV 
gamma ray that is Compton scattered from (a) a free elec-
tron and (b) a free proton.

Section 40.4  The Nature of Electromagnetic Waves

 34.  An electromagnetic wave is called ionizing radiation if 
its photon energy is larger than, say, 10.0 eV so that a single 
photon has enough energy to break apart an atom. With 
reference to Figure P40.34, explain what region or regions 

length 200 nm. The work function for copper is 4.70 eV. 
What charge does the photoelectric effect induce on the 
sphere?

 22.   The work function for platinum is 6.35 eV. 
Ultraviolet light of wavelength 150 nm is incident on the 
clean surface of a platinum sample. We wish to predict the 
stopping voltage we will need for electrons ejected from 
the  surface. (a) What is the photon energy of the ultravi-
olet light? (b) How do you know that these photons will 
eject electrons from platinum? (c) What is the maximum 
kinetic energy of the ejected photoelectrons? (d) What 
stopping voltage would be required to arrest the current of 
photoelectrons?

Section 40.3  The Compton Effect

 23. X-rays are scattered from a target at an angle of 55.0° with 
the direction of the incident beam. Find the wavelength 
shift of the scattered x-rays.

 24.  A photon having wavelength l scatters off a free elec-
tron at A (Fig. P40.24), producing a second photon having 
wavelength l9. This photon then scatters off another free 
electron at B, producing a third photon having wavelength 
l0 and moving in a direction directly opposite the origi-
nal photon as shown in the figure. Determine the value of 
Dl 5 l0 2 l.
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 25. A 0.001 60-nm photon scatters from a free electron. For 
what (photon) scattering angle does the recoiling electron 
have kinetic energy equal to the energy of the scattered 
photon?

 26.  X-rays with a wavelength of 120.0 pm undergo Comp-
ton scattering. (a) Find the wavelengths of the photons 
scattered at angles of 30.0°, 60.0°, 90.0°, 120°, 150°, and 
180°. (b) Find the energy of the scattered electron in each 
case. (c) Which of the scattering angles provides the elec-
tron with the greatest energy? Explain whether you could 
answer this question without doing any calculations.

 27. A photon having energy E0 5 0.880 MeV is scattered by a 
free electron initially at rest such that the scattering angle 
of the scattered electron is equal to that of the scattered 
photon as shown in Figure P40.27. (a) Determine the scat-
tering angle of the photon and the electron. (b) Deter-
mine the energy and momentum of the scattered photon. 
(c) Determine the kinetic energy and momentum of the 
scattered electron.
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  where lC 5 h/mc is the Compton wavelength of the par-
ticle. (b) Is it ever possible for a particle having nonzero 
mass to have the same wavelength and frequency as a pho-
ton? Explain.

 43. A photon has an energy equal to the kinetic energy of an 
electron with speed u, which may be close to the speed 
of light c. (a) Calculate the ratio of the wavelength of the 
photon to the wavelength of the electron. (b) Evaluate the 
ratio for the particle speed u 5 0.900c. (c) What If? What 
would happen to the answer to part (b) if the material par-
ticle were a proton instead of an electron? (d) Evaluate the 
ratio for the particle speed u 5 0.001 00c. (e) What value 
does the ratio of the wavelengths approach at high particle 
speeds? (f) At low particle speeds?

 44. Why is the following situation impossible? After learning about 
de Broglie’s hypothesis that material particles of momen-
tum p move as waves with wavelength l 5 h/p, an 80-kg 
student has grown concerned about being diffracted when 
passing through a doorway of width w 5 75 cm. Assume 
significant diffraction occurs when the width of the dif-
fraction aperture is less than ten times the wavelength of 
the wave being diffracted. Together with his classmates, 
the student performs precision experiments and finds that 
he does indeed experience measurable diffraction.

 45.  Robert Hofstadter won the 1961 Nobel Prize in 
Physics for his pioneering work in studying the scattering 
of 20-GeV electrons from nuclei. (a) What is the g factor 
for an electron with total energy 20.0 GeV, defined by 
g 5 1/!1 2 u2/c 2? (b) Find the momentum of the elec-
tron. (c) Find the wavelength of the electron. (d) State how 
the wavelength compares with the diameter of an atomic 
nucleus, typically on the order of 10214 m.

