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Motion in Two
Dimensions

In this chapter, we explore the kinematics of a particle moving in two dimensions.

Knowing the basics of two-dimensional motion will allow us—in future chapters—to exam-
ine a variety of situations, ranging from the motion of satellites in orbit to the motion of
electrons in a uniform electric field. We begin by studying in greater detail the vector nature
of position, velocity, and acceleration. We then treat projectile motion and uniform circular
motion as special cases of motion in two dimensions. We also discuss the concept of relative
motion, which shows why observers in different frames of reference may measure different
positions and velocities for a given particle.

The Position, Velocity, and Acceleration Vectors

In Chapter 2, we found that the motion of a particle along a straight line such as
the x axis is completely known if its position is known as a function of time. Let
us now extend this idea to two-dimensional motion of a particle in the xy plane.
We begin by describing the position of the particle. In one dimension, a single
numerical value describes a particle’s position, but in two dimensions, we indicate
its position by its position vector ¥, drawn from the origin of some coordinate sys-
tem to the location of the particle in the xy plane as in Figure 4.1. At time ¢, the
particle is at point @, described by position vector ¥;. At some later time {, itis at
point ®, described by position vector ?f The path followed by the particle from
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® to ® is not necessarily a straight line. As the particle moves from ® to ® in the
time interval Az =, — 1, its position vector changes from T; to T,. As we learned
in Chapter 2, displacement is a vector, and the displacement of the particle is the
difference between its final position and its initial position. We now define the dis-
placement vector AT for a particle such as the one in Figure 4.1 as being the differ-
ence between its final position vector and its initial position vector:

AF =7, 7, (@)

The direction of AT is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of AT is less than the distance traveled along the curved path followed by the
particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. Two-dimensional (or three-dimensional)
kinematics is similar to one-dimensional kinematics, but we must now use full vector
notation rather than positive and negative signs to indicate the direction of motion.

We define the average velocity v,,, of a particle during the time interval A as
the displacement of the particle divided by the time interval:

AY
vavg = E (42)
Multiplying or dividing a vector quantity by a positive scalar quantity such as A¢
changes only the magnitude of the vector, not its direction. Because displacement
is a vector quantity and the time interval is a positive scalar quantity, we conclude
that the average velocity is a vector quantity directed along AT. Compare Equa-
tion 4.2 with its one-dimensional counterpart, Equation 2.2.

The average velocity between points is independent of the path taken. That is
because average velocity is proportional to displacement, which depends only
on the initial and final position vectors and not on the path taken. As with one-
dimensional motion, we conclude that if a particle starts its motion at some point and
returns to this point via any path, its average velocity is zero for this trip because its
displacement is zero. Consider again our basketball players on the court in Figure 2.2
(page 23). We previously considered only their one-dimensional motion back and
forth between the baskets. In reality, however, they move over a two-dimensional sur-
face, running back and forth between the baskets as well as left and right across the
width of the court. Starting from one basket, a given player may follow a very compli-
cated two-dimensional path. Upon returning to the original basket, however, a play-
er’s average velocity is zero because the player’s displacement for the whole trip is zero.

Consider again the motion of a particle between two points in the xy plane as
shown in Figure 4.2 (page 80). The dashed curve shows the path of the particle. As
the time interval over which we observe the motion becomes smaller and smaller—
that is, as ® is moved to ®’ and then to ®” and so on—the direction of the displace-
mentapproaches that of the line tangent to the path at ®. The instantaneous velocity
¥ is defined as the limit of the average velocity AT /At as Az approaches zero:

Vv = lim i

= 4.3
=y AV dt (+-3)

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in
a particle’s path is along a line tangent to the path at that point and in the direc-
tion of motion. Compare Equation 4.3 with the corresponding one-dimensional
version, Equation 2.5.

The magnitude of the instantaneous velocity vector v = | V| of a particle is called
the speed of the particle, which is a scalar quantity.

<« Displacement vector

< Average velocity

The displacement of the
Y| particle is the vector AT.

\
t-\® AT

i

"N\, Path of
particle

X

Figure 4.1 A particle moving
in the xy plane is located with
the position vector T drawn from
the origin to the particle. The
displacement of the particle as it
moves from @ to ® in the time
interval Az = £, — #;is equal to the
vector AT = ¥, — T,

4 Instantaneous velocity
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Figure 4.2 Asa particle moves
between two points, its average
velocity is in the direction of the
displacement vector A¥. By defini-
tion, the instantaneous velocity at
@ is directed along the line tan-
gent to the curve at ®.

Average acceleration P>

Instantaneous acceleration P>

Pitfall Prevention 4.1

Vector Addition Although the vec-
tor addition discussed in Chapter
3 involves displacement vectors, vec-
tor addition can be applied to any
type of vector quantity. Figure 4.3,
for example, shows the addition of
velocity vectors using the graphical
approach.

As the end point approaches @), At
approaches zero and the direction
of A¥ approaches that of the green
line tangent to the curve at @)

Direction of V at @

As the end point of the path is
moved from ® to ®'to @', the
respective displacements and
corresponding time intervals
become smaller and smaller.

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from v, at time / to 7f at time /. Knowing the velocity
at these points allows us to determine the average acceleration of the particle. The

. — . . . . . .
average acceleration a,, of a particle is defined as the change in its instantaneous
velocity vector AV divided by the time interval Az during which that change occurs:

o,
- Ay

a = — =
At 4—

i

= =
Vf_ \TA

(4.4)

Because @, is the ratio of a vector quantity AV and a positive scalar quantity Az,
we conclude that average acceleration is a vector quantity directed along AV. As
indicated in Figure 4.3, the direction of AV is found by adding the vector —¥, (the
negative of V,) to the vector v, because, by definition, AV =V, — V,. Compare
Equation 4.4 with Equation 2.9.

When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accel-
eration a is defined as the limiting value of the ratio AV /At as At approaches zero:

a = lim AY,_dY

4.5
At—=0 At dt ( )

In other words, the instantaneous acceleration equals the derivative of the velocity
vector with respect to time. Compare Equation 4.5 with Equation 2.10.

Various changes can occur when a particle accelerates. First, the magnitude
of the velocity vector (the speed) may change with time as in straight-line (one-

Figure 4.3 A particle moves from position ® to
position ®. Its velocity vector changes from ¥, to ;.
The vector diagrams at the upper right show two
ways of determining the vector AV from the initial
and final velocities.
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dimensional) motion. Second, the direction of the velocity vector may change with
time even if its magnitude (speed) remains constant as in two-dimensional motion
along a curved path. Finally, both the magnitude and the direction of the velocity
vector may change simultaneously.

uick Quiz 4.1 Consider the following controls in an automobile in motion: gas
pedal, brake, steering wheel. What are the controls in this list that cause an

: acceleration of the car? (a) all three controls (b) the gas pedal and the brake

o (c) only the brake (d) only the gas pedal (e) only the steering wheel

%A Two-Dimensional Motion
with Constant Acceleration

In Section 2.5, we investigated one-dimensional motion of a particle under con-
stant acceleration and developed the particle under constant acceleration model.
Let us now consider two-dimensional motion during which the acceleration of a
particle remains constant in both magnitude and direction. As we shall see, this
approach is useful for analyzing some common types of motion.

Before embarking on this investigation, we need to emphasize an important
point regarding two-dimensional motion. Imagine an air hockey puck moving in
a straight line along a perfectly level, friction-free surface of an air hockey table.
Figure 4.4a shows a motion diagram from an overhead point of view of this puck.
Recall that in Section 2.4 we related the acceleration of an object to a force on the
object. Because there are no forces on the puck in the horizontal plane, it moves
with constant velocity in the x direction. Now suppose you blow a puff of air on
the puck as it passes your position, with the force from your puff of air exactly in
the y direction. Because the force from this puff of air has no component in the x
direction, it causes no acceleration in the x direction. It only causes a momentary
acceleration in the y direction, causing the puck to have a constant y component
of velocity once the force from the puff of air is removed. After your puff of air on
the puck, its velocity component in the x direction is unchanged as shown in Figure
4.4b. The generalization of this simple experiment is that motion in two dimen-
sions can be modeled as two independent motions in each of the two perpendicular
directions associated with the x and y axes. That is, any influence in the y direc-
tion does not affect the motion in the x direction and vice versa.

The position vector for a particle moving in the xy plane can be written

T =xi+ yj (4.6)
where ¥, y, and T change with time as the particle moves while the unit vectors i
and j remain constant. If the position vector is known, the velocity of the particle
can be obtained from Equations 4.3 and 4.6, which give

~

d¥  dx, dy, %
= —=— vl t+ v

= 1+ —J =
dt dt dt

The horizontal red vectors, @___@___Q___@___@___®__ L

ey
v

(4.7)

representing the x
component of the velocity,
are the same length in
both parts of the figure,
which demonstrates that
motion in two dimensions

can be modeled as two @t L @{_ L @*.

X

independent motions in
perpendicular directions.

} o @,
R ) )
i .

[ = [
> > > >

Figure 4.4 (a) A puck moves
across a horizontal air hockey
table at constant velocity in the x
direction. (b) After a puff of air

in the y direction is applied to the
puck, the puck has gained a y com-
ponent of velocity, but the x com-
ponent is unaffected by the force
in the perpendicular direction.
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Velocity vector as P>
a function of time for a
particle under constant
acceleration in two
dimensions

Position vector as P
a function of time for a
particle under constant
acceleration in two
dimensions

Figure 4.5 Vector representa-

tions and components of (a) the

velocity and (b) the position of a
particle under constant accelera-
tion in two dimensions.

Because the acceleration @ of the particle is assumed constant in this discussion,
its components a,and a, also are constants. Therefore, we can model the particle as
a particle under constant acceleration independently in each of the two directions
and apply the equations of kinematics separately to the x and y components of the
velocity vector. Substituting, from Equation 2.13, v, = v,; + aJdand v, = v;; + a
into Equation 4.7 to determine the final velocity at any time {, we obtain

Tf} = (v, + axt); + (vy, + aytf = (vx,i + vy,-j) + (axi + ayj)t
.+ at (4.8)

This result states that the velocity of a particle at some time ¢ equals the vector
sum of its initial velocity ¥; at time ¢ = 0 and the additional velocity @¢ acquired
at time ¢ as a result of constant acceleration. Equation 4.8 is the vector version of
Equation 2.13.

Similarly, from Equation 2.16 we know that the x and y coordinates of a particle
under constant acceleration are

xf=x+vt+2at2 yf=y,+vt+2at2

Substituting these expressions into Equation 4.6 (and labeling the final position
vector 1) gives
Y"j= (x + v t+2at2)i+ (y + v, t+2at2)J

= (xf + y,j) + (vy i+ v, g+ (axi + a}j)t2

==

ST (4.9)

=

which is the vector version of Equation 2.16. Equation 4.9 tells us that the position
Vector rj of a particle is the vector sum of the original position ¥, a dlsplacement
¥,( arising from the initial velocity of the particle, and a displacement 3a¢? result-
ing from the constant acceleration of the particle.

We can consider Equations 4.8 and 4.9 to be the mathematical representation
of a two-dimensional version of the particle under constant acceleration model.
Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.5. The
components of the position and velocity vectors are also illustrated in the figure
Notlce from Figure 4.5a that ¥V, v, is generally not along the direction of either ¥, or
@ because the relationship between these quantltles is a vector expression. For the
same reason, from Figure 4.5b we see that ¥ ', is generally not along the direction of
T, Vv, or a. Finally, notice that v v, and T, s are generally not in the same direction.

y y
a,t v 1,2
Y Vf ?{t 5 (lJ.l
Yy I
y
A .
. 7 il
p Vi
X
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Vyi a,l # x
1 2
le— X; Uyl 5 Ayl
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Example 4.1 Motion in a Plane LU

A particle moves in the xy plane, starting from the origin at ¢/ = 0 with an initial velocity having an x component of
20 m/s and a y component of —15 m/s. The particle experiences an acceleration in the x direction, given by a, =
4.0 m/s%.

(A) Determine the total velocity vector at any time.

SOLUTION

Conceptualize The components of the initial velocity tell

us that the particle starts by moving toward the right and x
downward. The x component of velocity starts at 20 m/s and i’
increases by 4.0 m/s every second. The y component of veloc- S~

ity never changes from its initial value of —15 m/s. We sketch v (
a motion diagram of the situation in Figure 4.6. Because the
particle is accelerating in the +x direction, its velocity compo- ~~
nent in this direction increases and the path curves as shown - K
in the diagram. Notice that the spacing between successive
images increases as time goes on because the speed is increas-
ing. The placement of the acceleration and velocity vectors in
Figure 4.6 helps us further conceptualize the situation.

Figure 4.6 (Example 4.1) Motion diagram for the particle.

Categorize Because the initial velocity has components in both the x and y directions, we categorize this problem
as one involving a particle moving in two dimensions. Because the particle only has an x component of accelera-

Analyze To begin the mathematical analysis, we set v,; = 20 m/s, vy, = —15m/s, a, = 4.0 m/s?, and a,=
Use Equation 4.8 for the velocity vector: V=Vt adr= (v, + a i + (v, + a},t)j
Substitute numerical values with the velocity in meters v,=1[20 + (4.0)i + [—15 + (0)d]

er second and the time in seconds: A A
P 1) v,= [(20 + 4.00)i — 15j]

Finalize Notice that the x component of velocity increases in time while the y component remains constant; this result
is consistent with our prediction.

