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Modern Physics

At the end of the 19th century, many scien-

tists believed they had learned most of what 

there was to know about physics. Newton’s 

laws of motion and theory of universal grav-

itation, Maxwell’s theoretical work in unify-

ing electricity and magnetism, the laws of 

thermodynamics and kinetic theory, and the 

principles of optics were highly successful in 

explaining a variety of phenomena.

  At the turn of the 20th century, how-

ever, a major revolution shook the world 

of physics. In 1900, Max Planck provided 

the basic ideas that led to the formulation 

of the quantum theory, and in 1905, Albert 

Einstein formulated his special theory of relativity. 

The excitement of the times is captured in Einstein’s 

own words: “It was a marvelous time to be alive.” 

Both theories were to have a profound effect on our 

understanding of nature. Within a few decades, they inspired new developments in the 

fields of atomic physics, nuclear physics, and condensed-matter physics.

 In Chapter 39, we shall introduce the special theory of relativity. The theory provides 

us with a new and deeper view of physical laws. Although the predictions of this theory 

often violate our common sense, the theory correctly describes the results of experiments 

involving speeds near the speed of light. The extended version of this textbook, Physics for 

Scientists and Engineers with Modern Physics, covers the basic concepts of quantum mechan-

ics and their application to atomic and molecular physics. In addition, we introduce solid-

state physics, nuclear physics, particle physics, and cosmology in the extended version.

 Even though the physics that was developed during the 20th century has led to a mul-

titude of important technological achievements, the story is still incomplete. Discoveries 

will continue to evolve during our lifetimes, and many of these discoveries will deepen 

or refine our understanding of nature and the Universe around us. It is still a “marvelous 

time to be alive.” �

part 6

The Compact Muon Solenoid (CMS) Detector is part of the Large Hadron 
Collider at the European Laboratory for Particle Physics operated by CERN.  
It is one of several detectors that search for elementary particles.  For a 
sense of scale, notice that the green railings to the left of the detector can be 
counted for a total of five floors. (CERN)
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Our everyday experiences and observations involve 

objects that move at speeds much less than the speed 

of light. Newtonian mechanics was formulated by observ-

ing and describing the motion of such objects, and this 

formalism is very successful in describing a wide range 

of phenomena that occur at low speeds. Nonetheless, it 

fails to describe properly the motion of objects whose 

speeds approach that of light.

 Experimentally, the predictions of Newtonian theory 

can be tested at high speeds by accelerating electrons or other charged particles 

through a large electric potential difference. For example, it is possible to accelerate an 

electron to a speed of 0.99c (where c is the speed of light) by using a potential difference 

of several million volts. According to Newtonian mechanics, if the potential difference 

is increased by a factor of 4, the electron’s kinetic energy is four times greater and its 

speed should double to 1.98c. Experiments show, however, that the speed of the elec-

tron—as well as the speed of any other object in the Universe—always remains less than 

the speed of light, regardless of the size of the accelerating voltage. Because it places no 

upper limit on speed, Newtonian mechanics is contrary to modern experimental results 

and is clearly a limited theory.

chapter 39
Relativity

Standing on the shoulders of a giant. David Serway, son of one of 
the authors, watches over two of his children, Nathan and Kaitlyn, 
as they frolic in the arms of Albert Einstein’s statue at the Einstein 
memorial in Washington, D.C. It is well known that Einstein, the 
principal architect of relativity, was very fond of children. (Emily 
Serway)
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 In 1905, at the age of only 26, Einstein published his special theory of relativity. 

Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradictions in 

the old theory from which there seemed no escape. The strength of the new the-

ory lies in the consistency and simplicity with which it solves all these difficulties.1

 Although Einstein made many other important contributions to science, the special 

theory of relativity alone represents one of the greatest intellectual achievements of all 

time. With this theory, experimental observations can be correctly predicted over the 

range of speeds from v 5 0 to speeds approaching the speed of light. At low speeds, 

Einstein’s theory reduces to Newtonian mechanics as a limiting situation. It is important 

to recognize that Einstein was working on electromagnetism when he developed the 

special theory of relativity. He was convinced that Maxwell’s equations were correct, and 

to reconcile them with one of his postulates, he was forced into the revolutionary notion 

of assuming that space and time are not absolute.

 This chapter gives an introduction to the special theory of relativity, with emphasis 

on some of its predictions. In addition to its well-known and essential role in theoretical 

physics, the special theory of relativity has practical applications, including the design of 

nuclear power plants and modern global positioning system (GPS) units. These devices 

depend on relativistic principles for proper design and operation.

39.1 The Principle of Galilean Relativity
To describe a physical event, we must establish a frame of reference. You should 
recall from Chapter 5 that an inertial frame of reference is one in which an object is 
observed to have no acceleration when no forces act on it. Furthermore, any frame 
moving with constant velocity with respect to an inertial frame must also be an 
inertial frame.
 There is no absolute inertial reference frame. Therefore, the results of an exper-
iment performed in a vehicle moving with uniform velocity must be identical to the 
results of the same experiment performed in a stationary vehicle. The formal state-
ment of this result is called the principle of Galilean relativity:

The laws of mechanics must be the same in all inertial frames of reference.

Let’s consider an observation that illustrates the equivalence of the laws of mechan-
ics in different inertial frames. The pickup truck in Figure 39.1a (page 1146) moves 
with a constant velocity with respect to the ground. If a passenger in the truck 
throws a ball straight up and if air effects are neglected, the passenger observes that 
the ball moves in a vertical path. The motion of the ball appears to be precisely the 
same as if the ball were thrown by a person at rest on the Earth. The law of univer-
sal gravitation and the equations of motion under constant acceleration are obeyed 
whether the truck is at rest or in uniform motion.
 Consider also an observer on the ground as in Figure 39.1b. Both observers 
agree on the laws of physics: the observer in the truck throws a ball straight up, and 

Principle of Galilean relativity 

1A. Einstein and L. Infield, The Evolution of Physics (New York: Simon and Schuster, 1961).
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it rises and falls back into his hand. Do the observers agree on the path of the ball 
thrown by the observer in the truck? The observer on the ground sees the path of 
the ball as a parabola as illustrated in Figure 39.1b, whereas, as mentioned earlier, 
the observer in the truck sees the ball move in a vertical path. Furthermore, accord-
ing to the observer on the ground, the ball has a horizontal component of velocity 
equal to the velocity of the truck. Although the two observers disagree on certain 
aspects of the situation, they agree on the validity of Newton’s laws and on such 
classical principles as conservation of energy and conservation of linear momen-
tum. This agreement implies that no mechanical experiment can detect any dif-
ference between the two inertial frames. The only thing that can be detected is the 
relative motion of one frame with respect to the other.

Quick Quiz 39.1  Which observer in Figure 39.1 sees the ball’s correct path? 
(a) the observer in the truck  (b) the observer on the ground  (c) both 
observers

 Suppose some physical phenomenon, which we call an event, occurs and is 
observed by an observer at rest in an inertial reference frame. The wording “in a 
frame” means that the observer is at rest with respect to the origin of that frame. 
The event’s location and time of occurrence can be specified by the four coordi-
nates (x, y, z, t). We would like to be able to transform these coordinates from those 
of an observer in one inertial frame to those of another observer in a frame moving 
with uniform relative velocity compared with the first frame.
 Consider two inertial frames S and S9 (Fig. 39.2). The S9 frame moves with a con-
stant velocity vS along the common x and x9 axes, where vS is measured relative to S. 
We assume the origins of S and S9 coincide at t 5 0 and an event occurs at point P in 
space at some instant of time. For simplicity, we show the observer O in the S frame 
and the observer O9 in the S9 frame as blue dots at the origins of their coordinate 
frames in Figure 39.2, but that is not necessary: either observer could be at any 
fixed location in his or her frame. Observer O describes the event with space–time 
coordinates (x, y, z, t), whereas observer O9 in S9 uses the coordinates (x9, y9, z9, t9) to 
describe the same event. As we see from the geometry in Figure 39.2, the relation-
ships among these various coordinates can be written

 x9 5 x 2 vt   y9 5 y   z9 5 z   t9 5 t (39.1)

These equations are the Galilean space–time transformation equations. Note that 
time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their 
velocity, so the time at which an event occurs for an observer in S is the same as the 
time for the same event in S9. Consequently, the time interval between two succes-

Galilean transformation 
 equations

Figure 39.1  Two observers watch 
the path of a thrown ball and obtain 
different results.

a b

The observer in the moving truck 
sees the ball travel in a vertical 
path when thrown upward.

The Earth-based observer sees
the ball’s path as a parabola.
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Figure 39.2  An event occurs at 
a point P. The event is seen by two 
observers in inertial frames S and 
S9, where S9 moves with a velocity vS 
relative to S.
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sive events should be the same for both observers. Although this assumption may 
seem obvious, it turns out to be incorrect in situations where v is comparable to the 
speed of light.
 Now suppose a particle moves through a displacement of magnitude dx along 
the x axis in a time interval dt as measured by an observer in S. It follows from Equa-
tions 39.1 that the corresponding displacement dx9 measured by an observer in S9 is 
dx9 5 dx 2 v dt, where frame S9 is moving with speed v in the x direction relative to 
frame S. Because dt 5 dt9, we find that

dx r
dt r

5
dx
dt

2 v

or

 u rx 5 ux 2 v  (39.2)

where ux and u9x are the x components of the velocity of the particle measured by 
observers in S and S9, respectively. (We use the symbol uS rather than vS for particle 
velocity because vS is already used for the relative velocity of two reference frames.) 
Equation 39.2 is the Galilean velocity transformation equation. It is consistent with 
our intuitive notion of time and space as well as with our discussions in Section 4.6. 
As we shall soon see, however, it leads to serious contradictions when applied to 
electromagnetic waves.

Quick Quiz 39.2  A baseball pitcher with a 90-mi/h fastball throws a ball while 
standing on a railroad flatcar moving at 110 mi/h. The ball is thrown in the 
same direction as that of the velocity of the train. If you apply the Galilean 
velocity transformation equation to this situation, is the speed of the ball 
relative to the Earth (a) 90 mi/h, (b) 110 mi/h, (c) 20 mi/h, (d) 200 mi/h, or 
(e) impossible to determine?

The Speed of Light

It is quite natural to ask whether the principle of Galilean relativity also applies 
to electricity, magnetism, and optics. Experiments indicate that the answer is no. 
Recall from Chapter 34 that Maxwell showed that the speed of light in free space is 
c 5 3.00 3 108 m/s. Physicists of the late 1800s thought light waves move through a 
medium called the ether and the speed of light is c only in a special, absolute frame 
at rest with respect to the ether. The Galilean velocity transformation equation was 
expected to hold for observations of light made by an observer in any frame moving 
at speed v relative to the absolute ether frame. That is, if light travels along the x 
axis and an observer moves with velocity vS along the x axis, the observer measures 
the light to have speed c 6 v, depending on the directions of travel of the observer 
and the light.
 Because the existence of a preferred, absolute ether frame would show that light 
is similar to other classical waves and that Newtonian ideas of an absolute frame 
are true, considerable importance was attached to establishing the existence of the 
ether frame. Prior to the late 1800s, experiments involving light traveling in media 
moving at the highest laboratory speeds attainable at that time were not capable of 
detecting differences as small as that between c and c 6 v. Starting in about 1880, 
scientists decided to use the Earth as the moving frame in an attempt to improve 
their chances of detecting these small changes in the speed of light.
 Observers fixed on the Earth can take the view that they are stationary and that 
the absolute ether frame containing the medium for light propagation moves past 
them with speed v. Determining the speed of light under these circumstances is 
similar to determining the speed of an aircraft traveling in a moving air current, 
or wind; consequently, we speak of an “ether wind” blowing through our apparatus 
fixed to the Earth.