Section 40.6  A New Model: The Quantum Particle

 46.  Consider a freely moving quantum particle with mass 
m and speed u. Its energy is E 5 K 5 1

2mu2. (a) Determine 
the phase speed of the quantum wave representing the 
particle and (b) show that it is different from the speed at 
which the particle transports mass and energy.

 47.  For a free relativistic quantum particle moving with 
speed u, the total energy is E 5 hf 5 Uv 5 !p2c 2 1 m2c 4 
and the momentum is p 5 h/l 5 Uk 5 gmu. For the quan-
tum wave representing the particle, the group speed is vg 5 
dv/dk. Prove that the group speed of the wave is the same 
as the speed of the particle.

Section 40.7  The Double-Slit Experiment Revisited

 48. In a certain vacuum tube, electrons evaporate from a hot 
cathode at a slow, steady rate and accelerate from rest 
through a potential difference of 45.0 V. Then they travel 
28.0 cm as they pass through an array of slits and fall on a 
screen to produce an interference pattern. If the beam cur-
rent is below a certain value, only one electron at a time will 
be in flight in the tube. In this situation, the interference 
pattern still appears, showing that each individual electron 
can interfere with itself. What is the maximum value for 

of the electromagnetic spectrum fit this definition of ion-
izing radiation and what do not. (If you wish to consult a 
larger version of Fig. P40.34, see Fig. 34.13.)

 35. Review. A helium–neon laser produces a beam of diameter 
1.75 mm, delivering 2.00 3 1018 photons/s. Each photon 
has a wavelength of 633 nm. Calculate the amplitudes of 
(a) the electric fields and (b) the magnetic fields inside 
the beam. (c) If the beam shines perpendicularly onto a 
perfectly reflecting surface, what force does it exert on the 
surface? (d) If the beam is absorbed by a block of ice at 0°C 
for 1.50 h, what mass of ice is melted?

Section 40.5  The Wave Properties of Particles

 36. Calculate the de Broglie wavelength for a proton moving 
with a speed of 1.00 3 106 m/s.

 37. The resolving power of a microscope depends on the wave-
length used. If you wanted to “see” an atom, a wavelength 
of approximately 1.00 3 10211 m would be required. (a) If 
electrons are used (in an electron microscope), what mini-
mum kinetic energy is required for the electrons? (b) What 
If? If photons are used, what minimum photon energy is 
needed to obtain the required resolution?

 38. (a) An electron has a kinetic energy of 3.00 eV. Find its 
wavelength. (b) What If? A photon has energy 3.00 eV. 
Find its wavelength.

 39. (a) Calculate the momentum of a photon whose wavelength 
is 4.00 3 1027 m. (b) Find the speed of an electron having 
the same momentum as the photon in part (a).

 40.  The nucleus of an atom is on the order of 10214 m in 
diameter. For an electron to be confined to a nucleus, its de 
Broglie wavelength would have to be on this order of mag-
nitude or smaller. (a) What would be the kinetic energy of 
an electron confined to this region? (b) Make an order-
of-magnitude estimate of the electric potential energy of a 
system of an electron inside an atomic nucleus. (c) Would 
you expect to find an electron in a nucleus? Explain.

 41. In the Davisson–Germer experiment, 54.0-eV electrons 
were diffracted from a nickel lattice. If the first maximum 
in the diffraction pattern was observed at f 5 50.0° (Fig. 
P40.41), what was the lattice spacing a between the vertical 
columns of atoms in the figure?
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 42.   (a) Show that the frequency f and wavelength l 
of a freely moving quantum particle with mass are related 
by the expression
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 58. The accompanying table shows data obtained in a photo-
electric experiment. (a) Using these data, make a graph 
similar to Active Figure 40.11 that plots as a straight line. 
From the graph, determine (b) an experimental value for 
Planck’s constant (in joule-seconds) and (c) the work func-
tion (in electron volts) for the surface. (Two significant fig-
ures for each answer are sufficient.)