(B) Calculate the velocity and speed of the particle at ¢ = 5.0 s and the angle the velocity vector makes with the x axis.

SOLUTION

Analyze
Evaluate the result from Equation (1) at t=5.0s: ¥, = [(20 + 4.0(5.0))i — 15j] = (401 — 15j) m/s
v, ~15

Determine the angle 6 that 7f makes with the x axis 6 = tan_l(*}j) = tan_l<7m/s> = —21°

_ vy, 40m/s
at{=>50s: ~
Evaluate the speed of the particle as the magnitude v = V] = \/vxf2 + v, = V(40)2 + (=15)2m/s = 43 m/s
of Vy:

I

Finalize The negative sign for the angle 6 indicates that the velocity vector is directed at an angle of 21° below the posi-
tive x axis. Notice that if we calculate v, from the x and y components of V,, we find that v, > v;. Is that consistent with
our prediction?

(C) Determine the xand y coordinates of the particle at any time ¢and its position vector at this time.

continued
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b 4.1

SOLUTION

Analyze

Use the components of Equation 4.9 with x; = y, = 0 at X = Uyl + sat? = 20t + 2.0¢°

t = 0 and with xand yin meters and ¢in seconds:

¥y = vyt = —15¢

Express the position vector of the particle at any time #: ?/ = x/Ai + y/j = (201 + 2.06?)1 — 15tj

WP EEd What if we wait a very long time and then observe the motion of the particle? How would we describe the
motion of the particle for large values of the time?

Answer Looking at Figure 4.6, we see the path of the particle curving toward the x axis. There is no reason to assume
this tendency will change, which suggests that the path will become more and more parallel to the x axis as time grows
large. Mathematically, Equation (1) shows that the y component of the velocity remains constant while the x compo-
nent grows linearly with z. Therefore, when ¢ is very large, the x component of the velocity will be much larger than

the y component, suggesting that the velocity vector becomes more and more parallel to the x axis. The magnitudes of

both x,and y,continue to grow with time, although x,grows much faster.

Pitfall Prevention 4.2

Acceleration at the Highest Point
As discussed in Pitfall Prevention
2.8, many people claim that the
acceleration of a projectile at the
topmost point of its trajectory is
zero. This mistake arises from
confusion between zero vertical
velocity and zero acceleration. If
the projectile were to experience
zero acceleration at the highest
point, its velocity at that point
would not change; rather, the
projectile would move horizontally
at constant speed from then on!
That does not happen, however,
because the acceleration is nol zero
anywhere along the trajectory.

Lester Lefkowitz/Taxi/Getty Images

A welder cuts holes through a heavy
metal construction beam with a hot
torch. The sparks generated in the
process follow parabolic paths.

Projectile Motion

Anyone who has observed a baseball in motion has observed projectile motion.
The ball moves in a curved path and returns to the ground. Projectile motion of
an object is simple to analyze if we make two assumptions: (1) the free-fall accelera-
tion is constant over the range of motion and is directed downward,! and (2) the
effect of air resistance is negligible.? With these assumptions, we find that the path
of a projectile, which we call its trajectory, is always a parabola as shown in Figure 4.7.
We use these assumptions throughout this chapter.

The expression for the position vector of the projectile as a function of time
follows directly from Equation 4.9, with its acceleration being that due to gravity,

a=g:
=71, + Vi + ogt? (4.10)
where the initial x and y components of the velocity of the projectile are

v, = v;cos b, v,; = v, sin 6, (4.11)

yi
The expression in Equation 4.10 is plotted in Figure 4.8 for a projectile launched
from the origin, so that ¥; = 0. The final position of a particle can be considered to
be the superposition of its initial position T;; the term V¢, which is its displacement
if no acceleration were present; and the term ;g¢* that arises from its acceleration
due to gravity. In other words, if there were no gravitational acceleration, the par-
ticle would continue to move along a straight path in the direction of v,. Therefore,
the vertical distance 5g¢* through which the particle “falls” off the straight-line
path is the same distance that an object dropped from rest would fall during the
same time interval.

IThis assumption is reasonable as long as the range of motion is small compared with the radius of the Earth
(6.4 X 10°m). In effect, this assumption is equivalent to assuming the Earth is flat over the range of motion considered.

?This assumption is often not justified, especially at high velocities. In addition, any spin imparted to a projectile,
such as that applied when a pitcher throws a curve ball, can give rise to some very interesting effects associated with
aerodynamic forces, which will be discussed in Chapter 14.
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In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y
directions, with accelerations a, and a,. Projectile motion can also be handled in
this way, with acceleration a, = 0 in the x direction and a constant acceleration a, =
—gin the y direction. Therefore, when solving projectile motion problems, use two
analysis models: (1) the particle under constant velocity in the horizontal direction

(Eq. 2.7):

Xp= w1 Ul

and (2) the particle under constant acceleration in the vertical direction (Egs.

2.13-2.17 with x changed to yand a,=-g):
Uyt = Uyi — &L
Uy T vy
¥ = 9t olvy + vyt

— — A pa?
5?/_%4'%' 2gt
2

The x component of

velocity remains
constant because
there is no
acceleration in the x
direction.

_ 2 C A
v = v~ 260~ y)
The horizontal and vertical components of a projectile’s motion are completely
independent of each other and can be handled separately, with time / as the com-

mon variable for both components.

uick Quiz 4.

2 (i) As a projectile thrown upward moves in its parabolic path
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the
: highest point (c) the launch point (ii) From the same choices, at what point are
o the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile

Before embarking on some examples, let us consider a special case of projectile ©
motion that occurs often. Assume a projectile is launched from the origin at ¢, =
0 with a positive v,; component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf

balls often land at the same level from which they were launched.

Two points in this motion are especially interesting to analyze: the peak point ®,
which has Cartesian coordinates (R/2, /), and the point ®, which has coordinates
(R, 0). The distance Ris called the horizontal range of the projectile, and the distance
his its maximum height. Let us find A and R mathematically in terms of v, 6,, and g
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Figure 4.7 The parabolic path
of a projectile that leaves the ori-
gin with a velocity V,. The velocity
- o

vector v changes with time in
both magnitude and direction.
This change is the result of accel-

G :
eration @ = g in the negative
ydirection.

0 X

Figure 4.8 The position vector
T, of a projectile launched from
the origin whose initial velocity
at the origin is ¥;. The vector V;l
would be the displacement of the
projectile if gravity were absent,
and the vector g2 s its vertical
displacement from a straight-line
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched
over a flat surface from the origin
at {; = 0 with an initial velocity

¥,. The maximum height of the
projectile is %, and the horizontal
range is R. At ®, the peak of the
trajectory, the particle has coordi-
nates (R/2, h).



86 Chapter 4

Pitfall Prevention 4.3

The Range Equation Equation
4.13 is useful for calculating R only
for a symmetric path as shown in
Figure 4.10. If the path is not sym-
metric, do not use this equation. The
particle under constant velocity
and particle under constant accel-
eration models are the important
starting points because they give
the position and velocity compo-
nents of any projectile moving
with constant acceleration in two
dimensions at any time .

Figure 4.10 A projectile
launched over a flat surface from
the origin with an initial speed
of 50 m/s at various angles of
projection.

Motion in Two Dimensions

We can determine /A by noting that at the peak v, = 0. Therefore, from the
particle under constant acceleration model, we can use the y direction version of
Equation 2.13 to determine the time {g at which the projectile reaches the peak:

U)f: in - gt - 0= v; sin 07 - gt@
v; sin 97

g

lg =

Substituting this expression for /g into the y direction version of Equation 2.16
and replacing y, = yg with /, we obtain an expression for 4 in terms of the magni-
tude and direction of the initial velocity vector:

=y + — Loy? b= (v,si Q)M_L MZ
Y=t Ul T gl — = (v, sin 6, ’ 1o .

S

h= w8, (412)
28
The range Ris the horizontal position of the projectile at a time that is twice the
time at which it reaches its peak, that is, at time #g = 27g. Using the particle under
constant velocity model, noting that v,; = v.g = v, cos 0,, and setting xg = Rat t =
2tg, we find that

x=ux+vi4 - R=vug = (v;,c0s0,)2q

2v,sin 0;  2v,?sin 0, cos 0,

g g

= (v, cos h;)

Using the identity sin 20 = 2 sin 0 cos 0 (see Appendix B.4), we can write R in the
more compact form
v;% sin 20,
R=—"—" (4.13)

o
S

The maximum value of R from Equation 4.18 is R, = v,?/g. This result makes
sense because the maximum value of sin 20, is 1, which occurs when 20; = 90°.
Therefore, Ris a maximum when 6, = 45°.

Figure 4.10 illustrates various trajectories for a projectile having a given initial
speed but launched at different angles. As you can see, the range is a maximum
for 6, = 45°. In addition, for any 6, other than 45°, a point having Cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of 8,,
such as 75° and 15°. Of course, the maximum height and time of flight for one of
these values of 0, are different from the maximum height and time of flight for the
complementary value.

uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with
o respect to time of flight from the shortest time of flight to the longest.

Complementary
values of the initial
angle 6, result in the
same value of R.

100

50
\\\\\‘\\
Bl | x (m)
200 250



4.3 Projectile Motion 87

HOLENENITLINEIS A Projectile Motion

We suggest you use the following approach when solving projectile motion problems.

1. Conceptualize. Think about what is going on physically in the problem. Establish
the mental representation by imagining the projectile moving along its trajectory.

2. Categorize. Confirm that the problem involves a particle in free fall and that air
resistance is neglected. Select a coordinate system with x in the horizontal direction
and yin the vertical direction. Use the particle under constant velocity model for the
x component of the motion. Use the particle under constant acceleration model for
the y direction. In the special case of the projectile returning to the same level from
which it was launched, use Equations 4.12 and 4.13.

3. Analyze. If the initial velocity vector is given, resolve it into xand y components.
Select the appropriate equation(s) from the particle under constant acceleration
model for the vertical motion and use these along with Equation 2.7 for the horizontal
motion to solve for the unknown(s).

4. Finalize. Once you have determined your result, check to see if your answers are
consistent with the mental and pictorial representations and your results are realistic.

Example 4.2 The Long Jump

Along jumper (Fig. 4.11) leaves the ground at an angle of 20.0° above the hori-
zontal and at a speed of 11.0 m/s.

(A) How far does he jump in the horizontal direction?

SOLUTION

Conceptualize The arms and legs of a long jumper move in a complicated way,
but we will ignore this motion. We conceptualize the motion of the long jumper
as equivalent to that of a simple projectile.

Sipa via AP Images

Figure 4.11 (Example 4.2)

o B . Romain Barras of France competes
Because the initial speed and launch angle are given and because the final in the men’s decathlon long jump at

height is the same as the initial height, we further categorize this problem as the 2008 Beijing Olympic Games.
satisfying the conditions for which Equations 4.12 and 4.13 can be used. This

approach is the most direct way to analyze this problem, although the general methods that have been described will
always give the correct answer.

Categorize We categorize this example as a projectile motion problem.

Analyze .
v, sin 20;  (11.0 m/s)” sin 2(20.0°)

: = 7.04
g 9.80 m/s’ m

Use Equation 4.13 to find the range of the jumper: R=

(B) What is the maximum height reached?

SOLUTION

Analyze o . .
. ) ] ] v%sin%0;  (11.0 m/s)?(sin 20.0°)?

Find the maximum height reached by using h = 5 = 9(9.80 5 = 0.722 m

Equation 4.12: g 2(9.80 m/s%)

Finalize Find the answers to parts (A) and (B) using the general method. The results should agree. Treating the
long jumper as a particle is an oversimplification. Nevertheless, the values obtained are consistent with experience in
sports. We can model a complicated system such as a long jumper as a particle and still obtain reasonable results.
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A Bull's-Eye Every Time

In a popular lecture demonstration, a projectile is fired at a target in such a way that the projectile leaves the gun at
the same time the target is dropped from rest. Show that if the gun is initially aimed at the stationary target, the pro-
jectile hits the falling target as shown in Figure 4.12a.

SOLUTION

Conceptualize We conceptualize the problem by studying Figure 4.12a. Notice that the problem does not ask for
numerical values. The expected result must involve an algebraic argument.

The velocity of the projectile (red
arrows) changes in direction and
magnitude, but its acceleration
(purple arrows) remains constant.

e ———
P 0Q——
z

z Point of
Gun O 0; collision

© Cengage Learning/Charles D. Winters

Figure 4.12 (Example 4.3) (a) Multiflash photograph of the projectile-target demonstration. If the gun
is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will
hit the target. (b) Schematic diagram of the projectile—target demonstration.

Categorize Because both objects are subject only to gravity, we categorize this problem as one involving two objects
in free fall, the target moving in one dimension and the projectile moving in two. The target T is modeled as a particle
under constant acceleration in one dimension. The projectile P is modeled as a particle under constant acceleration in the
ydirection and a particle under constant velocity in the x direction.