Pitfall Prevention 39.1
The Relationship Between 
the S and S9 Frames
Many of the mathematical repre-
sentations in this chapter are true 
only for the specified relationship 
between the S and S9 frames. The 
x and x9 axes coincide, except their 
origins are different. The y and 
y9 axes (and the z and z9 axes) are 
parallel, but they only coincide at 
one instant due to the time-varying 
displacement of the origin of S9 with 
respect to that of S. We choose the 
time t 5 0 to be the instant at which 
the origins of the two coordinate 
systems coincide. If the S9 frame is 
moving in the positive x direction 
relative to S, then v is positive; other-
wise, it is negative.
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 A direct method for detecting an ether wind would use an apparatus fixed to the 
Earth to measure the ether wind’s influence on the speed of light. If v is the speed 
of the ether relative to the Earth, light should have its maximum speed c 1 v when 
propagating downwind as in Figure 39.3a. Likewise, the speed of light should have 
its minimum value c 2 v when the light is propagating upwind as in Figure 39.3b 
and an intermediate value (c 2 2 v 2)1/2 when the light is directed such that it travels 
perpendicular to the ether wind as in Figure 39.3c. In this latter case, the vector cS 
must be aimed upstream so that the resultant velocity is perpendicular to the wind, 
like the boat in Figure 4.21b. If the Sun is assumed to be at rest in the ether, the 
velocity of the ether wind would be equal to the orbital velocity of the Earth around 
the Sun, which has a magnitude of approximately 30 km/s or 3 3 104 m/s. Because 
c 5 3 3 108 m/s, it is necessary to detect a change in speed of approximately 1 part 
in 104 for measurements in the upwind or downwind directions. Although such a 
change is experimentally measurable, all attempts to detect such changes and estab-
lish the existence of the ether wind (and hence the absolute frame) proved futile! 
We shall discuss the classic experimental search for the ether in Section 39.2.
 The principle of Galilean relativity refers only to the laws of mechanics. If it is 
assumed the laws of electricity and magnetism are the same in all inertial frames, a 
paradox concerning the speed of light immediately arises. That can be understood 
by recognizing that Maxwell’s equations imply that the speed of light always has the 
fixed value 3.00 3 108 m/s in all inertial frames, a result in direct contradiction to 
what is expected based on the Galilean velocity transformation equation. Accord-
ing to Galilean relativity, the speed of light should not be the same in all inertial 
frames.
 To resolve this contradiction in theories, we must conclude that either (1) the 
laws of electricity and magnetism are not the same in all inertial frames or (2) the 
Galilean velocity transformation equation is incorrect. If we assume the first alter-
native, a preferred reference frame in which the speed of light has the value c must 
exist and the measured speed must be greater or less than this value in any other 
reference frame, in accordance with the Galilean velocity transformation equation. 
If we assume the second alternative, we must abandon the notions of absolute time 
and absolute length that form the basis of the Galilean space–time transformation 
equations.

39.2 The Michelson–Morley Experiment
The most famous experiment designed to detect small changes in the speed of light 
was first performed in 1881 by A. A. Michelson (see Section 37.6) and later repeated 
under various conditions by Michelson and Edward W. Morley (1838–1923). As we 
shall see, the outcome of the experiment contradicted the ether hypothesis.
 The experiment was designed to determine the velocity of the Earth relative to 
that of the hypothetical ether. The experimental tool used was the Michelson inter-
ferometer, which was discussed in Section 37.6 and is shown again in Active Figure 
39.4. Arm 2 is aligned along the direction of the Earth’s motion through space. 
The Earth moving through the ether at speed v is equivalent to the ether flowing 
past the Earth in the opposite direction with speed v. This ether wind blowing in 
the direction opposite the direction of the Earth’s motion should cause the speed 
of light measured in the Earth frame to be c 2 v as the light approaches mirror M2 
and c 1 v after reflection, where c is the speed of light in the ether frame.
 The two light beams reflect from M1 and M2 and recombine, and an interference 
pattern is formed as discussed in Section 37.6. The interference pattern is then 
observed while the interferometer is rotated through an angle of 90°. This rotation 
interchanges the speed of the ether wind between the arms of the interferometer. 
The rotation should cause the fringe pattern to shift slightly but measurably. Mea-
surements failed, however, to show any change in the interference pattern! The 
Michelson–Morley experiment was repeated at different times of the year when the 
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ether wind relative to the Earth is 
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to the ether is cS, the speed of light 
relative to the Earth depends on the 
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ether wind was expected to change direction and magnitude, but the results were 
always the same: no fringe shift of the magnitude required was ever observed.2

 The negative results of the Michelson–Morley experiment not only contradicted 
the ether hypothesis, but also showed that it is impossible to measure the absolute 
velocity of the Earth with respect to the ether frame. Einstein, however, offered a 
postulate for his special theory of relativity that places quite a different interpreta-
tion on these null results. In later years, when more was known about the nature 
of light, the idea of an ether that permeates all of space was abandoned. Light is 
now understood to be an electromagnetic wave, which requires no medium for its 
propagation. As a result, the idea of an ether in which these waves travel became 
unnecessary.

Details of the Michelson–Morley Experiment

To understand the outcome of the Michelson–Morley experiment, let’s assume the 
two arms of the interferometer in Active Figure 39.4 are of equal length L. We shall 
analyze the situation as if there were an ether wind because that is what Michelson 
and Morley expected to find. As noted above, the speed of the light beam along 
arm 2 should be c 2 v as the beam approaches M2 and c 1 v after the beam is 
reflected. We model a pulse of light as a particle under constant speed. Therefore, 
the time interval for travel to the right for the pulse is Dt 5 L/(c 2 v) and the time 
interval for travel to the left is Dt 5 L/(c 1 v). The total time interval for the round 
trip along arm 2 is

Dt arm 2 5
L

c 1 v
1

L
c 2 v

5
2Lc

c 2 2 v 2 5
2L
c a1 2

v 2

c 2 b
21

 Now consider the light beam traveling along arm 1, perpendicular to the ether 
wind. Because the speed of the beam relative to the Earth is (c 2 2 v 2)1/2 in this 
case (see Fig. 39.3c), the time interval for travel for each half of the trip is Dt 5 
L/(c 2 2 v 2)1/2 and the total time interval for the round trip is

Dt arm 1 5
2L

1c 2 2 v 2 21/2 5
2L
c a1 2

v 2

c 2 b
21/2

The time difference Dt between the horizontal round trip (arm 2) and the vertical 
round trip (arm 1) is

Dt 5 Dt arm 2 2 Dt arm 1 5
2L
c c a1 2

v 2

c 2 b
21

2 a1 2
v 2

c 2 b
21/2

d

Because v 2/c 2 ,, 1, we can simplify this expression by using the following bino-
mial expansion after dropping all terms higher than second order:

(1 2 x)n < 1 2 nx    (for x ,, 1)

In our case, x 5 v 2/c 2, and we find that

 Dt 5 Dt arm 2 2 Dt arm 1 <
Lv 2

c 3  (39.3)

 This time difference between the two instants at which the reflected beams 
arrive at the viewing telescope gives rise to a phase difference between the beams, 
producing an interference pattern when they combine at the position of the tele-
scope. A shift in the interference pattern should be detected when the interferom-
eter is rotated through 90° in a horizontal plane so that the two beams exchange 

2From an Earth-based observer’s point of view, changes in the Earth’s speed and direction of motion in the course 
of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether were zero at some 
time, six months later the speed of the Earth would be 60 km/s with respect to the ether and as a result a fringe shift 
should be noticed. No shift has ever been observed, however.

According to the ether wind 
theory, the speed of light should 
be c � v as the beam approaches 
mirror M2 and c � v after 
reflection.

M0 M2

M1
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Arm 2

Ether wind

Telescope
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vS

A Michelson interferometer is used 
in an attempt to detect the ether 
wind.

ACTIVE FIGURE 39.4
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roles. This rotation results in a time difference twice that given by Equation 39.3. 
Therefore, the path difference that corresponds to this time difference is

Dd 5 c 12 Dt 2 5
2Lv 2

c 2

Because a change in path length of one wavelength corresponds to a shift of one 
fringe, the corresponding fringe shift is equal to this path difference divided by the 
wavelength of the light:

 Shift 5
2Lv 2

lc 2  (39.4)

 In the experiments by Michelson and Morley, each light beam was reflected by 
mirrors many times to give an effective path length L of approximately 11 m. Using 
this value, taking v to be equal to 3.0 3 104 m/s (the speed of the Earth around the 
Sun), and using 500 nm for the wavelength of the light, we expect a fringe shift of

Shift 5
2 111 m 2 13.0 3 104 m/s 2 2

15.0 3 1027 m 2 13.0 3 108 m/s 2 2 5 0.44

The instrument used by Michelson and Morley could detect shifts as small as 0.01 
fringe, but it detected no shift whatsoever in the fringe pattern! The experiment 
has been repeated many times since by different scientists under a wide variety 
of conditions, and no fringe shift has ever been detected. Therefore, it was con-
cluded that the motion of the Earth with respect to the postulated ether cannot be 
detected.
 Many efforts were made to explain the null results of the Michelson–Morley 
experiment and to save the ether frame concept and the Galilean velocity trans-
formation equation for light. All proposals resulting from these efforts have been 
shown to be wrong. No experiment in the history of physics received such valiant 
efforts to explain the absence of an expected result as did the Michelson–Morley 
experiment. The stage was set for Einstein, who solved the problem in 1905 with his 
special theory of relativity.

39.3 Einstein’s Principle of Relativity
In the previous section, we noted the impossibility of measuring the speed of the 
ether with respect to the Earth and the failure of the Galilean velocity transforma-
tion equation in the case of light. Einstein proposed a theory that boldly removed 
these difficulties and at the same time completely altered our notion of space and 
time.3 He based his special theory of relativity on two postulates:

 1. The principle of relativity: The laws of physics must be the same in all iner-
tial reference frames.

 2. The constancy of the speed of light: The speed of light in vacuum has the 
same value, c 5 3.00 3 108 m/s, in all inertial frames, regardless of the 
velocity of the observer or the velocity of the source emitting the light.

 The first postulate asserts that all the laws of physics—those dealing with 
mechanics, electricity and magnetism, optics, thermodynamics, and so on—are the 
same in all reference frames moving with constant velocity relative to one another. 
This postulate is a generalization of the principle of Galilean relativity, which refers 
only to the laws of mechanics. From an experimental point of view, Einstein’s prin-
ciple of relativity means that any kind of experiment (measuring the speed of light, 

3A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English translation of this 
article and other publications by Einstein, see the book by H. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The 
Principle of Relativity (New York: Dover, 1958).

Albert Einstein
German-American Physicist 
(1879–1955)
Einstein, one of the greatest physicists of all 
time, was born in Ulm, Germany. In 1905, at 
age 26, he published four scientific papers 
that revolutionized physics. Two of these 
papers were concerned with what is now con-
sidered his most important contribution: the 
special theory of relativity.
 In 1916, Einstein published his work on 
the general theory of relativity. The most dra-
matic prediction of this theory is the degree 
to which light is deflected by a gravitational 
field. Measurements made by astronomers on 
bright stars in the vicinity of the eclipsed Sun 
in 1919 confirmed Einstein’s prediction, and 
Einstein became a world celebrity as a result.
Einstein was deeply disturbed by the develop-
ment of quantum mechanics in the 1920s 
despite his own role as a scientific revolution-
ary. In particular, he could never accept the 
probabilistic view of events in nature that 
is a central feature of quantum theory. The 
last few decades of his life were devoted 
to an unsuccessful search for a unified 
theory that would combine gravitation and 
electromagnetism.
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for example) performed in a laboratory at rest must give the same result when per-
formed in a laboratory moving at a constant velocity with respect to the first one. 
Hence, no preferred inertial reference frame exists, and it is impossible to detect 
absolute motion.
 Note that postulate 2 is required by postulate 1: if the speed of light were not the 
same in all inertial frames, measurements of different speeds would make it pos-
sible to distinguish between inertial frames. As a result, a preferred, absolute frame 
could be identified, in contradiction to postulate 1.
 Although the Michelson–Morley experiment was performed before Einstein 
published his work on relativity, it is not clear whether or not Einstein was aware 
of the details of the experiment. Nonetheless, the null result of the experiment 
can be readily understood within the framework of Einstein’s theory. According 
to his principle of relativity, the premises of the Michelson–Morley experiment 
were incorrect. In the process of trying to explain the expected results, we stated 
that when light traveled against the ether wind, its speed was c 2 v, in accordance 
with the Galilean velocity transformation equation. If the state of motion of the 
observer or of the source has no influence on the value found for the speed of 
light, however, one always measures the value to be c. Likewise, the light makes the 
return trip after reflection from the mirror at speed c, not at speed c 1 v. There-
fore, the motion of the Earth does not influence the fringe pattern observed in the 
 Michelson–Morley experiment, and a null result should be expected.
 If we accept Einstein’s theory of relativity, we must conclude that relative motion 
is unimportant when measuring the speed of light. At the same time, we must alter 
our commonsense notion of space and time and be prepared for some surprising 
consequences. As you read the pages ahead, keep in mind that our commonsense 
ideas are based on a lifetime of everyday experiences and not on observations of 
objects moving at hundreds of thousands of kilometers per second. Therefore, 
these results may seem strange, but that is only because we have no experience with 
them.