 Wavelength Maximum Kinetic Energy
 (nm) of Photoelectrons (eV)

 588 0.67
 505 0.98
 445 1.35
 399 1.63

 59. Review. Photons of wavelength 124 nm are incident on a 
metal. The most energetic electrons ejected from the metal 
are bent into a circular arc of radius 1.10 cm by a magnetic 
field having a magnitude of 8.00 3 1024 T. What is the work 
function of the metal?

 60.  Review. Photons of wavelength l are incident on a 
metal. The most energetic electrons ejected from the metal 
are bent into a circular arc of radius R by a magnetic field 
having a magnitude B. What is the work function of the 
metal?

 61. Figure P40.61 shows the stopping potential versus the 
incident photon frequency for the photoelectric effect for 
sodium. Use the graph to find (a) the work function of 
sodium, (b) the ratio h/e, and (c) the cutoff wavelength. 
The data are taken from R. A. Millikan, Physical Review 
7:362 (1916).

the beam current that will result in only one electron at a 
time in flight in the tube?

 49.   Neutrons traveling at 0.400 m/s are directed 
through a pair of slits separated by 1.00 mm. An array of 
detectors is placed 10.0 m from the slits. (a) What is the 
de Broglie wavelength of the neutrons? (b) How far off 
axis is the first zero-intensity point on the detector array? 
(c) When a neutron reaches a detector, can we say which 
slit the neutron passed through? Explain.

 50. A modified oscilloscope is used to perform an electron 
interference experiment. Electrons are incident on a pair 
of narrow slits 0.060 0 mm apart. The bright bands in the 
interference pattern are separated by 0.400 mm on a screen 
20.0 cm from the slits. Determine the potential difference 
through which the electrons were accelerated to give this 
pattern.

Section 40.8  The Uncertainty Principle

 51. The average lifetime of a muon is about 2 ms. Estimate the 
minimum uncertainty in the rest energy of a muon.

 52. A 0.500-kg block rests on the frictionless, icy surface of a 
frozen pond. If the location of the block is measured to a 
precision of 0.150 cm and its mass is known exactly, what is 
the minimum uncertainty in the block’s speed?

 53.  An electron and a 0.020 0-kg bullet each have a velocity 
of magnitude 500 m/s, accurate to within 0.010 0%. Within 
what lower limit could we determine the position of each 
object along the direction of the velocity?

 54. Suppose a duck lives in a universe in which h 5 2p J ? s. 
The duck has a mass of 2.00 kg and is initially known to 
be within a pond 1.00 m wide. (a) What is the minimum 
uncertainty in the component of the duck’s velocity paral-
lel to the pond’s width? (b) Assuming this uncertainty in 
speed prevails for 5.00 s, determine the uncertainty in the 
duck’s position after this time interval.

 55. Use the uncertainty principle to show that if an electron 
were confined inside an atomic nucleus of diameter on the 
order of 10214 m, it would have to be moving relativistically, 
whereas a proton confined to the same nucleus can be 
moving nonrelativistically.

 56. Why is the following situation impossible? An air rifle is used to 
shoot 1.00-g particles at a speed of vx 5 100 m/s. The rifle’s 
barrel has a diameter of 2.00 mm. The rifle is mounted 
on a perfectly rigid support so that it is fired in exactly the 
same way each time. Because of the uncertainty principle, 
however, after many firings, the diameter of the spray of 
pellets on a paper target is 1.00 cm.

Additional Problems

 57. Review. Design an incandescent lamp filament. A tungsten 
wire radiates electromagnetic waves with power 75.0 W 
when its ends are connected across a 120-V power supply. 
Assume its constant operating temperature is 2 900 K and 
its emissivity is 0.450. Also assume it takes in energy only 
by electric transmission and emits energy only by electro-
magnetic radiation. You may take the resistivity of tungsten 
at 2 900 K as 7.13 3 1027 V ? m. Specify (a) the radius and 
(b) the length of the filament.
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 62.  Derive the equation for the Compton shift (Eq. 40.11) 
from Equations 40.12 through 40.14.

 63. A daredevil’s favorite trick is to step out of a 16th-story win-
dow and fall 50.0 m into a pool. A news reporter takes a pic-
ture of the 75.0-kg daredevil just before he makes a splash, 
using an exposure time of 5.00 ms. Find (a) the daredevil’s 
de Broglie wavelength at this moment, (b) the uncertainty 
of his kinetic energy measurement during the 5.00-ms 
time interval, and (c) the percent error caused by such an 
uncertainty.