Analyze Figure 4.12b shows that the initial y coordinate y, of the target is x; tan 6, and its initial velocity is zero. It falls
with acceleration a, = —g

Write an expression for the y coordinate 1) yr =y + (0)1— %gtﬁ = xrtan 0, — %2752
of the target at any moment after release,
noting that its initial velocity is zero:

Write an expression for the y coordinate (2) yp = yip T vyl — 5g0° = 0 + (v;psin®,)t — 5g0° = (v;psind,) — 5g0°
of the projectile at any moment:
Write an expression for the x coordinate xp = X;p + vypt = 0 + (v;pcos 0,)t = (v;p cos 0,)t

of the projectile at any moment:

. . . . Xp
Solve this expression for time as a function t=

. . . Lo U;p COS 0
of the horizontal position of the projectile: r !

Xp

Substitute this expression into Equation (2): 3) 9

L2 . _L1,.2
) 5gl” = xptan 0, — 5gt

(vp sin e,)(

U;p cOs 0,

Finalize Compare Equations (1) and (3). We see that when the x coordinates of the projectile and target are the
same—that is, when x; = x,—their y coordinates given by Equations (1) and (3) are the same and a collision results.
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Example 4.4 That's Quite an Arm!

A stone is thrown from the top of a building upward at an angle of 30.0° to the horizontal with an initial speed of
20.0 m/s as shown in Figure 4.13. The height from which the stone is thrown is 45.0 m above the ground.

(A) How long does it take the stone to reach the ground?

SOLUTION

Y 0,=20.0m/s
Conceptualize Study Figure 4.13, in which we have indi- __0_| Ao =30.0° "~ .
cated the trajectory and various parameters of the motion ] Y
of the stone. £ AN
Categorize We categorize this problem as a projectile
motion problem. The stone is modeled as a particle under con-
stant acceleration in the y direction and a particle under constant 45.0 m
velocity in the x direction.
Analyze We have the information x, =y, = 0, y, = —45.0 m, .
_Y_ J — 900 N i Yi . 1){ ) £ F|gure 4.13
a4y = =g and v; = 20. m/s (the numerical value of y is (Example 4.4) A
negative because we have chosen the point of the throw as stone is thrown from v
the origin). the top of a building.
Find the initial xand y components of the stone’s v, = v;cos 0; = (20.0 m/s) cos 30.0° = 17.3 m/s
velocity:
Y vy; = v;sin 0, = (20.0 m/s) sin 30.0° = 10.0 m/s
Express the vertical position of the stone from the particle V=t vt — sot?
under constant acceleration model:
Substitute numerical values: —45.0m = 0 + (10.0 m/s)¢ + 5(—9.80 m/s*)¢*
Solve the quadratic equation for : 1=422s

(B) What is the speed of the stone just before it strikes the ground?

SOLUTION

Analyze Use the velocity equation in the particle v, = vy; — gt
under constant acceleration model to obtain the y

component of the velocity of the stone just before

it strikes the ground:

Substitute numerical values, using t = 4.22 s: v, =10.0m/s + (—9.80m/s?)(4.22s) = —31.3 m/s

Use this component with the horizontal compo- v = \/vxf2 + vyf = \/(17.3 m/s)> + (=31.8m/s)* = 35.8m/s
nent v,, = v,; = 17.3 m/s to find the speed of the

stone at { = 4.22 s:

Finalize Is it reasonable that the y component of the final velocity is negative? Is it reasonable that the final speed is
larger than the initial speed of 20.0 m/s?

WP What if a horizontal wind is blowing in the same direction as the stone is thrown and it causes the stone
to have a horizontal acceleration component a, = 0.500 m/s?>?» Which part of this example, (A) or (B), will have a dif-
ferent answer?

Answer Recall that the motions in the x and y directions are independent. Therefore, the horizontal wind cannot
affect the vertical motion. The vertical motion determines the time of the projectile in the air, so the answer to part
(A) does not change. The wind causes the horizontal velocity component to increase with time, so the final speed will
be larger in part (B). Taking a, = 0.500 m/s?, we find vy =194 m/sand v, = 36.9 m/s.
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The End of the Ski Jump

A ski jumper leaves the ski track moving in the horizontal direction with a speed of 25.0 m/s as shown in Figure 4.14.
The landing incline below her falls off with a slope of 35.0°. Where does she land on the incline?

SOLUTION

Conceptualize We can conceptualize this problem based on memories
of observing winter Olympic ski competitions. We estimate the skier to
be airborne for perhaps 4 s and to travel a distance of about 100 m hori-
zontally. We should expect the value of d, the distance traveled along
the incline, to be of the same order of magnitude.

Categorize We categorize the problem as one of a particle in projectile
motion. As with other projectile motion problems, we use the particle
under constant velocity model for the horizontal motion and the particle
under constant acceleration model for the vertical motion.

Analyze It is convenient to select the beginning of the jump as the ori-  Figure 4.14 (Example 4.5) A ski jumper leaves
gin. The initial velocity components are v,; = 25.0 m/s and v,; = 0. From  the track moving in a horizontal direction.

the right triangle in Figure 4.14, we see that the jumper’s xand y coordi-

nates at the landing point are given by x, = d cos ¢ and y, = —dsin ¢.

Express the coordinates of the jumper as a function of () %= vyt
time, using the particle under constant velocity model

for x and the position equation from the particle under
constant acceleration model for y: (8) dcos¢ = vt

@) 3= vyt — gl

(4) —dsin ¢ = —jgt®
d cos (],’))2

Solve Equation (3) for tand substitute the result into —dsin ¢ = —lg(
v

9§
Equation (4): x
. . 20, sin g 2(25.0 m/s)? sin 35.0°
Solve for d and substitute numerical values: d= 3 = 3 3 =109 m
gcos” ¢ (9.80 m/s?) cos® 35.0°

Evaluate the xand y coordinates of the point at which x;= dcos ¢ = (109 m) cos 35.0° = 89.3 m

he skier lands:
the skier fands y = —dsind = —(109 m) sin 35.0° = —62.5m

Finalize Letus compare these results with our expectations. We expected the horizontal distance to be on the order of
100 m, and our result of 89.3 m is indeed on this order of magnitude. It might be useful to calculate the time interval
that the jumper is in the air and compare it with our estimate of about 4 s.

ULZARES  Suppose everything in this example is the same except the ski jump is curved so that the jumper is pro-
jected upward at an angle from the end of the track. Is this design better in terms of maximizing the length of the
jump?

Answer If the initial velocity has an upward component, the skier will be in the air longer and should therefore travel
farther. Tilting the initial velocity vector upward, however, will reduce the horizontal component of the initial veloc-
ity. Therefore, angling the end of the ski track upward at a large angle may actually reduce the distance. Consider the
extreme case: the skier is projected at 90° to the horizontal and simply goes up and comes back down at the end of the
ski track! This argument suggests that there must be an optimal angle between 0° and 90° that represents a balance
between making the flight time longer and the horizontal velocity component smaller.

Let us find this optimal angle mathematically. We modify Equations (1) through (4) in the following way, assum-
ing the skier is projected at an angle 6 with respect to the horizontal over a landing incline sloped with an arbitrary
angle ¢:

(1) and (3) — X = (v;cos 0)t = d cos ¢
(@) and (4) — y, = (v;5in O) — 5g1* = —dsin ¢
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b 4.5

By eliminating the time ¢ between these equations and using differentiation to maximize d in terms of 0, we arrive
(after several steps; see Problem 88) at the following equation for the angle 6 that gives the maximum value of d:

o =452
2

For the slope angle in Figure 4.14, ¢ = 35.0° this equation results in an optimal launch angle of = 27.5°. For a slope

angle of ¢ = 0°, which represents a horizontal plane, this equation gives an optimal launch angle of 8 = 45°, as we

would expect (see Figure 4.10).

Analysis Model: Particle
in Uniform Gircular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we
call it uniform circular motion. Because it occurs so often, this type of motion is
recognized as an analysis model called the particle in uniform circular motion. We
discuss this model in this section.

It is often surprising to students to find that even though an object moves at a
constant speed in a circular path, it still has an acceleration. To see why, consider the
defining equation for acceleration, @ = dv/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the
magnitude of the velocity and by a change in the direction of the velocity. The latter
situation occurs for an object moving with constant speed in a circular path. The
constant-magnitude velocity vector is always tangent to the path of the object and
perpendicular to the radius of the circular path. Therefore, the direction of the
velocity vector is always changing.

Let us first argue that the acceleration vector in uniform circular motion is
always perpendicular to the path and always points toward the center of the circle.
If that were not true, there would be a component of the acceleration parallel to
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward
the center of the circle.

Let us now find the magnitude of the acceleration of the particle. Consider the
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows
the vector representing the change in position AT for an arbitrary time interval.
The particle follows a circular path of radius » part of which is shown by the dashed

Pitfall Prevention 4.4

Acceleration of a Particle

in Uniform Circular Motion
Remember that acceleration in
physics is defined as a change
in the wvelocity, not a change in
the speed (contrary to the every-
day interpretation). In circular
motion, the velocity vector is
always changing in direction, so
there is indeed an acceleration.

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a
particle moves along a portion of a circular path from ® to
®, its velocity vector changes from ¥, to 7/. (¢) The construc-

tion for determining the direction of the change in velocity
AV, which is toward the center of the circle for small AT.
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Centripetal acceleration P>
for a particle in uniform
circular motion

Period of circular motion P
for a particle in uniform
circular motion

curve. The particle is at ® at time 7, and its velocity at that time is V; it is at ® at
some later time £, and its velocity at that time is V. Let us also assume v, and v,
differ only in direction; their magnitudes are the same (that is, v; = v, = v because
it is wniform circular motion).

In Figure 4.15¢, the velocity vectors in Figure 4.15b have been redrawn tail to
tail. The vector AV connects the tips of the vectors, representing the vector addition
V=¥, + AV.In both Figures 4.15b and 4.15¢, we can identify triangles that help
us analyze the motion. The angle A6 between the two position vectors in Figure
4.15b is the same as the angle between the velocity vectors in Figure 4.15¢ because
the velocity vector V is always perpendicular to the position vector ¥. Therefore,
the two triangles are similar. (Two triangles are similar if the angle between any two
sides is the same for both triangles and if the ratio of the lengths of these sides is
the same.) We can now write a relationship between the lengths of the sides for the
two triangles in Figures 4.15b and 4.15c:

[AV]  |ATY|

v r

where v = v; = v,and r = 1; = 1. This equation can be solved for |AV], and the
expression obtained can be substituted into Equation 4.4, ?favg = AV/At, to give
the magnitude of the average acceleration over the time interval for the particle to
move from @ to ®:

| AV olaF]

a_ - = =
= [Az] rA¢

Now imagine that points ® and ® in Figure 4.15b become extremely close
together. As ® and ® approach each other, At approaches zero, |A¥| approaches
the distance traveled by the particle along the circular path, and the ratio |AT|/A¢
approaches the speed v. In addition, the average acceleration becomes the instan-
taneous acceleration at point ®. Hence, in the limit A7 — 0, the magnitude of the
acceleration is

a,=— (4.14)

An acceleration of this nature is called a centripetal acceleration (centripetal means
center-seeking). The subscript on the acceleration symbol reminds us that the accel-
eration is centripetal.

In many situations, it is convenient to describe the motion of a particle moving
with constant speed in a circle of radius rin terms of the period 7, which is defined
as the time interval required for one complete revolution of the particle. In the time
interval 7, the particle moves a distance of 271, which is equal to the circumference
of the particle’s circular path. Therefore, because its speed is equal to the circum-
ference of the circular path divided by the period, or v = 271/7, it follows that

2mr
v

(4.15)

The period of a particle in uniform circular motion is a measure of the num-
ber of seconds for one revolution of the particle around the circle. The inverse of
the period is the rotation rate and is measured in revolutions per second. Because
one full revolution of the particle around the circle corresponds to an angle of 27
radians, the product of 277 and the rotation rate gives the angular speed w of the

particle, measured in radians/s or s

w =7 (4.16)
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Combining this equation with Equation 4.15, we find a relationship between angular
speed and the translational speed with which the particle travels in the circular path:

v v

w=9%r—)=— - v=rw 4.17)
2 r

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed

becomes larger as the radial position becomes larger. Therefore, for example, if a

merry-go-round rotates at a fixed angular speed w, a rider at an outer position at

large r will be traveling through space faster than a rider at an inner position at

Pitfall Prevention 4.5

Centripetal Acceleration
Is Not Constant We derived the
magnitude of the centripetal

smaller . We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10. AcCeleration vector and foumd it to
We can express the centripetal acceleration of a particle in uniform circular  be constant for uniform circular
motion in terms of angular speed by combining Equations 4.14 and 4.17: motion, but the centripetal accelera-
9 tion vector is not constant. It always
_ (rw) points toward the center of the
4= r circle, but it continuously changes

direction as the object moves
around the circular path.

a, = re’ (4.18)

c

Equations 4.14-4.18 are to be used when the particle in uniform circular motion
model is identified as appropriate for a given situation.