39.4 Consequences of the Special Theory of Relativity
As we examine some of the consequences of relativity in this section, we restrict 
our discussion to the concepts of simultaneity, time intervals, and lengths, all three 
of which are quite different in relativistic mechanics from what they are in Newto-
nian mechanics. In relativistic mechanics, for example, the distance between two 
points and the time interval between two events depend on the frame of reference 
in which they are measured.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is 
the same for all observers. Newton and his followers took simultaneity for granted. 
In his special theory of relativity, Einstein abandoned this assumption.
 Einstein devised the following thought experiment to illustrate this point. A 
boxcar moves with uniform velocity, and two bolts of lightning strike its ends as 
illustrated in Figure 39.5a (page 1152), leaving marks on the boxcar and on the 
ground. The marks on the boxcar are labeled A9 and B9, and those on the ground 
are labeled A and B. An observer O9 moving with the boxcar is midway between A9 
and B9, and a ground observer O is midway between A and B. The events recorded 
by the observers are the striking of the boxcar by the two lightning bolts.
 The light signals emitted from A and B at the instant at which the two bolts strike 
later reach observer O at the same time as indicated in Figure 39.5b. This observer 
realizes that the signals traveled at the same speed over equal distances and so con-
cludes that the events at A and B occurred simultaneously. Now consider the same 
events as viewed by observer O9. By the time the signals have reached observer O, 
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observer O9 has moved as indicated in Figure 39.5b. Therefore, the signal from B9 
has already swept past O9, but the signal from A9 has not yet reached O9. In other 
words, O9 sees the signal from B9 before seeing the signal from A9. According to Ein-
stein, the two observers must find that light travels at the same speed. Therefore, observer 
O9 concludes that one lightning bolt strikes the front of the boxcar before the other 
one strikes the back.
 This thought experiment clearly demonstrates that the two events that appear 
to be simultaneous to observer O do not appear to be simultaneous to observer O9. 
Simultaneity is not an absolute concept but rather one that depends on the state 
of motion of the observer. Einstein’s thought experiment demonstrates that two 
observers can disagree on the simultaneity of two events. This disagreement, how-
ever, depends on the transit time of light to the observers and therefore does not 
demonstrate the deeper meaning of relativity. In relativistic analyses of high-speed 
situations, simultaneity is relative even when the transit time is subtracted out. In 
fact, in all the relativistic effects we discuss, we ignore differences caused by the 
transit time of light to the observers.

Time Dilation

To illustrate that observers in different inertial frames can measure different time 
intervals between a pair of events, consider a vehicle moving to the right with a 
speed v such as the boxcar shown in Active Figure 39.6a. A mirror is fixed to the 
ceiling of the vehicle, and observer O9 at rest in the frame attached to the vehicle 
holds a flashlight a distance d below the mirror. At some instant, the flashlight 
emits a pulse of light directed toward the mirror (event 1), and at some later time 
after reflecting from the mirror, the pulse arrives back at the flashlight (event 2). 
Observer O9 carries a clock and uses it to measure the time interval Dtp between 
these two events. (The subscript p stands for proper, as we shall see in a moment.) 
We model the pulse of light as a particle under constant speed. Because the light 
pulse has a speed c, the time interval required for the pulse to travel from O9 to the 
mirror and back is

 Dt p 5
distance traveled

speed
5

2d
c

 (39.5)

 Now consider the same pair of events as viewed by observer O in a second frame 
at rest with respect to the ground as shown in Active Figure 39.6b. According to this 
observer, the mirror and the flashlight are moving to the right with a speed v, and 
as a result, the sequence of events appears entirely different. By the time the light 
from the flashlight reaches the mirror, the mirror has moved to the right a distance 
v Dt/2, where Dt is the time interval required for the light to travel from O9 to the 
mirror and back to O9 as measured by O. Observer O concludes that because of the 

vS vS

The events appear to be 
simultaneous to the stationary 
observer O who is standing 
midway between A and B.

The events do not appear to be 
simultaneous to observer O�, 
who claims that the front of the 
car is struck before the rear.

A� B�

OA B

O�
A� B�

OA B

O�

a b

Figure 39.5  (a) Two lightning bolts 
strike the ends of a moving boxcar. 
(b) The leftward-traveling light sig-
nal has already passed O9, but the 
rightward-traveling signal has not yet 
reached O9.

Pitfall Prevention 39.2
Who’s Right?
You might wonder which observer in 
Figure 39.5 is correct concerning the 
two lightning strikes. Both are correct 
because the principle of relativity 
states that there is no preferred inertial 
frame of reference. Although the two 
observers reach different conclu-
sions, both are correct in their own 
reference frame because the concept 
of simultaneity is not absolute. That, 
in fact, is the central point of relativ-
ity: any uniformly moving frame of 
reference can be used to describe 
events and do physics.
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motion of the vehicle, if the light is to hit the mirror, it must leave the flashlight at 
an angle with respect to the vertical direction. Comparing Active Figure 39.6a with 
Active Figure 39.6b, we see that the light must travel farther in part (b) than in part 
(a). (Notice that neither observer “knows” that he or she is moving. Each is at rest in 
his or her own inertial frame.)
 According to the second postulate of the special theory of relativity, both observ-
ers must measure c for the speed of light. Because the light travels farther accord-
ing to O, the time interval Dt measured by O is longer than the time interval Dtp 
measured by O9. To obtain a relationship between these two time intervals, let’s use 
the right triangle shown in Active Figure 39.6c. The Pythagorean theorem gives

ac Dt
2
b

2

5 av Dt
2
b

2

1 d 2

Solving for Dt gives

 Dt 5
2d

"c 2 2 v 2
5

2d

c Å1 2
v 2

c 2

 (39.6)

Because Dtp 5 2d/c, we can express this result as

 Dt 5
Dt p

Å1 2
v 2

c 2

5 g Dt p  (39.7)

where

 g 5
1

Å1 2
v 2

c 2

 (39.8)

Because g is always greater than unity, Equation 39.7 shows that the time interval 
Dt measured by an observer moving with respect to a clock is longer than the time 

Time dilation 

a

Observer O � 
sees the light 
pulse move up 
and down 
vertically a total 
distance of 2d.

vS

d d

Observer O  sees the light pulse move 
on a diagonal path and measures a 
distance of travel greater than 2d.

vS

O

v ∆t

c

v �t
2

b

c �t
2

O � O � O � O �

x �

y �

Mirror

(a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer O9 at rest in the 
vehicle. (b) Relative to a stationary observer O standing alongside the vehicle, the mirror and O9 move 
with a speed v. (c) The right triangle for calculating the relationship between Dt and Dtp.

ACTIVE FIGURE 39.6
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interval Dtp measured by an observer at rest with respect to the clock. This effect is 
known as time dilation.
 Time dilation is not observed in our everyday lives, which can be understood by 
considering the factor g. This factor deviates significantly from a value of 1 only for 
very high speeds as shown in Figure 39.7 and Table 39.1. For example, for a speed of 
0.1c, the value of g is 1.005. Therefore, there is a time dilation of only 0.5% at one-
tenth the speed of light. Speeds encountered on an everyday basis are far slower 
than 0.1c, so we do not experience time dilation in normal situations.
 The time interval Dtp in Equations 39.5 and 39.7 is called the proper time inter-
val. (Einstein used the German term Eigenzeit, which means “own-time.”) In gen-
eral, the proper time interval is the time interval between two events measured by 
an observer who sees the events occur at the same point in space.
 If a clock is moving with respect to you, the time interval between ticks of the 
moving clock is observed to be longer than the time interval between ticks of an 
identical clock in your reference frame. Therefore, it is often said that a moving 
clock is measured to run more slowly than a clock in your reference frame by a fac-
tor g. We can generalize this result by stating that all physical processes, including 
mechanical, chemical, and biological ones, are measured to slow down when those 
processes occur in a frame moving with respect to the observer. For example, the 
heartbeat of an astronaut moving through space keeps time with a clock inside the 
spacecraft. Both the astronaut’s clock and heartbeat are measured to slow down 
relative to a clock back on the Earth (although the astronaut would have no sensa-
tion of life slowing down in the spacecraft).

Quick Quiz 39.3  Suppose the observer O9 on the train in Active Figure 39.6 
aims her flashlight at the far wall of the boxcar and turns it on and off, send-
ing a pulse of light toward the far wall. Both O9 and O measure the time 
interval between when the pulse leaves the flashlight and when it hits the far 
wall. Which observer measures the proper time interval between these two 
events? (a) O9 (b) O (c) both observers (d) neither observer

Quick Quiz 39.4  A crew on a spacecraft watches a movie that is two hours 
long. The spacecraft is moving at high speed through space. Does an Earth-
based observer watching the movie screen on the spacecraft through a 
powerful telescope measure the duration of the movie to be (a) longer than, 
(b) shorter than, or (c) equal to two hours?

 Time dilation is a very real phenomenon that has been verified by various exper-
iments involving natural clocks. One experiment reported by J. C. Hafele and R. E. 
Keating provided direct evidence of time dilation.4 Time intervals measured with 

Approximate Values for g 
at Various Speeds

v/c g

0 1
0.001 0 1.000 000 5
0.010 1.000 05
0.10 1.005
0.20 1.021
0.30 1.048
0.40 1.091
0.50 1.155
0.60 1.250
0.70 1.400
0.80 1.667
0.90 2.294
0.92 2.552
0.94 2.931
0.96 3.571
0.98 5.025
0.99 7.089
0.995 10.01
0.999 22.37

TABLE 39.1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10

15

20

5

1 v (108 m/s)

gFigure 39.7  Graph of g versus v. As 
the speed approaches that of light, g 
increases rapidly.

Pitfall Prevention 39.3
The Proper Time Interval
It is very important in relativistic 
calculations to correctly identify the 
observer who measures the proper 
time interval. The proper time 
interval between two events is always 
the time interval measured by an 
observer for whom the two events 
take place at the same position.

4J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains Observed,” Science 177:168, 
1972.
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four cesium atomic clocks in jet flight were compared with time intervals measured 
by Earth-based reference atomic clocks. To compare these results with theory, 
many factors had to be considered, including periods of speeding up and slowing 
down relative to the Earth, variations in direction of travel, and the weaker gravi-
tational field experienced by the flying clocks than that experienced by the Earth-
based clock. The results were in good agreement with the predictions of the special 
theory of relativity and were explained in terms of the relative motion between the 
Earth and the jet aircraft. In their paper, Hafele and Keating stated that “relative 
to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost 59 6 
10 ns during the eastward trip and gained 273 6 7 ns during the westward trip.”
 Another interesting example of time dilation involves the observation of muons, 
unstable elementary particles that have a charge equal to that of the electron and 
a mass 207 times that of the electron. Muons can be produced by the collision of 
cosmic radiation with atoms high in the atmosphere. Slow-moving muons in the 
laboratory have a lifetime that is measured to be the proper time interval Dtp 5 
2.2 ms. If we take 2.2 ms as the average lifetime of a muon and assume their speed 
is close to the speed of light, we find that these particles can travel a distance of 
approximately (3.0 3 108 m/s)(2.2 3 1026 s) < 6.6 3 102 m before they decay (Fig. 
39.8a). Hence, they are unlikely to reach the surface of the Earth from high in 
the atmosphere where they are produced. Experiments show, however, that a large 
number of muons do reach the surface. The phenomenon of time dilation explains 
this effect. As measured by an observer on the Earth, the muons have a dilated life-
time equal to g Dtp. For example, for v 5 0.99c, g < 7.1, and g Dtp < 16 ms. Hence, 
the average distance traveled by the muons in this time interval as measured by an 
observer on the Earth is approximately (0.99)(3.0 3 108 m/s)(16 3 1026 s) < 4.8 3 
103 m as indicated in Figure 39.8b.
 In 1976, at the laboratory of the European Council for Nuclear Research (CERN) 
in Geneva, muons injected into a large storage ring reached speeds of approxi-
mately 0.999 4c. Electrons produced by the decaying muons were detected by coun-
ters around the ring, enabling scientists to measure the decay rate and hence the 
muon lifetime. The lifetime of the moving muons was measured to be approxi-
mately 30 times as long as that of the stationary muon, in agreement with the pre-
diction of relativity to within two parts in a thousand.

� 4.8 � 103 m

� 6.6 � 102 m

Muon is created Muon is created

Muon decays

Muon decays

Without relativistic considerations, according to 
an observer on the Earth, muons created in the 
atmosphere and traveling downward with a speed 
close to c travel only about 6.6 � 102 m before 
decaying with an average lifetime of 2.2 ms. 
Therefore, very few muons would reach the 
surface of the Earth.

With relativistic considerations, the muon’s 
lifetime is dilated according to an observer 
on the Earth. Hence, according to this 
observer, the muon can travel about
4.8 � 103 m before decaying. The result is 
many of them arriving at the surface.

a b

Figure 39.8  Travel of muons 
according to an Earth-based 
observer.
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Example 39.1 What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.00 s in the reference frame of the pendulum. What is the period when 
measured by an observer moving at a speed of 0.960c relative to the pendulum?

SOLUTION

Conceptualize  Let’s change frames of reference. Instead of the observer moving at 0.960c, we can take the equivalent 
point of view that the observer is at rest and the pendulum is moving at 0.960c past the stationary observer. Hence, the 
pendulum is an example of a clock moving at high speed with respect to an observer.

Categorize  Based on the Conceptualize step, we can categorize this problem as one involving time dilation.

Analyze  The proper time interval, measured in the rest frame of the pendulum, is Dtp 5 3.00 s.