 64.  Monochromatic ultraviolet light with intensity 
550 W/m2 is incident normally on the surface of a metal 
that has a work function of 3.44 eV. Photoelectrons are 
emitted with a maximum speed of 420 km/s. (a) Find the 
maximum possible rate of photoelectron emission from 
1.00 cm2 of the surface by imagining that every photon 
produces one photoelectron. (b) Find the electric current 
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trons from a certain metal. In an attempt to use this source 
to eject photoelectrons from the metal, the source is given 
a velocity toward the metal. (a) Explain how this procedure 
can produce photoelectrons. (b) When the speed of the 
light source is equal to 0.280c, photoelectrons just begin to 
be ejected from the metal. What is the work function of the 
metal? (c) When the speed of the light source is increased 
to 0.900c, determine the maximum kinetic energy of the 
photoelectrons.

 70.  Using conservation principles, prove that a photon 
cannot transfer all its energy to a free electron.

 71. The total power per unit area radiated by a black body at a 
temperature T is the area under the I(l,T)-versus-l curve 
as shown in Active Figure 40.3. (a) Show that this power 
per unit area is

3
`

0
 I 1l,T 2  dl 5 sT 4

  where I(l,T) is given by Planck’s radiation law and s is a 
constant independent of T. This result is known as Stefan’s 
law. (See Section 20.7.) To carry out the integration, you 
should make the change of variable x 5 hc/lkBT and use
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  (b) Show that the Stefan–Boltzmann constant s has the 
value

s 5
2p 5k B

4

15c 2h3 5 5.67 3 1028 W/m2 ? K4

 72.  (a) Derive Wien’s displacement law from Planck’s law. 
Proceed as follows. In Active Figure 40.3, notice that the 
wavelength at which a black body radiates with greatest 
intensity is the wavelength for which the graph of I(l,T) 
versus l has a horizontal tangent. From Equation 40.6, 
evaluate the derivative dI/dl. Set it equal to zero. Solve 
the resulting transcendental equation numerically to 
prove that hc/lmaxkBT 5 4.965 . . . or lmaxT 5 hc/4.965kB. 
(b) Evaluate the constant as precisely as possible and com-
pare it with Wien’s experimental value.

these electrons constitute. (c) How do you suppose the 
actual current compares with this maximum possible 
current?

 65.  A photon of initial energy E0 undergoes Compton 
scattering at an angle u from a free electron (mass me) ini-
tially at rest. Derive the following relationship for the final 
energy E9 of the scattered photon:

E r 5
E0

1 1 a E0

mec
2b 11 2 cos u 2

 66.  The neutron has a mass of 1.67 3 10227 kg. Neutrons 
emitted in nuclear reactions can be slowed down by colli-
sions with matter. They are referred to as thermal neutrons 
after they come into thermal equilibrium with the environ-
ment. The average kinetic energy 132k BT 2  of a thermal neu-
tron is approximately 0.04 eV. (a) Calculate the de Broglie 
wavelength of a neutron with a kinetic energy of 0.040 0 eV. 
(b) How does your answer compare with the characteristic 
atomic spacing in a crystal? (c) Explain whether you expect 
thermal neutrons to exhibit diffraction effects when scat-
tered by a crystal.

 67.  Show that the ratio of the Compton wavelength lC 
to the de Broglie wavelength l 5 h/p for a relativistic elec-
tron is

lC

l
5 c a E

mec
2b

2

2 1 d
1/2

  where E is the total energy of the electron and me is its 
mass.

 68. A p0 meson is an unstable particle produced in high-
energy particle collisions. Its rest energy is approximately 
135 MeV, and it exists for a lifetime of only 8.70 3 10217 s 
before decaying into two gamma rays. Using the uncer-
tainty principle, estimate the fractional uncertainty Dm/m 
in its mass determination.

Challenge Problems

 69.  Review. A light source emitting radiation at fre-
quency 7.00 3 1014 Hz is incapable of ejecting photoelec-