@uick Quiz 4.4 A particle moves in a circular path of radius rwith speed v. It then
. increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:
(@) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,
& by what factor has the period of the particle changed?

RUELWSTRY (SR  Particle in Uniform Circular Motion

Imagine a moving object that can be modeled as a particle. If it moves Examples:
in a circular path of radius rat a constant speed v, the magnitude of its

. o g ® arock twirled in a circle on a string
centripetal acceleration is

of constant length

e a planet traveling around a per-
fectly circular orbit (Chapter 13)

® a charged particle moving in a uni-
form magnetic field (Chapter 29)

® an electron in orbit around a

The angular speed of the particle is nucleus in the Bohr model of the

9 hydrogen atom (Chapter 42)
= ;f (4.16) IEREE :

a, = (4.14)

22
r
and the period of the particle’s motion is given by

2
e

(4.15)

w

Example 4.6 The Centripetal Acceleration of the Earth

(A) Whatis the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

SOLUTION

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and
the radius of the Earth’s orbit around the Sun, which is 1.496 X 10'! m.

continued
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P 4.6
(2771’)2
. . v? T 472y

Combine Equations 4.14 and 4.15: a@,.=—=—"= 5
¥ r T
477%(1.496 X 101 1yr 2

Substitute numerical values: a, = at 5 m)( Y = ) = 593 X 107° m/s?

(1 yr) 3.156 X 10’ s

(B) Whatis the angular speed of the Earth in its orbit around the Sun?

SOLUTION

Analyze

Substitute numerical values into Equation 4.16:

B 277( lyr

7) = 1.99 X 107 757!
3.156 X 107s

w =
lyr

Finalize The acceleration in part (A) is much smaller than the free-fall acceleration on the surface of the Earth. An
important technique we learned here is replacing the speed vin Equation 4.14 in terms of the period T of the motion.
In many problems, it is more likely that T is known rather than v. In part (B), we see that the angular speed of the
Earth is very small, which is to be expected because the Earth takes an entire year to go around the circular path once.

Total acceleration »>

Tangential acceleration P>

Figure 4.16 The motion ofa
particle along an arbitrary curved
path lying in the xy plane. If the
velocity vector ¥ (always tangent
to the path) changes in direction
and magnitude, the components
of the acceleration @ are a tan-
gential component ¢, and a radial
component a,.

Tangential and Radial Acceleration

Let us consider a more general motion than that presented in Section 4.4. A parti-
cle moves to the right along a curved path, and its velocity changes bot/ in direction
and in magnitude as described in Figure 4.16. In this situation, the velocity vector
is always tangent to the path; the acceleration vector @, however, is at some angle
to the path. At each of three points @, ®, and © in Figure 4.16, the dashed blue
circles represent the curvature of the actual path at each point. The radius of each
circle is equal to the path’s radius of curvature at each point.

As the particle moves along the curved path in Figure 4.16, the direction of the
total acceleration vector @ changes from point to point. At any instant, this vec-
tor can be resolved into two components based on an origin at the center of the
dashed circle corresponding to that instant: a radial component ¢, along the radius
of the circle and a tangential component g, perpendicular to this radius. The total

acceleration vector @ can be written as the vector sum of the component vectors:
a=1a,+ a, (4.19)

The tangential acceleration component causes a change in the speed v of the particle.
This component is parallel to the instantaneous velocity, and its magnitude is given by

dv
a,= |— (4.20)
dl
Path of
particle  a,
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The radial acceleration component arises from a change in direction of the velocity
vector and is given by

a=—a,= —— (4.21)

where ris the radius of curvature of the path at the point in question. We recog-
nize the magnitude of the radial component of the acceleration as the centripetal
acceleration discussed in Section 4.4 with regard to the particle in uniform circular
motion model. Even in situations in which a particle moves along a curved path
with a varying speed, however, Equation 4.14 can be used for the centripetal accel-
eration. In this situation, the equation gives the instantaneous centripetal accelera-
tion at any time. The negative sign in Equation 4.21 indicates that the direction
of the centripetal acceleration is toward the center of the circle representing the
radius of curvature. The direction is opposite that of the radial unit vector r, which
always points away from the origin at the center of the circle.

Because @, and @, are perpendicular component vectors of a, it follows that
the magnitude of @ is a = Va2 + a?. At a given speed, a, is large when the
radius of curvature is small (as at points ® and ® in Fig. 4.16) and small when 7 is
large (as at point ©). The direction of @, is either in the same direction as v (if v is
increasing) or opposite v (if v is decreasing, as at point ®).

In uniform circular motion, where v is constant, ¢, = 0 and the acceleration is
always completely radial as described in Section 4.4. In other words, uniform circu-
lar motion is a special case of motion along a general curved path. Furthermore, if
the direction of ¥ does not change, there is no radial acceleration and the motion
is one dimensional (in this case, a, = 0, but ¢, may not be zero).

uick Quiz 4.5 A particle moves along a path, and its speed increases with time.
(i) In which of the following cases are its acceleration and velocity vectors paral-

lel? (a) when the path is circular (b) when the path is straight (c) when the path
© is a parabola (d) never (ii) From the same choices, in which case are its accelera-
é tion and velocity vectors perpendicular everywhere along the path?

Example 4.7 Over the Rise

A car leaves a stop sign and exhibits a constant acceleration of
0.300 m/s? parallel to the roadway. The car passes over a rise
in the roadway such that the top of the rise is shaped like an
arc of a circle of radius 500 m. At the moment the car is at the
top of the rise, its velocity vector is horizontal and has a mag-
nitude of 6.00 m/s. What are the magnitude and direction of
the total acceleration vector for the car at this instant?

SOLUTION

<« Radial acceleration

a, = 0.300 m/s>

Conceptualize Conceptualize the situation using Figure
4.17a and any experiences you have had in driving over rises
on a roadway.

Categorize Because the accelerating car is moving along a
curved path, we categorize this problem as one involving a

Figure 4.17 (Example 4.7) (a) A car passes over a rise that
is shaped like an arc of a circle. (b) The total acceleration

particle experiencing both tangential and radial acceleration. vector @ is the sum of the tangential and radial acceleration

We recognize that it is a relatively simple substitution problem. vectors @, and @,.

The tangential acceleration vector has magnitude 0.300 m/s? and is horizontal. The radial acceleration is given by
Equation 4.21, with v = 6.00 m/s and » = 500 m. The radial acceleration vector is directed straight downward.

continued
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b 4.7

Evaluate the radial acceleration:

Find the magnitude of a:

Find the angle ¢ (see Fig. 4.17b) between @ and the

horizontal:

B A P
' ' —x
fe—5—=]

A r
' | P
5 0 5 n
B P
' ' —xy
0 +5 +10

Figure 4.18 Different observers
make different measurements.

(a) Observer A is located 5 units
to the right of Observer B. Both
observers measure the position of
a particle at P. (b) If both observ-
ers see themselves at the origin of
their own coordinate system, they
disagree on the value of the posi-
tion of the particle at .

The woman standing on the
beltway sees the man moving with
a slower speed than does the
woman observing the man from
the stationary floor.

Figure 4.19 Two observers mea-
sure the speed of a man walking

on a moving beltway.

2 6.00 2 ,
a,=—2 = _(B00m/s) ) 079 0 mys?
r 500 m

Va2 + a2=V(=0.0720m/s>)? + (0.300 m/s)>

= 0.309 m/s>
A —0.072 0 g
¢ = tan™! . tan_l<2—m£s> = E=I3ih8
a, 0.300 m/s

Relative Velocity and Relative Acceleration

In this section, we describe how observations made by different observers in dif-
ferent frames of reference are related to one another. A frame of reference can be
described by a Cartesian coordinate system for which an observer is at rest with
respect to the origin.

Let us conceptualize a sample situation in which there will be different observa-
tions for different observers. Consider the two observers A and B along the number
line in Figure 4.18a. Observer A is located 5 units to the right of observer B. Both
observers measure the position of point P, which is located 5 units to the right of
observer A. Suppose each observer decides that he is located at the origin of an
x axis as in Figure 4.18b. Notice that the two observers disagree on the value of the
position of point P. Observer A claims point P is located at a position with a value
of x, = +b, whereas observer B claims it is located at a position with a value of x; =
+10. Both observers are correct, even though they make different measurements.
Their measurements differ because they are making the measurement from differ-
ent frames of reference.

Imagine now that observer B in Figure 4.18b is moving to the right along the xy
axis. Now the two measurements are even more different. Observer A claims point
P remains at rest at a position with a value of +5, whereas observer B claims the
position of P continuously changes with time, even passing him and moving behind
him! Again, both observers are correct, with the difference in their measurements
arising from their different frames of reference.

We explore this phenomenon further by considering two observers watching a
man walking on a moving beltway at an airport in Figure 4.19. The woman standing
on the moving beltway sees the man moving at a normal walking speed. The woman
observing from the stationary floor sees the man moving with a higher speed because
the beltway speed combines with his walking speed. Both observers look at the same
man and arrive at different values for his speed. Both are correct; the difference in
their measurements results from the relative velocity of their frames of reference.

In a more general situation, consider a particle located at point P in Figure
4.20. Imagine that the motion of this particle is being described by two observers,
observer A in a reference frame S, fixed relative to the Earth and a second observer
B in a reference frame Sy moving to the right relative to S, (and therefore rela-
tive to the Earth) with a constant velocity ¥y,. In this discussion of relative veloc-
ity, we use a double-subscript notation; the first subscript represents what is being
observed, and the second represents who is doing the observing. Therefore, the
notation ¥y, means the velocity of observer B (and the attached frame S) as mea-
sured by observer A. With this notation, observer B measures A to be moving to the
left with a velocity ¥,3 = —Vy,s. For purposes of this discussion, let us place each
observer at her or his respective origin.

We define the time ¢ = 0 as the instant at which the origins of the two reference
frames coincide in space. Therefore, at time ¢, the origins of the reference frames
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will be separated by a distance vg,t. We label the position P of the particle relative
to observer A with the position vector T, and that relative to observer B with the
position vector T pp, both at time /. From Figure 4.20, we see that the vectors T p,
and T py are related to each other through the expression

Tpy = Tpp + Vpal (4.22)

By differentiating Equation 4.22 with respect to time, noting that Vy, is con-
stant, we obtain
dTpy _ dTfpg

v
di dt A
Upp = Upp + Vi (4.23) <4 Galilean velocity

transformation
where U, is the velocity of the particle at P measured by observer A and Uy is its
velocity measured by B. (We use the symbol u for particle velocity rather than ¥,

. . . Sa Sp

which we have already used for the relative velocity of two reference frames.) Equa- P
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate
the position and velocity of a particle as measured by observers in relative motion.
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are ey

A
. . r
added, the inner subscripts (B) are the same and the outer ones (P, A) match the B
subscripts on the velocity on the left of the equation. A B .
Although observers in two frames measure different velocities for the particle, Val o N
Vi A

they measure the same acceleration when vy, is constant. We can verify that by taking

the time derivative of Equation 4.23: . )
Figure 4.20 A particle located

dffPA dﬁ)PB dVBA at Pis described by two observers,
d = d + d one in the fixed frame of refer-
! t t ence S, and the other in the

Because Vg, is constant, dvg,/dl = 0. Therefore, we conclude that @,y = @py  2m€ Sy which moves to the right
with a constant velocity vi,. The

- _ = - _ = . : :
because apy, = dup,/dl and' app = dupy/dl. That is, t.he acceleration of the parti- = Ty is the particle’s position
cle measured by an observer in one frame of reference is the same as that measured vector relative 0 Sy, and Tpy is its
by any other observer moving with constant velocity relative to the first frame. position vector relative to S.

Example 4.8 A Boat Crossing a River

A boat crossing a wide river moves with a speed of X @
10.0 km/h relative to the water. The water in the river has a %
uniform speed of 5.00 km/h due east relative to the Earth. =
(A) If the boat heads due north, determine the velocity of A
the boat relative to an observer standing on either bank. Vop
—
Vibr
« e
Conceptualize Imagine moving in a boat across a river Wé.,pJ
while the current pushes you down the river. You will not «
be able to move directly across the river, but will end up
downstream as suggested in Figure 4.21a. &) b
Categorize Because of the combined velocities of you rela- Figure 4.21 (Example 4.8) (a) A boat aims directly across a
tive to the river and the river relative to the Earth, we can river and ends up downstream. (b) To move directly across the
categorize this problem as one involving relative velocities. river, the boat must aim upstream.

Analyze We know V,,, the velocity of the boal relative to the river, and Vg, the velocity of the river relative to the Earth.
What we must find is V,z, the velocity of the boat relative to the Earth. The relationship between these three quantities
is Vip = V), + V.. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity V., is due north; V,;; is due east; and the vector sum of the two, V,, is at an angle 0 as defined

in Figure 4.21a. .
conlinued
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b 4.8
Find the speed v, of the boat relative to the Earth using oe = Vol + vy2 = V(10.0 km/h)? + (5.00 km/h)?
the Pythagorean theorem: — 11.9 km/h
. 5.00
Find the direction of ¥: 0 = tan_1<vE) = tan_l<) = 26.6°
Upy 10.0

Finalize The boat is moving at a speed of 11.2 km/h in the direction 26.6° east of north relative to the Earth. Notice
that the speed of 11.2 km/h is faster than your boat speed of 10.0 km/h. The current velocity adds to yours to give you
a higher speed. Notice in Figure 4.21a that your resultant velocity is at an angle to the direction straight across the
river, so you will end up downstream, as we predicted.