Use Equation 39.7 to find the dilated time interval: Dt 5 g Dt p 5
1

Å1 2
10.960c 22

c 2

 Dt p 5
1

"1 2 0.921 6
 Dt p

5 3.57(3.00 s) 5 10.7 s

Finalize  This result shows that a moving pendulum is indeed measured to take longer to complete a period than a pen-
dulum at rest does. The period increases by a factor of g 5 3.57.

WHAT IF?  What if the speed of the observer increases by 4.00%? Does the dilated time interval increase by 4.00%?

Answer  Based on the highly nonlinear behavior of g as a function of v in Figure 39.7, we would guess that the increase 
in Dt would be different from 4.00%.

Perform the time dilation calculation again: Dt 5 g Dt p 5
1

Å1 2
10.998 4c 22

c 2

 Dt p 5
1

"1 2 0.996 8
 Dt p

5 17.68(3.00 s) 5 53.1 s

Find the new speed if it increases by 4.00%: vnew 5 (1.040 0)(0.960c) 5 0.998 4c

Therefore, the 4.00% increase in speed results in almost a 400% increase in the dilated time!

Example 39.2 How Long Was Your Trip?

Suppose you are driving your car on a business trip and are traveling at 30 m/s. Your boss, who is waiting at your destina-
tion, expects the trip to take 5.0 h. When you arrive late, your excuse is that the clock in your car registered the passage 
of 5.0 h but that you were driving fast and so your clock ran more slowly than the clock in your boss’s office. If your car 
clock actually did indicate a 5.0-h trip, how much time passed on your boss’s clock, which was at rest on the Earth?

SOLUTION

Conceptualize  The observer is your boss standing stationary on the Earth. The clock is in your car, moving at 30 m/s 
with respect to your boss.

Categorize  The low speed of 30 m/s suggests we might categorize this problem as one in which we use classical concepts 
and equations. Based on the problem statement that the moving clock runs more slowly than a stationary clock, however, 
we categorize this problem as one involving time dilation.

Analyze  The proper time interval, measured in the rest frame of the car, is Dtp 5 5.0 h.

Use Equation 39.8 to evaluate g: g 5
1

Å1 2
v 2

c 2

5
1

Å1 2
13.0 3 101 m/s 22
13.0 3 108 m/s 22

5
1

"1 2 10214
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The Twin Paradox

An intriguing consequence of time dilation is the twin paradox (Fig. 39.9). Consider 
an experiment involving a set of twins named Speedo and Goslo. When they are 20 
years old, Speedo, the more adventuresome of the two, sets out on an epic journey 
from the Earth to Planet X, located 20 light-years away. One light-year (ly) is the dis-
tance light travels through free space in 1 year. Furthermore, Speedo’s spacecraft is 
capable of reaching a speed of 0.95c relative to the inertial frame of his twin brother 
back home on the Earth. After reaching Planet X, Speedo becomes homesick and 
immediately returns to the Earth at the same speed 0.95c. Upon his return, Speedo 
is shocked to discover that Goslo has aged 42 years and is now 62 years old. Speedo, 
on the other hand, has aged only 13 years.
 The paradox is not that the twins have aged at different rates. Here is the appar-
ent paradox. From Goslo’s frame of reference, he was at rest while his brother trav-
eled at a high speed away from him and then came back. According to Speedo, 
however, he himself remained stationary while Goslo and the Earth raced away 
from him and then headed back. Therefore, we might expect Speedo to claim that 
Goslo ages more slowly than himself. The situation appears to be symmetrical from 
either twin’s point of view. Which twin actually ages more slowly?
 The situation is actually not symmetrical. Consider a third observer moving at 
a constant speed relative to Goslo. According to the third observer, Goslo never 
changes inertial frames. Goslo’s speed relative to the third observer is always the 
same. The third observer notes, however, that Speedo accelerates during his jour-
ney when he slows down and starts moving back toward the Earth, changing reference 
frames in the process. From the third observer’s perspective, there is something very 

Finalize  Your boss’s clock would be only 0.090 ns ahead of your car clock. You might want to think of another excuse!

If you try to determine this value on your calculator, you 
will probably obtain g 5 1. Instead, perform a binomial 
expansion:

g 5 11 2 10214 221/2 < 1 1 1
2 110214 2 5 1 1 5.0 3 10215

Use Equation 39.7 to find the dilated time interval mea-
sured by your boss:

Dt 5 g Dtp 5 (1 1 5.0 3 10215)(5.0 h)

5 5.0 h 1 2.5 3 10214 h 5 5.0 h 1 0.090 ns

a

As Speedo leaves his 
brother on Earth, 
both twins are the 
same age.

b

When Speedo returns 
from his journey, 
Goslo is much older 
than Speedo.

Figure 39.9  The twin paradox. 
Speedo takes a journey to a star 20 
light-years away and returns to the 
Earth.
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different about the motion of Goslo when compared to Speedo. Therefore, there is 
no paradox: only Goslo, who is always in a single inertial frame, can make correct 
predictions based on special relativity. Goslo finds that instead of aging 42 years, 
Speedo ages only (1 2 v 2/c 2)1/2(42 years) 5 13 years. Of these 13 years, Speedo 
spends 6.5 years traveling to Planet X and 6.5 years returning.

Quick Quiz 39.5  Suppose astronauts are paid according to the amount of 
time they spend traveling in space. After a long voyage traveling at a speed 
approaching c, would a crew rather be paid according to (a) an Earth-based 
clock, (b) their spacecraft’s clock, or (c) either clock?

Length Contraction

The measured distance between two points in space also depends on the frame of 
reference of the observer. The proper length Lp of an object is the length measured 
by an observer at rest relative to the object. The length of an object measured by some-
one in a reference frame that is moving with respect to the object is always less than 
the proper length. This effect is known as length contraction.
 To understand length contraction, consider a spacecraft traveling with a speed 
v from one star to another. There are two observers: one on the Earth and the 
other in the spacecraft. The observer at rest on the Earth (and also assumed to be 
at rest with respect to the two stars) measures the distance between the stars to be 
the proper length Lp. According to this observer, the time interval required for the 
spacecraft to complete the voyage is Dt 5 Lp /v. The passages of the two stars by the 
spacecraft occur at the same position for the space traveler. Therefore, the space 
traveler measures the proper time interval Dtp. Because of time dilation, the proper 
time interval is related to the Earth-measured time interval by Dtp 5 Dt/g. Because 
the space traveler reaches the second star in the time Dtp, he or she concludes that 
the distance L between the stars is

L 5 v Dt p 5 v 
Dt
g

Because the proper length is Lp 5 v Dt, we see that

 L 5
L p

g
5 L p Å1 2

v 2

c 2  (39.9)

where !1 2 v 2/c 2 is a factor less than unity. If an object has a proper length Lp 
when it is measured by an observer at rest with respect to the object, its length L 
when it moves with speed v in a direction parallel to its length is measured to be 
shorter according to Equation 39.9.
 For example, suppose a meterstick moves past a stationary Earth-based observer 
with speed v as in Active Figure 39.10. The length of the meterstick as measured by 
an observer in a frame attached to the stick is the proper length Lp shown in Active 
Figure 39.10a. The length of the stick L measured by the Earth observer is shorter 
than Lp by the factor (1 2 v 2/c 2)1/2 as suggested in Active Figure 39.10b. Notice that 
length contraction takes place only along the direction of motion.
 The proper length and the proper time interval are defined differently. The 
proper length is measured by an observer for whom the endpoints of the length 
remain fixed in space. The proper time interval is measured by someone for whom 
the two events take place at the same position in space. As an example of this point, 
let’s return to the decaying muons moving at speeds close to the speed of light. An 
observer in the muon’s reference frame measures the proper lifetime, whereas an 
Earth-based observer measures the proper length (the distance between the cre-
ation point and the decay point in Fig. 39.8b). In the muon’s reference frame, there 

Length contraction 

Pitfall Prevention 39.4
The Proper Length
As with the proper time interval, 
it is very important in relativistic 
calculations to correctly identify the 
observer who measures the proper 
length. The proper length between 
two points in space is always the 
length measured by an observer 
at rest with respect to the points. 
Often, the proper time interval and 
the proper length are not measured 
by the same observer.
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is no time dilation, but the distance of travel to the surface is shorter when mea-
sured in this frame. Likewise, in the Earth observer’s reference frame, there is time 
dilation, but the distance of travel is measured to be the proper length. Therefore, 
when calculations on the muon are performed in both frames, the outcome of the 
experiment in one frame is the same as the outcome in the other frame: more 
muons reach the surface than would be predicted without relativistic effects.

Quick Quiz 39.6  You are packing for a trip to another star. During the jour-
ney, you will be traveling at 0.99c. You are trying to decide whether you 
should buy smaller sizes of your clothing because you will be thinner on 
your trip due to length contraction. You also plan to save money by reserving 
a smaller cabin to sleep in because you will be shorter when you lie down. 
Should you (a) buy smaller sizes of clothing, (b) reserve a smaller cabin, 
(c) do neither of these things, or (d) do both of these things?

Quick Quiz 39.7  You are observing a spacecraft moving away from you. You 
measure it to be shorter than when it was at rest on the ground next to you. 
You also see a clock through the spacecraft window, and you observe that the 
passage of time on the clock is measured to be slower than that of the watch 
on your wrist. Compared with when the spacecraft was on the ground, what 
do you measure if the spacecraft turns around and comes toward you at the 
same speed? (a) The spacecraft is measured to be longer, and the clock runs 
faster. (b) The spacecraft is measured to be longer, and the clock runs slower. 
(c) The spacecraft is measured to be shorter, and the clock runs faster. 
(d) The spacecraft is measured to be shorter, and the clock runs slower.

Space–Time Graphs

It is sometimes helpful to represent a physical situation with a space–time graph, in 
which ct is the ordinate and position x is the abscissa. The twin paradox is displayed 
in such a graph in Figure 39.11 from Goslo’s point of view. A path through space–
time is called a world-line. At the origin, the world-lines of Speedo (blue) and Goslo 
(green) coincide because the twins are in the same location at the same time. After 
Speedo leaves on his trip, his world-line diverges from that of his brother. Goslo’s 
world-line is vertical because he remains fixed in location. At Goslo and Speedo’s 
reunion, the two world-lines again come together. It would be impossible for Speedo 
to have a world-line that crossed the path of a light beam that left the Earth when 
he did. To do so would require him to have a speed greater than c (which, as shown 
in Sections 39.6 and 39.7, is not possible).
 World-lines for light beams are diagonal lines on space–time graphs, typically 
drawn at 45° to the right or left of vertical (assuming the x and ct axes have the 
same scales), depending on whether the light beam is traveling in the direction 
of increasing or decreasing x. All possible future events for Goslo and Speedo lie 
above the x axis and between the red-brown lines in Figure 39.11 because neither 
twin can travel faster than light. The only past events that Goslo and Speedo could 
have experienced occur between two similar 45° world-lines that approach the ori-
gin from below the x axis.
 If Figure 39.11 is rotated about the ct axis, the red-brown lines sweep out a cone, 
called the light cone, which generalizes Figure 39.11 to two space dimensions. The 
y axis can be imagined coming out of the page. All future events for an observer 
at the origin must lie within the light cone. We can imagine another rotation that 
would generalize the light cone to three space dimensions to include z, but because 
of the requirement for four dimensions (three space dimensions and time), we can-
not represent this situation in a two-dimensional drawing on paper.

vS

A meterstick measured by an 
observer in a frame attached 
to the stick has its proper 
length Lp.

A meterstick measured by an 
observer in a frame in which 
the stick has a velocity relative 
to the frame is measured to be 
shorter than its proper length.

a

b

Lp

y�

O �
x�

L
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O
x

The length of a meterstick is mea-
sured by two observers.

ACTIVE FIGURE 39.10

World-line of Speedo

World-line of 
light beam

World-line
of Goslo

ct

x

Figure 39.11  The twin paradox on 
a space–time graph. The twin who 
stays on the Earth has a world-line 
along the ct axis (green). The path 
of the traveling twin through space–
time is represented by a world-line 
that changes direction (blue). The 
red-brown lines are world-lines for 
light beams traveling in the posi-
tive x direction (on the right) or the 
negative x direction (on the left).
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Example 39.3 A Voyage to Sirius

An astronaut takes a trip to Sirius, which is located a distance of 8 light-years from the Earth. The astronaut measures the 
time of the one-way journey to be 6 years. If the spaceship moves at a constant speed of 0.8c, how can the 8-ly distance be 
reconciled with the 6-year trip time measured by the astronaut?

SOLUTION

Conceptualize  An observer on the Earth measures light to require 8 years to travel between Sirius and the Earth. The 
astronaut measures a time interval for his travel of only 6 years. Is the astronaut traveling faster than light?

Categorize  Because the astronaut is measuring a length of space between the Earth and Sirius that is in motion with 
respect to her, we categorize this example as a length contraction problem. We also model the astronaut as a particle 
moving with constant velocity.

Analyze  The distance of 8 ly represents the proper length from the Earth to Sirius measured by an observer on the 
Earth seeing both objects nearly at rest.

Use the particle under constant velocity model to find 
the travel time measured on the astronaut’s clock:

Dt 5
L
v

5
5 ly

0.8c
5

5 ly

0.8 11 ly/yr 2 5 6 yr

Calculate the contracted length measured by the astro-
naut using Equation 39.9:

L 5
8 ly
g

5 18 ly 2Å1 2
v 2

c 2 5 18 ly 2Å1 2
10.8c 22

c 2 5 5 ly

Finalize  Notice that we have used the value for the speed of light as c 5 1 ly/yr. The trip takes a time interval shorter than 
8 years for the astronaut because, to her, the distance between the Earth and Sirius is measured to be shorter.

WHAT IF?  What if this trip is observed with a very powerful telescope by a technician in Mission Control on the Earth? 
At what time will this technician see that the astronaut has arrived at Sirius?

Answer  The time interval the technician measures for the astronaut to arrive is

Dt 5
L p

v
5

8 ly

0.8c
5 10 yr

For the technician to see the arrival, the light from the scene of the arrival must travel back to the Earth and enter the 
telescope. This travel requires a time interval of

Dt 5
L p

v
5

8 ly

c
5 8 yr

Therefore, the technician sees the arrival after 10 yr 1 8 yr 5 18 yr. If the astronaut immediately turns around and 
comes back home, she arrives, according to the technician, 20 years after leaving, only 2 years after the technician saw her 
arrive! In addition, the astronaut would have aged by only 12 years.

Example 39.4 The Pole-in-the-Barn Paradox

The twin paradox, discussed earlier, is a classic “paradox” in relativity. Another classic “paradox” is as follows. Suppose a 
runner moving at 0.75c carries a horizontal pole 15 m long toward a barn that is 10 m long. The barn has front and rear 
doors that are initially open. An observer on the ground can instantly and simultaneously close and open the two doors 
by remote control. When the runner and the pole are inside the barn, the ground observer closes and then opens both 
doors so that the runner and pole are momentarily captured inside the barn and then proceed to exit the barn from the 
back doorway. Do both the runner and the ground observer agree that the runner makes it safely through the barn?

SOLUTION

Conceptualize  From your everyday experience, you would be surprised to see a 15-m pole fit inside a 10-m barn, but we 
are becoming used to surprising results in relativistic situations.
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Categorize  The pole is in motion with respect to the ground observer so that the observer measures its length to be 
contracted, whereas the stationary barn has a proper length of 10 m. We categorize this example as a length contraction 
problem.

Analyze Use Equation 39.9 to find the contracted length 
of the pole according to the ground observer:

L pole 5 L pÅ1 2
v 2

c 2 5 115 m 2 "1 2 10.75 22 5 9.9 m

Therefore, the ground observer measures the pole to be slightly shorter than the barn and there is no problem with 
momentarily capturing the pole inside it. The “paradox” arises when we consider the runner’s point of view.

Use Equation 39.9 to find the contracted length of the 
barn according to the running observer:

L barn 5 L pÅ1 2
v 2

c 2 5 110 m 2 "1 2 10.75 22 5 6.6 m

Because the pole is in the rest frame of the runner, the runner 
measures it to have its proper length of 15 m. Now the situa-
tion looks even worse: how can a 15-m pole fit inside a 6.6-m 
barn? Although this question is the classic one that is often 
asked, it is not the question we have asked because it is not the 
important one. We asked, “Does the runner make it safely through 
the barn?”
 The resolution of the “paradox” lies in the relativity of 
simultaneity. The closing of the two doors is measured to be 
simultaneous by the ground observer. Because the doors are 
at different positions, however, they do not close simultane-
ously as measured by the runner. The rear door closes and 
then opens first, allowing the leading end of the pole to exit. 
The front door of the barn does not close until the trailing 
end of the pole passes by.
 We can analyze this “paradox” using a space–time graph. 
Figure 39.12a is a space–time graph from the ground observ-
er’s point of view. We choose x 5 0 as the position of the front 
doorway of the barn and t 5 0 as the instant at which the lead-
ing end of the pole is located at the front doorway of the barn. 
The world-lines for the two doorways of the barn are separated 
by 10 m and are vertical because the barn is not moving rela-
tive to this observer. For the pole, we follow two tilted world-
lines, one for each end of the moving pole. These world-lines 
are 9.9 m apart horizontally, which is the contracted length 
seen by the ground observer. As seen in Figure 39.12a, the 
pole is entirely within the barn at some time.
 Figure 39.12b shows the space–time graph according to 
the runner. Here, the world-lines for the pole are separated by 
15 m and are vertical because the pole is at rest in the runner’s 
frame of reference. The barn is hurtling toward the runner, so 
the world-lines for the front and rear doorways of the barn are tilted to the left. The world-lines for the barn are sepa-
rated by 6.6 m, the contracted length as seen by the runner. The leading end of the pole leaves the rear doorway of the 
barn long before the trailing end of the pole enters the barn. Therefore, the opening of the rear door occurs before the 
closing of the front door.

a

b
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20
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doorway

Rear
doorway

Pole is
entirely
in barn
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end of
pole

Trailing
end of
pole
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trailing end
of pole 10

20

10�10 0

Rear doorway
arrives at leading 
end of pole
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Figure 39.12  (Example 39.4) Space–time graphs for the 
pole-in-the-barn paradox (a) from the ground observer’s 
point of view and (b) from the runner’s point of view.

From the ground observer’s point of view, use the par-
ticle under constant velocity model to find the time after 
t 5 0 at which the trailing end of the pole enters the 
barn:

(1)   t 5
Dx
v

5
9.9 m
0.75c

5
13.2 m

c

continued
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39.4 cont.

The Relativistic Doppler Effect

Another important consequence of time dilation is the shift in frequency observed 
for light emitted by atoms in motion as opposed to light emitted by atoms at rest. 
This phenomenon, known as the Doppler effect, was introduced in Chapter 17 as 
it pertains to sound waves. In the case of sound, the motion of the source with 
respect to the medium of propagation can be distinguished from the motion of 
the observer with respect to the medium. Light waves must be analyzed differently, 
however, because they require no medium of propagation, and no method exists 
for distinguishing the motion of a light source from the motion of the observer.
 If a light source and an observer approach each other with a relative speed v, the 
frequency f 9 measured by the observer is

 f r 5
"1 1 v/c

"1 2 v/c
 f  (39.10)

where f is the frequency of the source measured in its rest frame. This relativistic 
Doppler shift equation, unlike the Doppler shift equation for sound, depends only 
on the relative speed v of the source and observer and holds for relative speeds as 
great as c. As you might expect, the equation predicts that f 9 . f when the source 
and observer approach each other. We obtain the expression for the case in which 
the source and observer recede from each other by substituting negative values for 
v in Equation 39.10.
 The most spectacular and dramatic use of the relativistic Doppler effect is the 
measurement of shifts in the frequency of light emitted by a moving astronomical 
object such as a galaxy. Light emitted by atoms and normally found in the extreme 
violet region of the spectrum is shifted toward the red end of the spectrum for 
atoms in other galaxies, indicating that these galaxies are receding from us. Ameri-
can astronomer Edwin Hubble (1889–1953) performed extensive measurements of 
this red shift to confirm that most galaxies are moving away from us, indicating that 
the Universe is expanding.

39.5 The Lorentz Transformation Equations
Suppose two events occur at points P and Q and are reported by two observers, one 
at rest in a frame S and another in a frame S9 that is moving to the right with speed 
v as in Figure 39.13. The observer in S reports the events with space–time coordi-

Find the time at which the trailing end of the pole enters 
the front door of the barn:

(3)   t 5
Dx
v

5
15 m
0.75c

5
20 m

c

From the runner’s point of view, use the particle under 
constant velocity model to find the time at which the 
leading end of the pole leaves the barn:

(2)   t 5
Dx
v

5
6.6 m
0.75c

5
8.8 m

c

Finalize  From Equation (1), the pole should be completely inside the barn at a time corresponding to ct 5 13.2 m. This 
situation is consistent with the point on the ct axis in Figure 39.12a where the pole is inside the barn. From Equation 
(2), the leading end of the pole leaves the barn at ct 5 8.8 m. This situation is consistent with the point on the ct axis in 
Figure 39.12b where the rear doorway of the barn arrives at the leading end of the pole. Equation (3) gives ct 5 20 m, 
which agrees with the instant shown in Figure 39.12b at which the front doorway of the barn arrives at the trailing end 
of the pole.

y y� S�S

O
x�

P (event)

O�

Q (event)

vt
x

x� �x�
�x

vS

x

Figure 39.13  Events occur at points 
P and Q and are observed by an 
observer at rest in the S frame and 
another in the S9 frame, which is 
moving to the right with a speed v.
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nates (x, y, z, t), and the observer in S9 reports the same events using the coordi-
nates (x9, y9, z9, t9). Equation 39.1 predicts that the distance between the two points 
in space at which the events occur does not depend on motion of the observer: 
Dx 5 Dx9. Because this prediction is contradictory to the notion of length contrac-
tion, the Galilean transformation is not valid when v approaches the speed of light. 
In this section, we present the correct transformation equations that apply for all 
speeds in the range 0 , v , c.
 The equations that are valid for all speeds and that enable us to transform coor-
dinates from S to S9 are the Lorentz transformation equations:

 x r 5 g 1x 2 vt 2   y r 5 y  z r 5 z  t r 5 gat 2
v
c 2 xb  (39.11)

These transformation equations were developed by Hendrik A. Lorentz (1853– 
1928) in 1890 in connection with electromagnetism. It was Einstein, however, who 
recognized their physical significance and took the bold step of interpreting them 
within the framework of the special theory of relativity.
 Notice the difference between the Galilean and Lorentz time equations. In the 
Galilean case, t 5 t9. In the Lorentz case, however, the value for t9 assigned to an 
event by an observer O9 in the S9 frame in Figure 39.13 depends both on the time 
t and on the coordinate x as measured by an observer O in the S frame, which is 
consistent with the notion that an event is characterized by four space–time coor-
dinates (x, y, z, t). In other words, in relativity, space and time are not separate con-
cepts but rather are closely interwoven with each other.
 If you wish to transform coordinates in the S9 frame to coordinates in the S 
frame, simply replace v by 2v and interchange the primed and unprimed coordi-
nates in Equations 39.11:

 x 5 g 1x r 1 vt r 2   y 5 y r  z 5 z r  t 5 gat r 1
v
c 2 x rb  (39.12)

When v ,, c, the Lorentz transformation equations should reduce to the Galilean 
equations. As v approaches zero, v/c ,, 1; therefore, g S 1 and Equations 39.11 
indeed reduce to the Galilean space–time transformation equations in Equation 
39.1.
 In many situations, we would like to know the difference in coordinates between 
two events or the time interval between two events as seen by observers O and O9. 
From Equations 39.11 and 39.12, we can express the differences between the four 
variables x, x9, t, and t9 in the form

 
Dx r 5 g 1Dx 2 v Dt 2
Dt r 5 gaDt 2

v
c 2 DxbsS  S   S r (39.13)

 

Dx 5 g 1Dx r 1 v Dt r 2
Dt 5 gaDt r 1

v
c 2 Dx rbsS r  S   S  (39.14)

where Dx9 5 x92 2 x91 and Dt9 5 t92 2 t91 are the differences measured by observer O9 
and Dx 5 x2 2 x1 and Dt 5 t2 2 t1 are the differences measured by observer O. (We 
have not included the expressions for relating the y and z coordinates because they 
are unaffected by motion along the x direction.5)

 Lorentz transformation  
for S S S9

 Inverse Lorentz  
transformation for S9 S S

5Although relative motion of the two frames along the x axis does not change the y and z coordinates of an object, it 
does change the y and z velocity components of an object moving in either frame as noted in Section 39.6.



1164 CHAPTER 39 | Relativity

Example 39.5 Simultaneity and Time Dilation Revisited

(A)  Use the Lorentz transformation equations in difference form to show that simultaneity is not an absolute concept.

SOLUTION

Conceptualize  Imagine two events that are simultaneous and separated in space as measured in the S9 frame such that 
Dt9 5 0 and Dx9 2 0. These measurements are made by an observer O9 who is moving with speed v relative to O.

Categorize  The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.

Analyze  From the expression for Dt given in Equation 
39.14, find the time interval Dt measured by observer O:

Dt 5 gaDt r 1
v
c 2 Dx rb 5 ga0 1

v
c 2 Dx rb 5 g 

v
c 2 Dx r

Finalize  The time interval for the same two events as measured by O is nonzero, so the events do not appear to be simul-
taneous to O.

(B)  Use the Lorentz transformation equations in difference form to show that a moving clock is measured to run more 
slowly than a clock that is at rest with respect to an observer.

SOLUTION

Conceptualize  Imagine that observer O9 carries a clock that he uses to measure a time interval Dt9. He finds that two 
events occur at the same place in his reference frame (Dx9 5 0) but at different times (Dt9 2 0). Observer O9 is moving 
with speed v relative to O.