(B) If the boat travels with the same speed of 10.0 km/h relative to the river and is to travel due north as shown in
Figure 4.21b, what should its heading be?

SOLUTION

Conceptualize/Categorize This question is an extension of part (A), so we have already conceptualized and catego-
rized the problem. In this case, however, we must aim the boat upstream so as to go straight across the river.

Analyze The analysis now involves the new triangle shown in Figure 4.21b. As in part (A), we know V,; and the mag-
nitude of the vector v,,, and we want ¥, to be directed across the river. Notice the difference between the triangle in
Figure 4.21a and the one in Figure 4.21b: the hypotenuse in Figure 4.21b is no longer v,;.

Use the Pythagorean theorem to find v,: o = Vot — vg2 = V(10.0 km/h)? — (5.00 km/h)? = 8.66 km/h

Finalize The boat must head upstream so as to travel directly northward across the river. For the given situation, the
boat must steer a course 30.0° west of north. For faster currents, the boat must be aimed upstream at larger angles.

WSS Imagine that the two boats in parts (A) and (B) are racing across the river. Which boat arrives at the
opposite bank first?

Answer In part (A), the velocity of 10 km/h is aimed directly across the river. In part (B), the velocity that is directed
across the river has a magnitude of only 8.66 km/h. Therefore, the boat in part (A) has a larger velocity component
directly across the river and arrives first.

Summary

The displacement vector Ar for a particle is the difference between its final position vector and its initial position
vector:

AT =7, 7, (a.1)

1

The average velocity of a particle during the time interval Azis defined as the displacement of the particle divided by
the time interval:

AY¥
Ve = —— 4.2
vavg At ( )
The instantaneous velocity of a particle is defined as the limit of the average velocity as A¢ approaches zero:
AY 47
V=lim —— = (4.3)



The average acceleration of a particle is defined as the
change in its instantaneous velocity vector divided by the
time interval A¢ during which that change occurs:

— - _ ﬁA
?{avg = Aiv — u (4_4)
Az 4=t

The instantaneous acceleration of a particle is defined
as the limiting value of the average acceleration as At

Summary 99

Projectile motion is one type of two-
dimensional motion, exhibited by an object
launched into the air near the Earth’s surface
and experiencing free fall. This common motion
can be analyzed by applying the particle under
constant velocity model to the motion of the
projectile in the x direction and the particle
under constant acceleration model (a,y = —g) in

approaches zero: the y direction.
A particle moving in a circular path with con-

ad=lim —=— (4.5) stant speed is exhibiting uniform circular motion.

Concepts and Principles

If a particle moves with constant acceleration @ and has velocity v; and position T; at ¢ = 0, its velocity and position
vectors at some later time /are

V=, + 7 (4.8)
[T S O (4.9)

For two-dimensional motion in the xy plane under constant acceleration, ea—ch of these vector expressions is equiva-
lent to two component expressions: one for the motion in the x direction and one for the motion in the y direction.

It is useful to think of projectile motion in terms of a combi-
nation of two analysis models: (1) the particle under constant
velocity model in the x direction and (2) the particle under
constant acceleration model in the vertical direction with a
constant downward acceleration of magnitude g = 9.80 m/s?.

A particle in uniform circular motion under-
goes a radial acceleration @, because the direc-
tion of ¥ changes in time. This acceleration is
called centripetal acceleration, and its direction
is always toward the center of the circle.

The velocity Up, of a particle measured in a
fixed frame of reference S, can be related to the
velocity U pp of the same particle measured in a

If a particle moves along a curved path in such a way that
both the magnitude and the direction of ¥ change in time,
the particle has an acceleration vector that can be described by
two component vectors: (1) a radial component vector @, that
causes the change in direction of ¥ and (2) a tangential com-
ponent vector @, that causes the change in magnitude of V.
The magnitude of @, is v>/7; and the magnitude of @, is |duv/di.

moving frame of reference Sy by
Upy = Upg + Vi (4.23)

where Vy, is the velocity of S, relative to S,.

Analysis Model for Problem Solving

Particle in Uniform Circular Motion If a particle moves in a circular path of radius rwith a
constant speed v, the magnitude of its centripetal acceleration is given by

a,=— (4.14)

and the period of the particle’s motion is given by

=271 (4.15)
v
The angular speed of the particle is
2
0= (4.16)
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Objective Questions

1. Figure OQ4.1 shows a bird’s-eye view of a car going

around a highway curve. As the car moves from point
1 to point 2, its speed doubles. Which of the vectors
(a) through (e) shows the direction of the car’s average
acceleration between these two points?

@ /.
D e

(0) &
1 (d) <—
(e) 4~
Figure 0Q4.1

. Entering his dorm room, a student tosses his book bag
to the right and upward at an angle of 45° with the hori-
zontal (Fig. OQ4.2). Air resistance does not affect the
bag. The bag moves through point ® immediately after
it leaves the student’s hand, through point ® at the top
of its flight, and through point © immediately before it
lands on the top bunk bed. (i) Rank the following hori-
zontal and vertical velocity components from the larg-
est to the smallest. (a) vg, (b) U@y (c) vg, (d) Uy (e) Uy
Note that zero is larger than a negative number. If two
quantities are equal, show them as equal in your list. If
any quantity is equal to zero, show that fact in your list.
(ii) Similarly, rank the following acceleration compo-
nents. (a) ag, (b) ag, (€) ag, (d) agy (€) ag,

P S
- ~N
o

e o4
3

_ \©
I

—

Figure 0Q4.2

3. A student throws a heavy red ball horizontally from a

balcony of a tall building with an initial speed v;,. At the
same time, a second student drops a lighter blue ball
from the balcony. Neglecting air resistance, which state-
ment is true? (a) The blue ball reaches the ground first.
(b) The balls reach the ground at the same instant.
(c) The red ball reaches the ground first. (d) Both balls
hit the ground with the same speed. (e¢) None of state-
ments (a) through (d) is true.

4. A projectile is launched on the Earth with a certain ini-

tial velocity and moves without air resistance. Another
projectile is launched with the same initial velocity on
the Moon, where the acceleration due to gravity is one-
sixth as large. How does the maximum altitude of the

denotes answer available in Student Solutions Manual/Study Guide

projectile on the Moon compare with that of the pro-
jectile on the Earth? (a) It is one-sixth as large. (b) It
is the same. (c) It is V6 times larger. (d) Itis 6 times
larger. (e) Itis 36 times larger.

. Does a car moving around a circular track with constant

speed have (a) zero acceleration, (b) an acceleration in
the direction of its velocity, (c) an acceleration directed
away from the center of its path, (d) an acceleration
directed toward the center of its path, or (e) an acceler-
ation with a direction that cannot be determined from
the given information?

. An astronaut hits a golf ball on the Moon. Which of the

following quantities, if any, remain constant as a ball
travels through the vacuum there? (a) speed (b) accel-
eration (c) horizontal component of velocity (d) verti-
cal component of velocity (e) velocity

. A projectile is launched on the Earth with a certain ini-

tial velocity and moves without air resistance. Another
projectile is launched with the same initial velocity on
the Moon, where the acceleration due to gravity is one-
sixth as large. How does the range of the projectile on
the Moon compare with that of the projectile on the
Earth? (a) It is one-sixth as large. (b) It is the same.
(¢) Itis V6 times larger. (d) Itis 6 times larger. (e) Itis
36 times larger.

. A girl, moving at 8 m/s on in-line skates, is overtaking

a boy moving at 5 m/s as they both skate on a straight
path. The boy tosses a ball backward toward the girl,
giving it speed 12 m/s relative to him. What is the speed
of the ball relative to the girl, who catches it? (a) (8 +
5+12)m/s (b) (8 =5 —12) m/s (¢) (8 +5 — 12) m/s
d) 8=5+12)m/s (e) (-8 +5+ 12) m/s

A sailor drops a wrench from the top of a sailboat’s ver-

10.

11.

tical mast while the boat is moving rapidly and steadily
straight forward. Where will the wrench hit the deck?
(a) ahead of the base of the mast (b) at the base of
the mast (c) behind the base of the mast (d) on the
windward side of the base of the mast (e) None of the
choices (a) through (d) is true.

A baseball is thrown from the outfield toward the
catcher. When the ball reaches its highest point, which
statement is true? (a) Its velocity and its acceleration
are both zero. (b) Its velocity is not zero, but its accel-
eration is zero. (c) Its velocity is perpendicular to its
acceleration. (d) Its acceleration depends on the angle
at which the ball was thrown. (e) None of statements
(a) through (d) is true.

A set of keys on the end of a string is swung steadily
in a horizontal circle. In one trial, it moves at speed
v in a circle of radius r. In a second trial, it moves at a
higher speed 4v in a circle of radius 4. In the second
trial, how does the period of its motion compare with
its period in the first trial? (a) It is the same as in the
first trial. (b) It is 4 times larger. (c) It is one-fourth as
large. (d) Itis 16 times larger. (e) It is one-sixteenth as
large.



12. A rubber stopper on the end of a string is swung
steadily in a horizontal circle. In one trial, it moves at
speed vin a circle of radius . In a second trial, it moves
at a higher speed 3v in a circle of radius 3 In this
second trial, is its acceleration (a) the same as in the
first trial, (b) three times larger, (c) one-third as large,
(d) nine times larger, or (e) one-ninth as large?

13. In which of the following situations is the moving
object appropriately modeled as a projectile? Choose
all correct answers. (a) A shoe is tossed in an arbitrary

Problems 101

direction. (b) A jet airplane crosses the sky with its
engines thrusting the plane forward. (c) A rocket leaves
the launch pad. (d) A rocket moves through the sky, at
much less than the speed of sound, after its fuel has
been used up. (e) A diver throws a stone under water.

14. A certain light truck can go around a curve having a

radius of 150 m with a maximum speed of 32.0 m/s.
To have the same acceleration, at what maximum speed
can it go around a curve having a radius of 75.0 m?
(@) 64 m/s (b) 45 m/s (c) 32 m/s (d) 23 m/s (e) 16 m/s

Conceptual Questions denotes answer available in Student Solutions Manual/Study Guide

|Z|A spacecraft drifts through space at a constant velocity.
Suddenly, a gas leak in the side of the spacecraft gives it a
constant acceleration in a direction perpendicular to the
initial velocity. The orientation of the spacecraft does not
change, so the acceleration remains perpendicular to
the original direction of the velocity. What is the shape
of the path followed by the spacecraft in this situation?

2. An ice skater is executing a figure eight, consisting of two
identically shaped, tangent circular paths. Throughout
the firstloop she increases her speed uniformly, and dur-
ing the second loop she moves at a constant speed. Draw
a motion diagram showing her velocity and acceleration
vectors at several points along the path of motion.

If you know the position vectors of a particle at two
points along its path and also know the time interval
during which it moved from one point to the other,
can you determine the particle’s instantaneous veloc-
ity? Its average velocity? Explain.

4.

Describe how a driver can steer a car traveling at con-
stant speed so that (a) the acceleration is zero or (b) the
magnitude of the acceleration remains constant.

A projectile is launched at some angle to the hori-

zontal with some initial speed v;, and air resistance is
negligible. (a) Is the projectile a freely falling body?
(b) What is its acceleration in the vertical direction?
(c) What is its acceleration in the horizontal direction?

. Construct motion diagrams showing the velocity and

acceleration of a projectile at several points along its
path, assuming (a) the projectile is launched horizon-
tally and (b) the projectile is launched at an angle 0
with the horizontal.

Explain whether or not the following particles have

an acceleration: (a) a particle moving in a straight line
with constant speed and (b) a particle moving around
a curve with constant speed.

The problems found in this Analysis Model tutorial available in

WebAssi :
9N chapter may be assigned Enhanced WebAssign
online in Enhanced WebAssign [Td Guided Problem
1. straightforward; 2. intermediate; Y1 Master It tutorial available in Enhanced
3. challenging WebAssign
full solution available in the Student Watch It video solution available in
Solutions Manual/Study Guide Enhanced WebAssign

Section 4.1 The Position, Velocity, and Acceleration Vectors

A motorist drives south at 20.0 m/s for 3.00 min, then
turns west and travels at 25.0 m/s for 2.00 min, and
finally travels northwest at 30.0 m/s for 1.00 min. For
this 6.00-min trip, find (a) the total vector displace-
ment, (b) the average speed, and (c) the average veloc-
ity. Let the positive x axis point east.

2. When the Sun is directly overhead, a hawk dives toward
the ground with a constant velocity of 5.00 m/s at 60.0°
below the horizontal. Calculate the speed of its shadow
on the level ground.

3. Suppose the position vector for a particle is given as
a function of time by T(z) = x(2)i + y(¢)], with x(t) =
al+ band y(1) = ¢/® + d,where a=1.00m/s, b= 1.00 m,

4.