Categorize  The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.

Analyze  From the expression for Dt given in Equation 
39.14, find the time interval Dt measured by observer O:

Dt 5 gaDt r 1
v
c 2 Dx rb 5 g cDt r 1

v
c 2 10 2 d 5 g Dt r

Finalize  This result is the equation for time dilation found earlier (Eq. 39.7), where Dt9 5 Dtp is the proper time interval 
measured by the clock carried by observer O9. Therefore, O measures the moving clock to run slow.

39.6 The Lorentz Velocity Transformation Equations
Suppose two observers in relative motion with respect to each other are both 
observing an object’s motion. Previously, we defined an event as occurring at an 
instant of time. Now let’s interpret the “event” as the object’s motion. We know that 
the Galilean velocity transformation (Eq. 39.2) is valid for low speeds. How do the 
observers’ measurements of the velocity of the object relate to each other if the 
speed of the object or the relative speed of the observers is close to that of light? 
Once again, S9 is our frame moving at a speed v relative to S. Suppose an object has 
a velocity component u9x measured in the S9 frame, where

 u rx 5
dx r
dt r

 (39.15)

Using Equation 39.11, we have

dx9 5 g(dx 2 v dt)

dt r 5 gadt 2
v
c 2 dxb
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Substituting these values into Equation 39.15 gives

u rx 5
dx 2 v dt

dt 2
v
c 2 dx

5

dx
dt

2 v

1 2
v
c 2  

dx
dt

The term dx/dt, however, is simply the velocity component ux of the object mea-
sured by an observer in S, so this expression becomes

 u rx 5
ux 2 v

1 2
uxv

c 2

 (39.16)

 If the object has velocity components along the y and z axes, the components as 
measured by an observer in S9 are

 u ry 5
uy

ga1 2
uxv

c 2 b
 and u rz 5

uz

g a1 2
uxv

c 2 b
 (39.17)

 Notice that u9y and u9z do not contain the parameter v in the numerator because 
the relative velocity is along the x axis.
 When v is much smaller than c (the nonrelativistic case), the denominator of 
Equation 39.16 approaches unity and so u9x < ux 2 v, which is the Galilean veloc-
ity transformation equation. In another extreme, when ux 5 c, Equation 39.16 
becomes

u rx 5
c 2 v

1 2
cv
c 2

5

c a1 2
v
c b

1 2
v
c

5 c

This result shows that a speed measured as c by an observer in S is also measured 
as c by an observer in S9, independent of the relative motion of S and S9. This con-
clusion is consistent with Einstein’s second postulate: the speed of light must be c 
relative to all inertial reference frames. Furthermore, we find that the speed of an 
object can never be measured as larger than c. That is, the speed of light is the ulti-
mate speed. We shall return to this point later.
 To obtain ux in terms of u9x, we replace v by 2v in Equation 39.16 and interchange 
the roles of ux and u9x:

 ux 5
u rx 1 v

1 1
u rx v

c 2

 (39.18)

Quick Quiz 39.8  You are driving on a freeway at a relativistic speed. 
(i) Straight ahead of you, a technician standing on the ground turns on a 
searchlight and a beam of light moves exactly vertically upward as seen by the 
technician. As you observe the beam of light, do you measure the magnitude 
of the vertical component of its velocity as (a) equal to c, (b) greater than c, 
or (c) less than c? (ii) If the technician aims the searchlight directly at you 
instead of upward, do you measure the magnitude of the horizontal compo-
nent of its velocity as (a) equal to c, (b) greater than c, or (c) less than c?

 Lorentz velocity  
transformation for S S S9

Pitfall Prevention 39.5
What Can the Observers Agree On?
We have seen several measurements 
that the two observers O and O9 do 
not agree on: (1) the time interval 
between events that take place in the 
same position in one of their frames, 
(2) the distance between two points 
that remain fixed in one of their 
frames, (3) the velocity components 
of a moving particle, and (4) whether 
two events occurring at different 
locations in both frames are simul-
taneous or not. The two observers 
can agree on (1) their relative speed 
of motion v with respect to each 
other, (2) the speed c of any ray of 
light, and (3) the simultaneity of two 
events that take place at the same 
position and time in some frame.
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Example 39.6 Relative Velocity of Two Spacecraft

Two spacecraft A and B are moving in opposite directions as 
shown in Figure 39.14. An observer on the Earth measures the 
speed of spacecraft A to be 0.750c and the speed of spacecraft B 
to be 0.850c. Find the velocity of spacecraft B as observed by the 
crew on spacecraft A.

SOLUTION

Conceptualize  There are two observers, one (O) on the Earth and 
one (O9) on spacecraft A. The event is the motion of spacecraft B.

Categorize  Because the problem asks to find an observed veloc-
ity, we categorize this example as one requiring the Lorentz 
velocity transformation.

Analyze  The Earth-based observer at rest in the S frame makes two measurements, one of each spacecraft. We want 
to find the velocity of spacecraft B as measured by the crew on spacecraft A. Therefore, ux 5 20.850c. The velocity of 
spacecraft A is also the velocity of the observer at rest in spacecraft A (the S9 frame) relative to the observer at rest on the 
Earth. Therefore, v 5 0.750c.

S� (attached to A)y �

0.750c �0.850c

BA
x�

O�

S (attached
to the Earth)

y

x
O

Figure 39.14  (Example 39.6) Two spacecraft A and B 
move in opposite directions. The speed of spacecraft 
B relative to spacecraft A is less than c and is obtained 
from the relativistic velocity transformation equation.

Obtain the velocity u9x of spacecraft B relative to space-
craft A using Equation 39.16:

u rx 5
ux 2 v

1 2
uxv

c 2

5
20.850c 2 0.750c

1 2
120.850c 2 10.750c 2

c 2

5 20.977c

Finalize  The negative sign indicates that spacecraft B is moving in the negative x direction as observed by the crew on 
spacecraft A. Is that consistent with your expectation from Figure 39.14? Notice that the speed is less than c. That is, an 
object whose speed is less than c in one frame of reference must have a speed less than c in any other frame. (Had you 
used the Galilean velocity transformation equation in this example, you would have found that u9x 5 ux 2 v 5 20.850c 2 
0.750c 5 21.60c, which is impossible. The Galilean transformation equation does not work in relativistic situations.)

WHAT IF?  What if the two spacecraft pass each other? What is their relative speed now?

Answer  The calculation using Equation 39.16 involves only the velocities of the two spacecraft and does not depend on 
their locations. After they pass each other, they have the same velocities, so the velocity of spacecraft B as observed by 
the crew on spacecraft A is the same, 20.977c. The only difference after they pass is that spacecraft B is receding from 
spacecraft A, whereas it was approaching spacecraft A before it passed.

Example 39.7 Relativistic Leaders of the Pack

Two motorcycle pack leaders named David and 
Emily are racing at relativistic speeds along per-
pendicular paths as shown in Figure 39.15. How 
fast does Emily recede as seen by David over his 
right shoulder?

SOLUTION

Conceptualize  The two observers are David and 
the police officer in Figure 39.15. The event is the 
motion of Emily. Figure 39.15 represents the situ-
ation as seen by the police officer at rest in frame 
S. Frame S9 moves along with David.

Categorize  Because the problem asks to find an 
observed velocity, we categorize this problem as 
one requiring the Lorentz velocity transforma-
tion. The motion takes place in two dimensions.

Emily
0.75c

x

y

David

Police officer
at rest in S

�0.90c

Figure 39.15  (Example 
39.7) David moves east with 
a speed 0.75c relative to the 
police officer, and Emily 
travels south at a speed 0.90c 
relative to the officer.
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39.7 cont.

39.7 Relativistic Linear Momentum
To describe the motion of particles within the framework of the special theory 
of relativity properly, you must replace the Galilean transformation equations by 
the Lorentz transformation equations. Because the laws of physics must remain 
unchanged under the Lorentz transformation, we must generalize Newton’s laws 
and the definitions of linear momentum and energy to conform to the Lorentz 
transformation equations and the principle of relativity. These generalized defini-
tions should reduce to the classical (nonrelativistic) definitions for v ,, c.
 First, recall from the isolated system model that when two particles (or objects 
that can be modeled as particles) collide, the total momentum of the isolated sys-
tem of the two particles remains constant. Suppose we observe this collision in a 
reference frame S and confirm that the momentum of the system is conserved. 
Now imagine that the momenta of the particles are measured by an observer in a 
second reference frame S9 moving with velocity vS relative to the first frame. Using 
the Lorentz velocity transformation equation and the classical definition of lin-
ear momentum, pS 5 muS (where uS is the velocity of a particle), we find that linear 
momentum is not measured to be conserved by the observer in S9. Because the laws 
of physics are the same in all inertial frames, however, linear momentum of the 
system must be conserved in all frames. We have a contradiction. In view of this 
contradiction and assuming the Lorentz velocity transformation equation is cor-
rect, we must modify the definition of linear momentum so that the momentum of 
an isolated system is conserved for all observers. For any particle, the correct relativ-
istic equation for linear momentum that satisfies this condition is

 pS ;
muS

Å1 2
u2

c 2

5 gmuS  (39.19)

where m is the mass of the particle and uS is the velocity of the particle. When u 
is much less than c, g 5 (1 2 u2/c 2)21/2 approaches unity and pS approaches muS. 
Therefore, the relativistic equation for pS reduces to the classical expression when u 
is much smaller than c, as it should.

 Definition of relativistic linear  
momentum

Using the Pythagorean theorem, find the speed of 
Emily as measured by David:

u r 5 "1u rx 22 1 1u ry 22 5 "120.75c 22 1 120.60c 22 5 0.96c

Using Equations 39.16 and 39.17, calculate u9x and u9y 
for Emily as measured by David:

u rx 5
ux 2 v

1 2
uxv

c 2

5
0 2 0.75c

1 2
10 2 10.75c 2

c 2

5 20.75c

u ry 5
uy

ga1 2
uxv

c 2 b
5
Å1 2

10.75c 22
c 2  120.90c 2

1 2
10 2 10.75c 2

c 2

5 20.60c

Analyze  Identify the velocity components for David 
and Emily according to the police officer:

David: vx 5 v 5 0.75c    vy 5 0

Emily: ux 5 0    uy 5 20.90c

Finalize  This speed is less than c, as required by the special theory of relativity.

Pitfall Prevention 39.6
Watch Out for “Relativistic Mass”
Some older treatments of relativ-
ity maintained the conservation 
of momentum principle at high 
speeds by using a model in which a 
particle’s mass increases with speed. 
You might still encounter this notion 
of “relativistic mass” in your outside 
reading, especially in older books. 
Be aware that this notion is no lon-
ger widely accepted; today, mass is 
considered as invariant, independent 
of speed. The mass of an object in all 
frames is considered to be the mass 
as measured by an observer at rest 
with respect to the object.
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 The relativistic force F
S

 acting on a particle whose linear momentum is pS is 
defined as

 F
S
;

dpS

dt
 (39.20)

where pS is given by Equation 39.19. This expression, which is the relativistic form of 
Newton’s second law, is reasonable because it preserves classical mechanics in the 
limit of low velocities and is consistent with conservation of linear momentum for 
an isolated system (F

S
ext 5 0) both relativistically and classically.

 It is left as an end-of-chapter problem (Problem 74) to show that under rela-
tivistic conditions, the acceleration aS of a particle decreases under the action of 
a constant force, in which case a ~ 11 2 u2/c 2 23/2. This proportionality shows that 
as the particle’s speed approaches c, the acceleration caused by any finite force 
approaches zero. Hence, it is impossible to accelerate a particle from rest to a speed 
u $ c. This argument reinforces that the speed of light is the ultimate speed, the 
speed limit of the Universe. It is the maximum possible speed for energy transfer 
and for information transfer. Any object with mass must move at a lower speed.

Example 39.8 Linear Momentum of an Electron

An electron, which has a mass of 9.11 3 10231 kg, moves with a speed of 0.750c. Find the magnitude of its relativistic 
momentum and compare this value with the momentum calculated from the classical expression.

SOLUTION

Conceptualize  Imagine an electron moving with high speed. The electron carries momentum, but the magnitude of its 
momentum is not given by p 5 mu because the speed is relativistic.

Categorize  We categorize this example as a substitution problem involving a relativistic equation.

Use Equation 39.19 with u 5 0.750c to find the 
momentum:

p 5
meu

Å1 2
u2

c 2

p 5
19.11 3 10231 kg 2 10.750 2 13.00 3 108 m/s 2

Å1 2
10.750c 22

c 2

5 3.10 3 10222 kg ? m/s

The classical expression (used incorrectly here) gives pclassical 5 meu 5 2.05 3 10222 kg ? m/s. Hence, the correct relativis-
tic result is 50% greater than the classical result!