¢=0.125 m/s?, and d = 1.00 m. (a) Calculate the aver-
age velocity during the time interval from ¢ = 2.00 s to
t=4.00s. (b) Determine the velocity and the speed at
t=2.00s.

The coordinates of an object moving in the xy plane
vary with time according to the equations x =
—5.00 sin wtand y = 4.00 — 5.00 cos wt, where w is a
constant, x and y are in meters, and ¢ is in seconds.
(a) Determine the components of velocity of the
object at ¢ = 0. (b) Determine the components of
acceleration of the object at ¢ = 0. (c) Write expres-
sions for the position vector, the velocity vector, and
the acceleration vector of the object at any time ¢ > 0.
(d) Describe the path of the object in an xy plot.
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5. A golf ball is hit off a tee at the edge of a cliff. Its x and
y coordinates as functions of time are given by x = 18.0¢
and y = 4.00¢{ — 4.90¢?, where xand y are in meters and ¢
is in seconds. (a) Write a vector expression for the ball’s
posmon as a function of time, using the unit vectors
i and j. By taking derlvatlves obtain expressions for
(b) the velocity vector Vv as a function of time and
(c) the acceleration vector a as a function of time.
(d) Next use unit-vector notation to write expressions
for the position, the velocity, and the acceleration of
the golf ball at ¢ = 3.00 s.

Section 4.2 Two-Dimensional Motion
with Constant Acceleration

. 6. A particle 1n1t1ally located at the origin has an accel-

elatlon of a = 3. OOJ m/s? and an initial velocity of

. = 5.00i m/s. Find (a) the vector position of the par-

t1cle at any time £, (b) the velocity of the particle at any

time ¢, (c) the coordinates of the particle at ¢ = 2.00 s,
and (d) the speed of the particle at = 2.00s.

7. The vector position of a particle varies in time accord-

ing to the expression T = 3. 00i — 6. OOtQJ, where T is
in meters and ¢ is in seconds. (a) Find an expression
for the velocity of the particle as a function of time.
(b) Determine the acceleration of the particle as a
function of time. (c) Calculate the particle’s position
and velocity at ¢ = 1.00 s.

8. It is not possible to see very small objects, such as
viruses, using an ordinary light microscope. An elec-
tron microscope, however, can view such objects using
an electron beam instead of a light beam. Electron
microscopy has proved invaluable for investigations
of viruses, cell membranes and subcellular structures,
bacterial surfaces, visual receptors, chloroplasts, and
the contractile properties of muscles. The “lenses” of
an electron microscope consist of electric and mag-
netic fields that control the electron beam. As an exam-
ple of the manipulation of an electron beam, consider
an electron traveling away from the or1g1n along the
x axis in the xy plane with initial velocity v; = v;i. As it
passes through the 1eg10n x = O to x = d, the clectron
experiences acceleration @ = a, it (th, where a, and
a,are constants. For the case v; = 1.80 X 107 m/s, a, =
8.00 X 10 m/s%, and a, = 1.60 x 10! m/s?, determine
at x = d = 0.010 0 m (a) the position of the electron,
(b) the velocity of the electron, (c) the speed of the
electron, and (d) the direction of travel of the electron
(i.e., the angle between its velocity and the x axis).

.A flSh swimming in a horizontal plane has veloc-
ity V.= (4.00i + 1.00j) m/s at a point in the
MOcean where the position relative to a certain rock
is = (10. 0i — 4. OOJ) After the fish swims
w1th constant acceleratlon for 20.0 s, its velocity is
= (20.0i — 5.00j) m/s. (a) Whatare the components
of the acceleration of the fish? (b) What is the d1reAc-
tion of its acceleration with respect to unit vector i?
(c) If the fish maintains constant acceleration, where is

itat (= 25.0 s and in what direction is it moving?

10. Review. A snowmobile is originally at the point with
position vector 29.0 m at 95.0° counterclockwise from

the x axis, moving with velocity 4.50 m/s at 40.0°. It
moves with constant acceleration 1.90 m/s? at 200°.
After 5.00 s have elapsed, find (a) its velocity and (D) its
position vector.

Section 4.3 Projectile Motion

Note: Ignore air resistance in all problems and take
g = 9.80 m/s?at the Earth’s surface.

11. Mayan kings and many school sports teams are named
for the puma, cougar, or mountain lion—Felis concolor—
the best jumper among animals. It can jump to a height
of 12.0 ft when leaving the ground at an angle of 45.0°.
With what speed, in SI units, does it leave the ground
to make this leap?

12. An astronaut on a strange planet finds that she can
jump a maximum horizontal distance of 15.0 m if her
initial speed is 3.00 m/s. What is the free-fall accelera-
tion on the planet?

In alocal bar, a customer slides an empty beer mug down
the counter for a refill. The height of the counter is
[ 1.22 m. The mug slides off the counter and strikes the
floor 1.40 m from the base of the counter. (a) With what
velocity did the mug leave the counter? (b) What was the
direction of the mug’s velocity just before it hit the floor?

14. In a local bar, a customer slides an empty beer mug
down the counter for a refill. The height of the counter
is h. The mug slides off the counter and strikes the floor
at distance d from the base of the counter. (a) With what
velocity did the mug leave the counter? (b) What was the
direction of the mug’s velocity just before it hit the floor?

15. A projectile is fired in such a way that its horizontal
range is equal to three times its maximum height.
What is the angle of projection?

16. To start an avalanche on a mountain slope, an artillery

shell is fired with an initial velocity of 300 m/s at 55.0°
above the horizontal. It explodes on the mountainside
42.0 s after firing. What are the x and y coordinates of
the shell where it explodes, relative to its firing point?

17. Chinook salmon are able to move through water espe-
cially fast by jumping out of the water periodically.
This behavior is called porpoising. Suppose a salmon
swimming in still water jumps out of the water with
velocity 6.26 m/s at 45.0° above the horizontal, sails
through the air a distance L before returning to the
water, and then swims the same distance L underwa-
ter in a straight, horizontal line with velocity 3.58 m/s
before jumping out again. (a) Determine the average
velocity of the fish for the entire process of jumping
and swimming underwater. (b) Consider the time
interval required to travel the entire distance of 2L.
By what percentage is this time interval reduced by
the jumping/swimming process compared with simply
swimming underwater at 3.58 m/s?

18. A rock is thrown upward from level ground in such a
way that the maximum height of its flight is equal to
its horizontal range R. (a) At what angle 0 is the rock
thrown? (b) In terms of its original range R, what is
the range R, ,, the rock can attain if it is launched at

max



19.

20.

the same speed but at the optimal angle for maximum
range? (c¢) What If? Would your answer to part (a) be
different if the rock is thrown with the same speed on a
different planet? Explain.

The speed of a projectile when it reaches its maximum
height is one-half its speed when it is at half its maxi-
mum height. What is the initial projection angle of the
projectile?

A ball is tossed from an upper-story window of a build-

ing. The ball is given an initial velocity of 8.00 m/s at

21.

22.

an angle of 20.0° below the horizontal. It strikes the
ground 3.00 s later. (a) How far horizontally from the
base of the building does the ball strike the ground?
(b) Find the height from which the ball was thrown.
(c) Howlong does it take the ball to reach a point 10.0 m
below the level of launching?

A firefighter, a distance d from a burning building,
directs a stream of water from a fire hose at angle 0,
above the horizontal as shown in Figure P4.21. If the
initial speed of the stream is v;, at what height /& does
the water strike the building?

Figure P4.21

A landscape architect is
planning an artificial water-
fall in a city park. Water
flowing at 1.70 m/s will
leave the end of a horizon-
tal channel at the top of
a vertical wall 2 = 2.35 m
high, and from there it will
fall into a pool (Fig. P4.22).
(a) Will the space behind
the waterfall be wide
enough for a pedestrian walkway? (b) To sell her plan to
the city council, the architect wants to build a model to
standard scale, which is one-twelfth actual size. How fast
should the water flow in the channel in the model?

Figure P4.22

[23.]A placekicker must kick a football from a point 36.0 m
(about 40 yards) from the goal. Half the crowd hopes
7] the ball will clear the crossbar, which is 3.05 m high.

24.

When kicked, the ball leaves the ground with a speed
0f 20.0 m/s at an angle of 53.0° to the horizontal. (a) By
how much does the ball clear or fall short of clearing
the crossbar? (b) Does the ball approach the crossbar
while still rising or while falling?

A basketball star covers 2.80 m horizontally in a jump to
dunk the ball (Fig. P4.24a). His motion through space

can be modeled precisely as that of a particle at his center

25.

26.
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of mass, which we will define in Chapter 9. His center
of mass is at elevation 1.02 m when he leaves the floor.
It reaches a maximum height of 1.85 m above the floor
and is at elevation 0.900 m when he touches down again.
Determine (a) his time of flight (his “hang time”),
(b) his horizontal and (c) vertical velocity components at
the instant of takeoff, and (d) his takeoff angle. (e) For
comparison, determine the hang time of a whitetail
deer making a jump (Fig. P4.24b) with center-of-mass
elevations y; = 1.20 m, y,,, = 2.50 m, and y, = 0.700 m.

© epa european pressphoto agency b.v./

Alamy
B. G. Smith/Shutterstock.com

Figure P4.24

A playground is on the flat roof of a city school, 6.00 m
above the street below (Fig. P4.25). The vertical wall
of the building is 2 = 7.00 m high, forming a 1-m-high
railing around the playground. A ball has fallen to
the street below, and a passerby returns it by launch-
ing it at an angle of # = 53.0° above the horizontal at a
point d = 24.0 m from the base of the building wall. The
ball takes 2.20 s to reach a point vertically above the
wall. (a) Find the speed at which the ball was launched.
(b) Find the vertical distance by which the ball clears
the wall. (c¢) Find the horizontal distance from the wall
to the point on the roof where the ball lands.

| d
Figure P4.25

The motion of a human body through space can be
modeled as the motion of a particle at the body’s cen-
ter of mass as we will study in Chapter 9. The compo-
nents of the displacement of an athlete’s center of mass
from the beginning to the end of a certain jump are
described by the equations

X = 0+ (11.2m/s)(cos 18.5°)¢

0.360m = 0.840 m + (11.2 m /s)(sin 18.5°)¢ — 5(9.80 m /s*)¢>

where /is in seconds and is the time at which the ath-
lete ends the jump. Identify (a) the athlete’s position
and (b) his vector velocity at the takeoff point. (c) How
far did he jump?

A soccer player kicks a rock horizontally off a

M 40.0-m-high cliff into a pool of water. If the player
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hears the sound of the splash 3.00 s later, what was the
initial speed given to the rock? Assume the speed of
sound in air is 343 m/s.

A projectile is fired from the top of a cliff of height /A
above the ocean below. The projectile is fired at an
angle 6 above the horizontal and with an initial speed
v;. (a) Find a symbolic expression in terms of the vari-
ables v;, g, and 6 for the time at which the projectile
reaches its maximum height. (b) Using the result of
part (a), find an expression for the maximum height
h,.x above the ocean attained by the projectile in
terms of /i, v;, g, and 6.

A student stands at the y

edge of a cliff and throws I N
a stone horizontally over s
the edge with a speed of \
v; = 18.0 m/s. The cliff is \
h = 50.0 m above a body \
of water as shown in Fig- \‘
ure P4.29. (a) What are \
the coordinates of the ini- \
tial position of the stone? \
(b) What are the compo-
nents of the initial velocity
of the stone? (c) Whatis the
appropriate analysis model
for the vertical motion of
the stone? (d) What is the
appropriate analysis model for the horizontal motion
of the stone? (e) Write symbolic equations for the x and
y components of the velocity of the stone as a function
of time. (f) Write symbolic equations for the position
of the stone as a function of time. (g) How long after
being released does the stone strike the water below
the cliff? (h) With what speed and angle of impact does
the stone land?

Figure P4.29

The record distance in the sport of throwing cowpats
is 81.1 m. This record toss was set by Steve Urner of
the United States in 1981. Assuming the initial launch
angle was 45° and neglecting air resistance, determine
(a) the initial speed of the projectile and (b) the total
time interval the projectile was in flight. (c) How would
the answers change if the range were the same but the
launch angle were greater than 45°? Explain.

A boy stands on a diving board and tosses a stone into
a swimming pool. The stone is thrown from a height of
2.50 m above the water surface with avelocity of 4.00 m/s
at an angle of 60.0° above the horizontal. As the stone
strikes the water surface, it immediately slows down to
exactly half the speed it had when it struck the water
and maintains that speed while in the water. After the
stone enters the water, it moves in a straight line in the
direction of the velocity it had when it struck the water.
If the pool is 3.00 m deep, how much time elapses
between when the stone is thrown and when it strikes
the bottom of the pool?

A home run is hit in such a way that the baseball just
clears a wall 21.0 m high, located 130 m from home
plate. The ball is hit at an angle of 35.0° to the hori-
zontal, and air resistance is negligible. Find (a) the

initial speed of the ball, (b) the time it takes the ball
to reach the wall, and (c) the velocity components and
the speed of the ball when it reaches the wall. (Assume
the ball is hit at a height of 1.00 m above the ground.)

Section 4.4 Analysis Model: Particle
in Uniform Circular Motion

Note: Problems 6 and 13 in Chapter 6 can also be
assigned with this section.

The athlete shown in Figure P4.33 rotates a 1.00-kg dis-

35.

cus along a circular path of radius 1.06 m. The maxi-
mum speed of the discus is 20.0 m/s. Determine the
magnitude of the maximum radial acceleration of the
discus.

Adrian Dennis/AFP/Getty Images

Figure P4.33

.In Example 4.6, we found the centripetal accelera-

tion of the Earth as it revolves around the Sun. From
information on the endpapers of this book, compute
the centripetal acceleration of a point on the surface of
the Earth at the equator caused by the rotation of the
Earth about its axis.

Casting molten metal is important in many industrial
processes. Centrifugal casting is used for manufacturing
pipes, bearings, and many other structures. A variety of
sophisticated techniques have been invented, but the
basic idea is as illustrated in Figure P4.35. A cylindrical
enclosure is rotated rapidly and steadily about a hori-
zontal axis. Molten metal is poured into the rotating
cylinder and then cooled, forming the finished prod-
uct. Turning the cylinder at a high rotation rate forces
the solidifying metal strongly to the outside. Any bub-
bles are displaced toward the axis, so unwanted voids
will not be present in the casting. Sometimes it is desir-
able to form a composite casting, such as for a bearing.
Here a strong steel outer surface is poured and then
inside it a lining of special low-friction metal. In some
applications, a very strong metal is given a coating of
corrosion-resistant metal. Centrifugal casting results
in strong bonding between the layers.

Preheated steel sheath

Axis of rotation

Molten metal

Figure P4.35
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Suppose a copper sleeve of inner radius 2.10 cm
and outer radius 2.20 cm is to be cast. To eliminate
bubbles and give high structural integrity, the cen-
tripetal acceleration of each bit of metal should be at
least 100g. What rate of rotation is required? State the
answer in revolutions per minute.

A tire 0.500 m in radius rotates at a constant rate of
200 rev/min. Find the speed and acceleration of a small
stone lodged in the tread of the tire (on its outer edge).

Review. The 20-g centrifuge at NASA’s Ames Research

Center in Mountain View, California, is a horizontal,

cylindrical tube 58.0 ft long and is represented in Fig-
ure P4.37. Assume an astronaut in training sits in a
seat at one end, facing the axis of rotation 29.0 ft away.
Determine the rotation rate, in revolutions per second,
required to give the astronaut a centripetal accelera-
tion of 20.0¢:

V4 e e
SOSIS

38.

39.

J

Figure P4.37

An athlete swings a ball, connected to the end of a chain,
in a horizontal circle. The athlete is able to rotate the
ball at the rate of 8.00 rev/s when the length of the chain
is 0.600 m. When he increases the length to 0.900 m, he
is able to rotate the ball only 6.00 rev/s. (a) Which rate of
rotation gives the greater speed for the ball? (b) What is
the centripetal acceleration of the ball at 8.00 rev/s?
(c) What is the centripetal acceleration at 6.00 rev/s?

The astronaut orbit-
ing the Earth in Figure
P4.39 is preparing to
dock with a Westar VI
satellite. The satellite
is in a circular orbit
600 km above the
Earth’s surface, where
the free-fall accelera-
tion is 8.21 m/s2. Take
the radius of the Earth
as 6 400 km. Determine the speed of the satellite and
the time interval required to complete one orbit around
the Earth, which is the period of the satellite.

Figure P4.39

Section 4.5 Tangential and Radial Acceleration

Figure P4.40 represents the
I total acceleration of a particle ,

moving clockwise in a circle /4/\ N v
of radius 2.50 m at a certain 1 2.50m a \
instant of time. For that instant, |\ 30.0° |
find (a) the radial acceleration /!
of the particle, (b) the speed of NS o

the particle, and (c) its tangen- -
tial acceleration. Figure P4.40

NASA
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A train slows down as it rounds a sharp horizontal
[ turn, going from 90.0 km/h to 50.0 km/h in the 15.0 s

42,

43.

it takes to round the bend. The radius of the curve is
150 m. Compute the acceleration at the moment the
train speed reaches 50.0 km/h. Assume the train con-
tinues to slow down at this time at the same rate.

A ball swings counterclockwise in a vertical circle at
the end of a rope 1.50 m long. When the ball is 36.9°
past the lowest point on its way up, its total acceleration
is (—22.5§ + 20.2j) m/s?. For that instant, (a) sketch a
vector diagram showing the components of its acceler-
ation, (b) determine the magnitude of its radial accel-
eration, and (c) determine the speed and velocity of
the ball.

(a) Can a particle moving with instantaneous speed
3.00 m/s on a path with radius of curvature 2.00 m
have an acceleration of magnitude 6.00 m/s*? (b) Can
it have an acceleration of magnitude 4.00 m/s?? In
each case, if the answer is yes, explain how it can hap-
pen; if the answer is no, explain why not.

Section 4.6 Relative Velocity and Relative Acceleration

44.

The pilot of an airplane notes that the compass indi-
cates a heading due west. The airplane’s speed relative
to the air is 150 km/h. The air is moving in a wind at
30.0 km/h toward the north. Find the velocity of the
airplane relative to the ground.

An airplane maintains a speed of 630 km/h relative

46.
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to the air it is flying through as it makes a trip to a
city 750 km away to the north. (a) What time interval is
required for the trip if the plane flies through a head-
wind blowing at 35.0 km/h toward the south? (b) What
time interval is required if there is a tailwind with the
same speed? (c) What time interval is required if there
is a crosswind blowing at 35.0 km/h to the east relative
to the ground?

A moving beltway at an airport has a speed v, and a
length L. A woman stands on the beltway as it moves
from one end to the other, while a man in a hurry to
reach his flight walks on the beltway with a speed of
v, relative to the moving beltway. (a) What time inter-
val is required for the woman to travel the distance L?
(b) What time interval is required for the man to travel
this distance? (c) A second beltway is located next
to the first one. It is identical to the first one but moves
in the opposite direction at speed v,. Just as the man
steps onto the beginning of the beltway and begins to
walk at speed v, relative to his beltway, a child steps on
the other end of the adjacent beltway. The child stands
at rest relative to this second beltway. How long after
stepping on the beltway does the man pass the child?

A police car traveling at 95.0 km/h is traveling west,
chasing a motorist traveling at 80.0 km/h. (a) What is
the velocity of the motorist relative to the police car?
(b) What is the velocity of the police car relative to the
motorist? (c) If they are originally 250 m apart, in what
time interval will the police car overtake the motorist?

A car travels due east with a speed of 50.0 km/h. Rain-

I drops are falling at a constant speed vertically with
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respect to the Earth. The traces of the rain on the side
windows of the car make an angle of 60.0° with the ver-
tical. Find the velocity of the rain with respect to (a) the
car and (b) the Earth.

A bolt drops from the ceiling of a moving train car
that is accelerating northward at a rate of 2.50 m/s%
(a) What is the acceleration of the bolt relative to the
train car? (b) What is the acceleration of the bolt rela-
tive to the Earth? (c) Describe the trajectory of the bolt
as seen by an observer inside the train car. (d) Describe
the trajectory of the bolt as seen by an observer fixed
on the Earth.

A river has a steady speed of 0.500 m/s. A student swims
I upstream a distance of 1.00 km and swims back to the

51.
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starting point. (a) If the student can swim at a speed
of 1.20 m/s in still water, how long does the trip take?
(b) How much time is required in still water for the
same length swim? (c) Intuitively, why does the swim
take longer when there is a current?

A river flows with a steady speed v. A student swims
upstream a distance d and then back to the starting
point. The student can swim at speed ¢ in still water.
(@) In terms of d, v, and ¢, what time interval is required
for the round trip? (b) What time interval would be
required if the water were still? (c) Which time interval
is larger? Explain whether it is always larger.

A Coast Guard cutter detects an unidentified ship at
a distance of 20.0 km in the direction 15.0° east of
north. The ship is traveling at 26.0 km/h on a course
at 40.0° east of north. The Coast Guard wishes to send
a speedboat to intercept and investigate the vessel. If
the speedboat travels at 50.0 km/h, in what direction
should it head? Express the direction as a compass
bearing with respect to due north.

A science student is riding on a flatcar of a train trav-
[AYi eling along a straight, horizontal track at a constant
MSpeed of 10.0 m/s. The student throws a ball into the

54.

air along a path that he judges to make an initial angle
of 60.0° with the horizontal and to be in line with the
track. The student’s professor, who is standing on the
ground nearby, observes the ball to rise vertically. How
high does she see the ball rise?

A farm truck moves >
due east with a constant
velocity of 9.50 m/s
on a limitless, hori-
zontal stretch of road.
A boy riding on the
back of the truck
throws a can of soda
upward (Fig. P4.54)
and catches the projectile at the same location on the
truck bed, but 16.0 m farther down the road. (a) In
the frame of reference of the truck, at what angle to
the vertical does the boy throw the can? (b) What is the
initial speed of the can relative to the truck? (c) What
is the shape of the can’s trajectory as seen by the boy?
An observer on the ground watches the boy throw the

Figure P4.54

can and catch it. In this observer’s frame of reference,
(d) describe the shape of the can’s path and (e) deter-
mine the initial velocity of the can.

Additional Problems

55.
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A ball on the end of a string is whirled around in a
horizontal circle of radius 0.300 m. The plane of the
circle is 1.20 m above the ground. The string breaks
and the ball lands 2.00 m (horizontally) away from the
point on the ground directly beneath the ball’s loca-
tion when the string breaks. Find the radial accelera-
tion of the ball during its circular motion.

A ball is thrown with an initial speed v, at an angle 6,
with the horizontal. The horizontal range of the ball
is R, and the ball reaches a maximum height R/6. In
terms of R and g, find (a) the time interval during
which the ball is in motion, (b) the ball’s speed at the
peak of its path, (c) the initial vertical component of
its velocity, (d) its initial speed, and (e) the angle 0,.
(f) Suppose the ball is thrown at the same initial speed
found in (d) but at the angle appropriate for reach-
ing the greatest height that it can. Find this height.
(g) Suppose the ball is thrown at the same initial speed
but at the angle for greatest possible range. Find this
maximum horizontal range.

Why is the following situation impossible? A normally pro-
portioned adult walks briskly along a straight line in the
+x direction, standing straight up and holding his right
arm vertical and next to his body so that the arm does
not swing. His right hand holds a ball at his side a dis-
tance h above the floor. When the ball passes above a
point marked as x = 0 on the horizontal floor, he opens
his fingers to release the ball from rest relative to his
hand. The ball strikes the ground for the first time at
position x = 7.004.

A particle starts from the origin with velocity 51 m/s
at = 0 and moves in the xy plane with a varying accel-
eration given by @ = (6V/¢]), where @ is in meters per
second squared and ¢ is in seconds. (a) Determine the
velocity of the particle as a function of time. (b) Deter-
mine the position of the particle as a function of time.

The “Vomit Comet.” In microgravity astronaut training
and equipment testing, NASA flies a KC135A aircraft
along a parabolic flight path. As shown in Figure P4.59,
the aircraft climbs from 24 000 ft to 31 000 ft, where

| |
D e |
==
S 31000f  45°nose high 17 \\',\i15°ose low
8 s | N\
° , N\
£ y I
= < s
= S N
Qg | —— | | ~———_
24000 - =7 | Zerog | I >
| | | |
| | | |
1 | | |
0 65
Maneuver time (s)
Figure P4.59



60.

61

62.

63.

it enters a parabolic path with a velocity of 143 m/s
nose high at 45.0° and exits with velocity 143 m/s at
45.0° nose low. During this portion of the flight, the
aircraft and objects inside its padded cabin are in free
fall; astronauts and equipment float freely as if there
were no gravity. What are the aircraft’s (a) speed and
(b) altitude at the top of the maneuver? (c) What is the
time interval spent in microgravity?

A basketball player is standing on the floor 10.0 m from
the basket as in Figure P4.60. The height of the basket
is 3.05 m, and he shoots the ball at a 40.0° angle with
the horizontal from a height of 2.00 m. (a) What is the
acceleration of the basketball at the highest point in
its trajectory? (b) At what speed must the player throw
the basketball so that the ball goes through the hoop
without striking the backboard?

7
7
7
- 340.0"

I |
2.00 \
|

|

Figure P4.60

. Lisa in her Lamborghini accelerates at the rate of

(3.00i — 2.00j) m/s, while Jill in her Jaguar acceler-
ates at (1.00i + 3.00j) m/s%. They both start from rest
at the origin of an xy coordinate system. After 5.00 s,
(a) what is Lisa’s speed with respect to Jill, (b) how far
apart are they, and (c) whatis Lisa’s acceleration relative
to Jill?

A boy throws a stone horizontally from the top of a cliff
of height & toward the ocean below. The stone strikes
the ocean at distance d from the base of the cliff. In
terms of £, d, and g, find expressions for (a) the time
t at which the stone lands in the ocean, (b) the initial
speed of the stone, (c) the speed of the stone immedi-
ately before it reaches the ocean, and (d) the direction
of the stone’s velocity immediately before it reaches the
ocean.