39.8 Relativistic Energy
We have seen that the definition of linear momentum requires generalization to 
make it compatible with Einstein’s postulates. This conclusion implies that the defi-
nition of kinetic energy must most likely be modified also.
 To derive the relativistic form of the work–kinetic energy theorem, imagine a 
particle moving in one dimension along the x axis. A force in the x direction causes 
the momentum of the particle to change according to Equation 39.20. In what fol-
lows, we assume the particle is accelerated from rest to some final speed u. The 
work done by the force F on the particle is

 W 5 3
x2

x1

 F dx 5 3
x2

x1

dp

dt
 dx  (39.21)
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To perform this integration and find the work done on the particle and the relativ-
istic kinetic energy as a function of u, we first evaluate dp/dt:

dp

dt
5

d
dt

 
mu

Å1 2
u2

c 2

5
m

a1 2
u2

c 2b
3/2 

du
dt

Substituting this expression for dp/dt and dx 5 u dt into Equation 39.21 gives

W 5 3
t

0
 

m

a1 2
u2

c 2 b
3/2  

du
dt
1u dt 2 5 m 3

u

0
 

u

a1 2
u2

c 2 b
3/2 du

where we use the limits 0 and u in the integral because the integration variable has 
been changed from t to u. Evaluating the integral gives

 W 5
mc 2

Å1 2
u2

c 2

2 mc 2  (39.22)

Recall from Chapter 7 that the work done by a force acting on a system consisting 
of a single particle equals the change in kinetic energy of the particle. Because we 
assumed the initial speed of the particle is zero, its initial kinetic energy is zero. 
Therefore, the work W in Equation 39.22 is equivalent to the relativistic kinetic 
energy K:

 K 5
mc 2

Å1 2
u2

c 2

2 mc 2 5 gmc 2 2 mc 2 5 1g 2 1 2mc 2  (39.23)

This equation is routinely confirmed by experiments using high-energy particle 
accelerators.
 At low speeds, where u/c ,, 1, Equation 39.23 should reduce to the classi-
cal expression K 5 1

2mu2. We can check that by using the binomial expansion 
11 2 b2 221/2 < 1 1 1

2 b2 1 c  for b ,, 1, where the higher-order powers of b are 
neglected in the expansion. (In treatments of relativity, b is a common symbol used 
to represent u/c or v/c.) In our case, b 5 u/c, so

g 5
1

Å1 2
u2

c 2

5 a1 2
u2

c 2b
21/2

< 1 1 1
2 

u2

c 2

Substituting this result into Equation 39.23 gives

K < c a1 1 1
2 

u2

c 2b 2 1 dmc 2 5 1
2mu2 1 for u/c ,, 1 2

which is the classical expression for kinetic energy. A graph comparing the relativ-
istic and nonrelativistic expressions is given in Figure 39.16. In the relativistic case, 
the particle speed never exceeds c, regardless of the kinetic energy. The two curves 
are in good agreement when u ,, c.
 The constant term mc 2 in Equation 39.23, which is independent of the speed of 
the particle, is called the rest energy ER of the particle:

 ER 5 mc 2 (39.24)

Equation 39.24 shows that mass is a form of energy, where c 2 is simply a constant 
conversion factor. This expression also shows that a small mass corresponds to an 
enormous amount of energy, a concept fundamental to nuclear and elementary-
particle physics.

Relativistic kinetic energy 

The relativistic 
calculation, 
using 
Equation 
39.23, shows 
correctly that 
u is always less 
than c.

K/mc 

2

0.5c 1.0c 1.5c 2.0c

0.5

0

1.0

1.5

2.0

u

The 
nonrelativistic 
calculation,
using K �   mu2, 
predicts a
parabolic curve 
and the speed
u grows without 
limit.

2
1

Figure 39.16  A graph comparing 
relativistic and nonrelativistic kinetic 
energy of a moving particle. The 
energies are plotted as a function of 
particle speed u.
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 The term gmc 2 in Equation 39.23, which depends on the particle speed, is the 
sum of the kinetic and rest energies. It is called the total energy E:

Total energy 5 kinetic energy 1 rest energy

 E 5 K 1 mc 2 (39.25)

or

 E 5
mc 2

Å1 2
u2

c 2

5 gmc 2  (39.26)

 In many situations, the linear momentum or energy of a particle rather than its 
speed is measured. It is therefore useful to have an expression relating the total 
energy E to the relativistic linear momentum p, which is accomplished by using the 
expressions E 5 gmc 2 and p 5 gmu. By squaring these equations and subtracting, 
we can eliminate u (Problem 44). The result, after some algebra, is6

 E 2 5 p2c 2 1 (mc 2)2 (39.27)

When the particle is at rest, p 5 0, so E 5 ER 5 mc 2.
 In Section 35.1, we introduced the concept of a particle of light, called a photon. 
For particles that have zero mass, such as photons, we set m 5 0 in Equation 39.27 
and find that

 E 5 pc (39.28)

This equation is an exact expression relating total energy and linear momentum 
for photons, which always travel at the speed of light (in vacuum).
 Finally, because the mass m of a particle is independent of its motion, m must 
have the same value in all reference frames. For this reason, m is often called the 
invariant mass. On the other hand, because the total energy and linear momen-
tum of a particle both depend on velocity, these quantities depend on the reference 
frame in which they are measured.
 When dealing with subatomic particles, it is convenient to express their energy 
in electron volts (Section 25.1) because the particles are usually given this energy 
by acceleration through a potential difference. The conversion factor, as you recall 
from Equation 25.5, is

1 eV 5 1.602 3 10219 J

For example, the mass of an electron is 9.109 3 10231 kg. Hence, the rest energy of 
the electron is

mec 2 5 (9.109 3 10231 kg)(2.998 3 108 m/s)2 5 8.187 3 10214 J

5 (8.187 3 10214 J)(1 eV/1.602 3 10219 J) 5 0.511 MeV

Quick Quiz 39.9  The following pairs of energies—particle 1: E, 2E; particle 
2:E, 3E; particle 3: 2E, 4E—represent the rest energy and total energy of 
three different particles. Rank the particles from greatest to least according 
to their (a) mass, (b) kinetic energy, and (c) speed.

Total energy of a relativistic 
 particle

Energy–momentum  
relationship for 

a relativistic particle

6One way to remember this relationship is to draw a right triangle having a hypotenuse of length E and legs of 
lengths pc and mc 2.
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Example 39.9 The Energy of a Speedy Proton

(A)  Find the rest energy of a proton in units of electron volts.

SOLUTION

Conceptualize  Even if the proton is not moving, it has energy associated with its mass. If it moves, the proton possesses 
more energy, with the total energy being the sum of its rest energy and its kinetic energy.

Categorize  The phrase “rest energy” suggests we must take a relativistic rather than a classical approach to this 
problem.

Analyze  Use Equation 39.24 to find the rest energy: ER 5 mpc 2 5 (1.673 3 10227 kg)(2.998 3 108 m/s)2

5 11.504 3 10210 J 2 a 1.00 eV
1.602 3 10219 J

b 5 938 MeV

(B)  If the total energy of a proton is three times its rest energy, what is the speed of the proton?

SOLUTION

Use Equation 39.26 to relate the total energy of the pro-
ton to the rest energy:

E 5 3mpc
2 5

mpc
2

Å1 2
u2

c 2

  S   3 5
1

Å1 2
u2

c 2

(C)  Determine the kinetic energy of the proton in units of electron volts.

SOLUTION

Use Equation 39.25 to find the kinetic energy of the 
proton:

K 5 E 2 mpc 2 5 3mpc 2 2 mpc 2 5 2mpc 2

5 2(938 MeV) 5 1.88 3 103 MeV

(D)  What is the proton’s momentum?

SOLUTION

Use Equation 39.27 to calculate the momentum: E 2 5 p2c 2 1 (mpc 2)2 5 (3mpc 2)2

p2c 2 5 9(mpc 2)2 2 (mpc 2)2 5 8(mpc2)2

p 5 "8 
mpc

2

c
5 "8 

938 MeV
c

5 2.65 3 103 MeV/c

Finalize  The unit of momentum in part (D) is written MeV/c, which is a common unit in particle physics. For compari-
son, you might want to solve this example using classical equations.

WHAT IF? In classical physics, if the momentum of a particle doubles, the kinetic energy increases by a factor of 4. 
What happens to the kinetic energy of the proton in this example if its momentum doubles?

Answer  Based on what we have seen so far in relativity, it is likely you would predict that its kinetic energy does not 
increase by a factor of 4.

Solve for u: 1 2
u2

c 2 5 1
9  S   

u2

c 2 5 8
9

u 5
"8
3

 c 5 0.943c 5 2.83 3 108 m/s

continued

Find the new doubled momentum: pnew 5 2a"8 
mpc

2

c
b 5 4"2 

mpc
2

c
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39.9 Mass and Energy
Equation 39.26, E 5 gmc 2, represents the total energy of a particle. This important 
equation suggests that even when a particle is at rest (g 5 1), it still possesses enor-
mous energy through its mass. The clearest experimental proof of the equivalence 
of mass and energy occurs in nuclear and elementary-particle interactions in which 
the conversion of mass into kinetic energy takes place. Consequently, we cannot use 
the principle of conservation of energy in relativistic situations as it was outlined in 
Chapter 8. We must modify the principle by including rest energy as another form 
of energy storage.
 This concept is important in atomic and nuclear processes, in which the change 
in mass is a relatively large fraction of the initial mass. In a conventional nuclear 
reactor, for example, the uranium nucleus undergoes fission, a reaction that results 
in several lighter fragments having considerable kinetic energy. In the case of 235U, 
which is used as fuel in nuclear power plants, the fragments are two lighter nuclei 
and a few neutrons. The total mass of the fragments is less than that of the 235U 
by an amount Dm. The corresponding energy Dmc 2 associated with this mass dif-
ference is exactly equal to the sum of the kinetic energies of the fragments. The 
kinetic energy is absorbed as the fragments move through water, raising the inter-
nal energy of the water. This internal energy is used to produce steam for the gen-
eration of electricity.
 Next, consider a basic fusion reaction in which two deuterium atoms combine to 
form one helium atom. The decrease in mass that results from the creation of one 
helium atom from two deuterium atoms is Dm 5 4.25 3 10229 kg. Hence, the cor-
responding energy that results from one fusion reaction is Dmc 2 5 3.83 3 10212 J 5 
23.9 MeV. To appreciate the magnitude of this result, consider that if only 1 g of 
deuterium were converted to helium, the energy released would be on the order of 
1012 J! In 2010’s cost of electrical energy, this energy would be worth approximately 
$30 000. We shall present more details of these nuclear processes in Chapter 45 of 
the extended version of this textbook.

39.9 cont.

Use Equation 39.25 to find the new kinetic energy: Knew 5 Enew 2 mpc 2 5 5.7mpc 2 2 mpc 2 5 4.7mpc 2

Use this result in Equation 39.27 to find the new total 
energy:

E 2
new 5 p2

newc 2 1 (mpc 2)2

E 2
new 5 a4"2 

mpc
2

c
b

2

c 2 1 1mpc
2 22 5 33 1mpc

2 22

Enew 5 "33mpc
2 5 5.7mpc

2

This value is a little more than twice the kinetic energy found in part (C), not four times. In general, the factor by which 
the kinetic energy increases if the momentum doubles depends on the initial momentum, but it approaches 4 as the 
momentum approaches zero. In this latter situation, classical physics correctly describes the situation.

Example 39.10 Mass Change in a Radioactive Decay

The 216Po nucleus is unstable and exhibits radioactivity (Chapter 44). It decays to 212Pb by emitting an alpha particle, 
which is a helium nucleus, 4He. The relevant masses are mi 5 m(216Po) 5 216.001 915 u and mf 5 m(212Pb) 1 m(4He) 5 
211.991 898 u 1 4.002 603 u.

(A)  Find the mass change of the system in this decay.
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39.10 cont.

SOLUTION

Conceptualize  The initial system is the 216Po nucleus. Imagine the mass of the system decreasing during the decay and 
transforming to kinetic energy of the alpha particle and the 212Pb nucleus after the decay.

Categorize  We use concepts discussed in this section, so we categorize this example as a substitution problem.

Calculate the mass change: Dm 5 216.001 915 u 2 (211.991 898 u 1 4.002 603 u)

5 0.007 414 u 5 1.23 3 10229 kg

Use Equation 39.24 to find the energy associated with 
this mass change:

E 5 Dmc 2 5 (1.23 3 10229 kg)(3.00 3 108 m/s)2

5 1.11 3 10212 J 5 6.92 MeV

(B)  Find the energy this mass change represents.