A flea is at point ® on a horizontal turntable, 10.0 cm
from the center. The turntable is rotating at 33.3 rev/min
in the clockwise direction. The flea jumps straight up
to a height of 5.00 cm. At takeoff, it gives itself no hori-
zontal velocity relative to the turntable. The flea lands
on the turntable at point ®. Choose the origin of coor-
dinates to be at the center of the turntable and the posi-
tive xaxis passing through ® at the moment of takeoff.
Then the original position of the flea is 10.0i cm.
(@) Find the position of point ® when the flea lands.
(b) Find the position of point ® when the flea lands.

64. Towns A and B in Figure P4.64 are 80.0 km apart. A
M couple arranges to drive from town A and meet a cou-

ple driving from town B at the lake, L. The two couples

65.
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leave simultaneously and drive for 2.50 h in the direc-
tions shown. Car 1 has a speed of 90.0 km/h. If the
cars arrive simultaneously at the lake, what is the speed
of car 27

Figure P4.64

A catapult launches a rocket at an angle of 53.0° above
the horizontal with an initial speed of 100 m/s. The
rocket engine immediately starts a burn, and for 3.00 s
the rocket moves along its initial line of motion with
an acceleration of 30.0 m/s?. Then its engine fails, and
the rocket proceeds to move in free fall. Find (a) the
maximum altitude reached by the rocket, (b) its total
time of flight, and (c) its horizontal range.

A cannon with a muzzle speed of 1 000 m/s is used to
start an avalanche on a mountain slope. The target
is 2 000 m from the cannon horizontally and 800 m
above the cannon. At what angle, above the horizontal,
should the cannon be fired?

Why is the following situation impossible? Albert Pujols hits

68.

69.

a home run so that the baseball just clears the top row
of bleachers, 24.0 m high, located 130 m from home
plate. The ball is hit at 41.7 m/s at an angle of 35.0° to
the horizontal, and air resistance is negligible.

As some molten metal splashes, one droplet flies off to
the east with initial velocity v; at angle 6, above the hor-
izontal, and another droplet flies off to the west with
the same speed at the same angle above the horizontal
as shown in Figure P4.68. In terms of v; and 6, find
the distance between the two droplets as a function of
time.

Figure P4.68

An astronaut on the surface of the Moon fires a can-
non to launch an experiment package, which leaves
the barrel moving horizontally. Assume the free-fall
acceleration on the Moon is one-sixth of that on the
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Earth. (a) What must the muzzle speed of the package
be so that it travels completely around the Moon and
returns to its original location? (b) What time interval
does this trip around the Moon require?

A pendulum with a cord of

length » = 1.00 m swings in

a vertical plane (Fig. P4.70).

When the pendulum is in

the two horizontal positions

6 = 90.0° and 0 = 270°, its

speed is 5.00 m/s. Find the r
magnitude of (a) the radial
acceleration and (b) the
tangential acceleration for — ~_
these positions. (c) Draw Sy
vector diagrams to deter-
mine the direction of the
total acceleration for these
two positions. (d) Calculate
the magnitude and direction of the total acceleration
at these two positions.

[
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Figure P4.70

[71.]A hawk is flying horizontally at 10.0 m/s in a straight
7] line, 200 m above the ground. A mouse it has been car-

72.
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rying struggles free from its talons. The hawk continues
on its path at the same speed for 2.00 s before attempt-
ing to retrieve its prey. To accomplish the retrieval, it
dives in a straight line at constant speed and recaptures
the mouse 3.00 m above the ground. (a) Assuming no
air resistance acts on the mouse, find the diving speed
of the hawk. (b) What angle did the hawk make with
the horizontal during its descent? (c) For what time
interval did the mouse experience free fall?

A projectile is launched from the point (x = 0, y = 0),
with velocity (12.0i + 49.0j) m/s, at ¢ = 0. (a) Make a
table listing the projectile’s distance |¥| from the ori-
gin at the end of each second thereafter, for 0 = ¢ =
10 s. Tabulating the xand y coordinates and the compo-
nents of velocity v, and vy will also be useful. (b) Notice
that the projectile’s distance from its starting point
increases with time, goes through a maximum, and
starts to decrease. Prove that the distance is a maximum
when the position vector is perpendicular to the veloc-
ity. Suggestion: Argue that if ¥ is not perpendicular to
T, then |¥| must be increasing or decreasing. (c) Deter-
mine the magnitude of the maximum displacement.
(d) Explain your method for solving part (c).

A spring cannon is located at the edge of a table that
is 1.20 m above the floor. A steel ball is launched from
the cannon with speed v; at 35.0° above the horizontal.
(@) Find the horizontal position of the ball as a func-
tion of v, at the instant it lands on the floor. We write
this function as x(v;). Evaluate x for (b) v; = 0.100 m/s
and for (c) v; = 100 m/s. (d) Assume v, is close to but
not equal to zero. Show that one term in the answer to
part (a) dominates so that the function x(v;) reduces to
asimpler form. (e) If v;is very large, what is the approx-
imate form of x(v,)? (f) Describe the overall shape of
the graph of the function x(v;).

74. An outfielder throws a baseball to his catcher in an

attempt to throw out a runner at home plate. The ball
bounces once before reaching the catcher. Assume the
angle at which the bounced ball leaves the ground is
the same as the angle at which the outfielder threw it
as shown in Figure P4.74, but that the ball’s speed after
the bounce is one-half of what it was before the bounce.
(@) Assume the ball is always thrown with the same
initial speed and ignore air resistance. At what angle 6
should the fielder throw the ball to make it go the same
distance Dwith one bounce (blue path) as a ball thrown
upward at 45.0° with no bounce (green path)? (b) Deter-
mine the ratio of the time interval for the one-bounce
throw to the flight time for the no-bounce throw.
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Figure P4.74

[75]A World War II bomber flies horizontally over level

terrain with a speed of 275 m/s relative to the ground
and at an altitude of 3.00 km. The bombardier releases
one bomb. (a) How far does the bomb travel horizon-
tally between its release and its impact on the ground?
Ignore the effects of air resistance. (b) The pilot main-
tains the plane’s original course, altitude, and speed
through a storm of flak. Where is the plane when the
bomb hits the ground? (c) The bomb hits the target
seen in the telescopic bombsight at the moment of the
bomb’s release. At what angle from the vertical was the
bombsight set?

76. A truck loaded with cannonball watermelons stops sud-

denly to avoid running over the edge of a washed-out
bridge (Fig. P4.76). The quick stop causes a number of
melons to fly off the truck. One melon leaves the hood
of the truck with an initial speed v; = 10.0 m/s in the
horizontal direction. A cross section of the bank has
the shape of the bottom half of a parabola, with its ver-
tex at the initial location of the projected watermelon
and with the equation y*> = 16x, where xand yare mea-

y

Figure P4.76 The blue dashed curve
shows the parabolic shape of the bank.



sured in meters. What are the x and y coordinates of
the melon when it splatters on the bank?

A car is parked on a steep incline, making an angle of
[ 37.0° below the horizontal and overlooking the ocean,
when its brakes fail and it begins to roll. Starting from
rest at { = 0, the car rolls down the incline with a con-
stant acceleration of 4.00 m/s?, traveling 50.0 m to the
edge of a vertical cliff. The cliff is 30.0 m above the
ocean. Find (a) the speed of the car when it reaches
the edge of the cliff, (b) the time interval elapsed when
it arrives there, (c) the velocity of the car when it lands
in the ocean, (d) the total time interval the car is in
motion, and (e) the position of the car when it lands in
the ocean, relative to the base of the cliff.

78. An aging coyote cannot run
fast enough to catch a road-
runner. He purchases on
eBay a set of jet-powered roller
skates, which provide a con-
stant horizontal acceleration of
15.0 m/s* (Fig. P4.78). The coy-
ote starts at rest 70.0 m from
the edge of a cliff at the instant
the roadrunner zips past in the
direction of the cliff. (a) Deter-
mine the minimum constant speed the roadrunner must
have to reach the cliff before the coyote. At the edge of
the cliff, the roadrunner escapes by making a sudden
turn, while the coyote continues straight ahead. The coy-
ote’s skates remain horizontal and continue to operate
while he is in flight, so his acceleration while in the air
is (15.01 — 9.80j) m /s (b) The cliff is 100 m above the
flat floor of the desert. Determine how far from the base
of the vertical cliff the coyote lands. (c) Determine the
components of the coyote’s impact velocity.

Figure P4.78

79. Afisherman sets out upstream on a river. His small boat,
powered by an outboard motor, travels at a constant
speed v in still water. The water flows at a lower con-
stant speed v,,. The fisherman has traveled upstream
for 2.00 km when his ice chest falls out of the boat. He
notices that the chest is missing only after he has gone
upstream for another 15.0 min. At that point, he turns
around and heads back downstream, all the time travel-
ing at the same speed relative to the water. He catches
up with the floating ice chest just as he returns to his
starting point. How fast is the river flowing? Solve this
problem in two ways. (a) First, use the Earth as a refer-
ence frame. With respect to the Earth, the boat travels
upstream at speed v — v, and downstream at v + v,

(b) A second much simpler and more elegant solution

is obtained by using the water as the reference frame.

This approach has important applications in many

more complicated problems; examples are calculating

the motion of rockets and satellites and analyzing the
scattering of subatomic particles from massive targets.

80. Do not hurt yourself; do not strike your hand against
anything. Within these limitations, describe what you
do to give your hand a large acceleration. Compute an
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order-of-magnitude estimate of this acceleration, stating
the quantities you measure or estimate and their values.

Challenge Problems

A skier leaves the ramp of a ski jump with a velocity of
v =10.0 m/s at @ = 15.0° above the horizontal as shown
in Figure P4.81. The slope where she will land is inclined
downward at ¢ = 50.0°, and air resistance is negligible.
Find (a) the distance from the end of the ramp to where
the jumper lands and (b) her velocity components
just before the landing. (c) Explain how you think the
results might be affected if air resistance were included.

Figure P4.81

82. Two swimmers, Chris and Sarah, start together at the
same point on the bank of a wide stream that flows
with a speed v. Both move at the same speed ¢ (where
¢ > v) relative to the water. Chris swims downstream
a distance L and then upstream the same distance.
Sarah swims so that her motion relative to the Earth
is perpendicular to the banks of the stream. She swims
the distance L and then back the same distance, with
both swimmers returning to the starting point. In
terms of L, ¢, and v, find the time intervals required
(a) for Chris’s round trip and (b) for Sarah’s round trip.
(c) Explain which swimmer returns first.

83. The water in a river flows uniformly at a constant speed
of 2.50 m/s between parallel banks 80.0 m apart. You
are to deliver a package across the river, but you can
swim onlyat 1.50 m/s. (a) If you choose to minimize the
time you spend in the water, in what direction should
you head? (b) How far downstream will you be carried?
(c) If you choose to minimize the distance downstream
that the river carries you, in what direction should you
head? (d) How far downstream will you be carried?

84. A person standing at the top of a hemispherical rock of
radius R kicks a ball (initially at rest on the top of the
rock) to give it horizontal velocity ¥; as shown in Fig-
ure P4.84. (a) What must be its minimum initial speed

)
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85.

86.
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if the ball is never to hit the rock after it is kicked?
(b) With this initial speed, how far from the base of the
rock does the ball hit the ground?

A dive-bomber has a velocity of 280 m/s at an angle 0
below the horizontal. When the altitude of the aircraft
is 2.15 km, it releases a bomb, which subsequently hits
a target on the ground. The magnitude of the displace-
ment from the point of release of the bomb to the tar-
get is 3.25 km. Find the angle 0.

A projectile is fired up an incline (incline angle ¢)
with an initial speed v; at an angle 0, with respect to the
horizontal (0, > ¢) as shown in Figure P4.86. (a) Show
that the projectile travels a distance d up the incline,
where

g 2v,% cosf;sin(0; — ¢)
N gcos2 ®

Path of the projectile
-

- -~

~

87.

88.

89.

(b) For what value of 0, is d a maximum, and what is
that maximum value?

A fireworks rocket explodes at height %, the peak of
its vertical trajectory. It throws out burning fragments
in all directions, but all at the same speed wv. Pellets
of solidified metal fall to the ground without air resis-
tance. Find the smallest angle that the final velocity of
an impacting fragment makes with the horizontal.

In the What If? section of Example 4.5, it was claimed

that the maximum range of a ski jumper occurs for a
launch angle 0 given by

i

2

where ¢ is the angle the hill makes with the horizontal
in Figure 4.14. Prove this claim by deriving the equa-
tion above.

0 = 45° —

An enemy ship is on the east side of a mountain island
as shown in Figure P4.89. The enemy ship has maneu-
vered to within 2 500 m of the 1 800-m-high mountain
peak and can shoot projectiles with an initial speed of
250 m/s. If the western shoreline is horizontally 300 m
from the peak, what are the distances from the western
shore at which a ship can be safe from the bombard-
ment of the enemy ship?

Figure P4.89