SOLUTION

39.10 The General Theory of Relativity
Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: a gravitational attraction for other masses and an inertial property 
that represents a resistance to acceleration. To designate these two attributes, we 
use the subscripts g and i and write

 Gravitational property:  Fg 5 mgg

 Inertial property: o F 5 mia

The value for the gravitational constant G was chosen to make the magnitudes of 
mg and mi numerically equal. Regardless of how G is chosen, however, the strict pro-
portionality of mg and mi has been established experimentally to an extremely high 
degree: a few parts in 1012. Therefore, it appears that gravitational mass and inertial 
mass may indeed be exactly proportional.
 Why, though? They seem to involve two entirely different concepts: a force of 
mutual gravitational attraction between two masses and the resistance of a single 
mass to being accelerated. This question, which puzzled Newton and many other 
physicists over the years, was answered by Einstein in 1916 when he published his 
theory of gravitation, known as the general theory of relativity. Because it is a math-
ematically complex theory, we offer merely a hint of its elegance and insight.
 In Einstein’s view, the dual behavior of mass was evidence for a very intimate and 
basic connection between the two behaviors. He pointed out that no mechanical 
experiment (such as dropping an object) could distinguish between the two situa-
tions illustrated in Figures 39.17a and 39.17b (page 1174). In Figure 39.17a, a person 
standing in an elevator on the surface of a planet feels pressed into the floor due 
to the gravitational force. If he releases his briefcase, he observes it moving toward 
the floor with acceleration gS 5 2g j^. In Figure 39.17b, the person is in an elevator 
in empty space accelerating upward with aSel 5 1g j^. The person feels pressed into 
the floor with the same force as in Figure 39.17a. If he releases his briefcase, he 
observes it moving toward the floor with acceleration g, exactly as in the previous 
situation. In each situation, an object released by the observer undergoes a down-
ward acceleration of magnitude g relative to the floor. In Figure 39.17a, the person 
is at rest in an inertial frame in a gravitational field due to the planet. In Figure 
39.17b, the person is in a noninertial frame accelerating in gravity-free space. Ein-
stein’s claim is that these two situations are completely equivalent.
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 Einstein carried this idea further and proposed that no experiment, mechani-
cal or otherwise, could distinguish between the two situations. This extension to 
include all phenomena (not just mechanical ones) has interesting consequences. 
For example, suppose a light pulse is sent horizontally across the elevator as in Fig-
ure 39.17c, in which the elevator is accelerating upward in empty space. From the 
point of view of an observer in an inertial frame outside the elevator, the light trav-
els in a straight line while the floor of the elevator accelerates upward. According to 
the observer on the elevator, however, the trajectory of the light pulse bends down-
ward as the floor of the elevator (and the observer) accelerates upward. Therefore, 
based on the equality of parts (a) and (b) of the figure, Einstein proposed that a 
beam of light should also be bent downward by a gravitational field as in Figure 
39.17d. Experiments have verified the effect, although the bending is small. A laser 
aimed at the horizon falls less than 1 cm after traveling 6 000 km. (No such bend-
ing is predicted in Newton’s theory of gravitation.)
 Einstein’s general theory of relativity has two postulates:

• All the laws of nature have the same form for observers in any frame of refer-
ence, whether accelerated or not.

• In the vicinity of any point, a gravitational field is equivalent to an accelerated 
frame of reference in gravity-free space (the principle of equivalence).

 One interesting effect predicted by the general theory is that time is altered by 
gravity. A clock in the presence of gravity runs slower than one located where grav-
ity is negligible. Consequently, the frequencies of radiation emitted by atoms in the 
presence of a strong gravitational field are redshifted to lower frequencies when com-
pared with the same emissions in the presence of a weak field. This gravitational 
redshift has been detected in spectral lines emitted by atoms in massive stars. It has 
also been verified on the Earth by comparing the frequencies of gamma rays emit-
ted from nuclei separated vertically by about 20 m.
 The second postulate suggests a gravitational field may be “transformed away” 
at any point if we choose an appropriate accelerated frame of reference, a freely 
falling one. Einstein developed an ingenious method of describing the accelera-

a b

vel � 0 S

ael � 0 S
vel � 0 S

ael � 0 S

ael � �gˆ  S
j

g � �g jS

The observer in the 
nonaccelerating elevator 
drops his briefcase, 
which he observes to 
move downward with 
acceleration g.

The observer in the 
accelerating elevator drops 
his briefcase, which he 
observes to move downward 
with acceleration g.

dc

ael � �gˆ   S
j

In an accelerating 
elevator, the observer 
sees a light beam bend 
downward.

Because of the equivalence 
in  a  and  b  ,  we expect a 
light ray to bend downward 
in a gravitational field.     

a b

ˆ g � �g jS ˆ

Figure 39.17  (a) The observer is at rest in an elevator in a uniform gravitational field gS 5 2g j^, 
directed downward. (b) The observer is in a region where gravity is negligible, but the elevator moves 
upward with an acceleration aSel 5 1g j^. According to Einstein, the frames of reference in (a) and 
(b) are equivalent in every way. No local experiment can distinguish any difference between the two 
frames. (c) An observer watches a beam of light in an accelerating elevator. (d) Einstein’s prediction 
of the behavior of a beam of light in a gravitational field.
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tion necessary to make the gravitational field “disappear.” He specified a concept, 
the curvature of space–time, that describes the gravitational effect at every point. In 
fact, the curvature of space–time completely replaces Newton’s gravitational the-
ory. According to Einstein, there is no such thing as a gravitational force. Rather, 
the presence of a mass causes a curvature of space–time in the vicinity of the mass, 
and this curvature dictates the space–time path that all freely moving objects must 
follow.
 As an example of the effects of curved space–time, imagine two travelers mov-
ing on parallel paths a few meters apart on the surface of the Earth and maintain-
ing an exact northward heading along two longitude lines. As they observe each 
other near the equator, they will claim that their paths are exactly parallel. As they 
approach the North Pole, however, they notice that they are moving closer together 
and will meet at the North Pole. Therefore, they claim that they moved along paral-
lel paths, but moved toward each other, as if there were an attractive force between them.
The travelers make this conclusion based on their everyday experience of moving 
on flat surfaces. From our mental representation, however, we realize they are walk-
ing on a curved surface, and it is the geometry of the curved surface, rather than 
an attractive force, that causes them to converge. In a similar way, general rela-
tivity replaces the notion of forces with the movement of objects through curved 
space–time.
 One prediction of the general theory of relativity is that a light ray passing near 
the Sun should be deflected in the curved space–time created by the Sun’s mass. 
This prediction was confirmed when astronomers detected the bending of starlight 
near the Sun during a total solar eclipse that occurred shortly after World War I 
(Fig. 39.18). When this discovery was announced, Einstein became an international 
celebrity.
 If the concentration of mass becomes very great as is believed to occur when 
a large star exhausts its nuclear fuel and collapses to a very small volume, a black 
hole may form as discussed in Chapter 13. Here, the curvature of space–time is so 
extreme that within a certain distance from the center of the black hole all matter 
and light become trapped as discussed in Section 13.6.

Einstein’s cross. The four outer 
bright spots are images of the same 
galaxy that have been bent around a 
massive object located between the 
galaxy and the Earth. The massive 
object acts like a lens, causing the 
rays of light that were diverging from 
the distant galaxy to converge on the 
Earth. (If the intervening massive 
object had a uniform mass distri-
bution, we would see a bright ring 
instead of four spots.)
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In his general 
theory of 
relativity, Einstein 
calculated that 
starlight just 
grazing the Sun’s 
surface should be 
deflected by an 
angle of 1.75 s of 
arc.

1.75"

Sun

Light from star
(actual
direction)

Apparent
direction to star

Deflected path of 
light from star

Earth

Figure 39.18  Deflection of starlight 
passing near the Sun. Because of this 
effect, the Sun or some other remote 
object can act as a gravitational lens.

Summary
Definitions

continued

The relativistic expression for the linear momentum of 
a particle moving with a velocity uS is

 pS ;
muS

Å1 2
u2

c 2

5 gm uS  (39.19)

The relativistic force F
S

 acting on a particle whose linear 
momentum is pS is defined as

 F
S
;

d pS

dt
 (39.20)
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 2. You measure the volume of a cube at rest to be V0. You then 
measure the volume of the same cube as it passes you in a 
direction parallel to one side of the cube. The speed of the 
cube is 0.980c, so g < 5. Is the volume you measure close to 
(a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or (e) 25V0?

 3. As a car heads down a highway traveling at a speed v away 
from a ground observer, which of the following statements 
are true about the measured speed of the light beam from 
the car’s headlights? More than one statement may be cor-

 1. Which of the following statements are fundamental postu-
lates of the special theory of relativity? More than one state-
ment may be correct. (a) Light moves through a substance 
called the ether. (b) The speed of light depends on the 
inertial reference frame in which it is measured. (c) The 
laws of physics depend on the inertial reference frame in 
which they are used. (d) The laws of physics are the same 
in all inertial reference frames. (e) The speed of light is 
independent of the inertial reference frame in which it is 
measured.

Concepts and Principles

The two basic postulates of the special 
theory of relativity are as follows:

• The laws of physics must be the same 
in all inertial reference frames.

• The speed of light in vacuum has the 
same value, c 5 3.00 3 108 m/s, in 
all inertial frames, regardless of the 
velocity of the observer or the velocity 
of the source emitting the light.

Three consequences of the special theory of relativity are as follows:

• Events that are measured to be simultaneous for one observer 
are not necessarily measured to be simultaneous for another 
observer who is in motion relative to the first.

• Clocks in motion relative to an observer are measured to run 
slower by a factor g 5 (1 2 v 2/c 2)21/2. This phenomenon is 
known as time dilation.

• The lengths of objects in motion are measured to be contracted 
in the direction of motion by a factor 1/g 5 (1 2 v 2/c 2)1/2. This 
phenomenon is known as length contraction.

To satisfy the postulates of special relativity, the Galilean 
transformation equations must be replaced by the Lorentz 
transformation equations:

x r 5 g 1x 2 vt 2  y r 5 y z r 5 z t r 5 gat 2
v
c 2 xb  (39.11)

where g 5 (1 2 v 2/c 2)21/2 and the S9 frame moves in the x 
direction at speed v relative to the S frame.

The relativistic form of the Lorentz velocity trans-
formation equation is

 u rx 5
ux 2 v

1 2
uxv

c 2

 (39.16)

where u9x is the x component of the velocity of an 
object as measured in the S9 frame and ux is its com-
ponent as measured in the S frame.

The relativistic expression for the kinetic energy of a particle is

K 5
mc 2

Å1 2
u2

c 2

2 mc 2 5 1g 2 1 2mc 2  (39.23)

The constant term mc 2 in Equation 39.23 is 
called the rest energy ER of the particle:

 ER 5 mc 2 (39.24)

The total energy E of a particle is given by

E 5
mc 2

Å1 2
u2

c 2

5 gmc 2  (39.26)

The relativistic linear momentum of a particle is related 
to its total energy through the equation

 E 2 5 p2c 2 1 (mc 2)2 (39.27)

Objective Questions denotes answer available in Student 
Solutions Manual/Study Guide
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 7. Two identical clocks are set side by side and synchronized. 
One remains on the Earth. The other is put into orbit 
around the Earth moving rapidly toward the east. (i) As 
measured by an observer on the Earth, does the orbiting 
clock (a) run faster than the Earth-based clock, (b) run at 
the same rate, or (c) run slower? (ii) The orbiting clock is 
returned to its original location and brought to rest relative 
to the Earth-based clock. Thereafter, what happens? (a) Its 
reading lags farther and farther behind the Earth-based 
clock. (b) It lags behind the Earth-based clock by a con-
stant amount. (c) It is synchronous with the Earth-based 
clock. (d) It is ahead of the Earth-based clock by a constant 
amount. (e) It gets farther and farther ahead of the Earth-
based clock.

 8. The following three particles all have the same total energy 
E: (a) a photon, (b) a proton, and (c) an electron. Rank 
the magnitudes of the particles’ momenta from greatest to 
smallest.

 9. (i) Does the speed of an electron have an upper limit? 
(a) yes, the speed of light c (b) yes, with another value 
(c) no (ii) Does the magnitude of an electron’s momen-
tum have an upper limit? (a) yes, mec (b) yes, with another 
value (c) no (iii) Does the electron’s kinetic energy have an 
upper limit? (a) yes, mec2 (b) yes, 12mec

2 (c) yes, with another 
value (d) no

 10. A distant astronomical object (a quasar) is moving away 
from us at half the speed of light. What is the speed of the 
light we receive from this quasar? (a) greater than c (b) c 
(c) between c/2 and c (d) c/2 (e) between 0 and c/2

rect. (a) The ground observer measures the light speed to 
be c 1 v. (b) The driver measures the light speed to be c. 
(c) The ground observer measures the light speed to be c. 
(d) The driver measures the light speed to be c 2 v. (e) The 
ground observer measures the light speed to be c 2 v.

 4. A spacecraft built in the shape of a sphere moves past an 
observer on the Earth with a speed of 0.500c. What shape 
does the observer measure for the spacecraft as it goes by? 
(a) a sphere (b) a cigar shape, elongated along the direc-
tion of motion (c) a round pillow shape, flattened along 
the direction of motion (d) a conical shape, pointing in the 
direction of motion

 5. An astronaut is traveling in a spacecraft in outer space in 
a straight line at a constant speed of 0.500c. Which of the 
following effects would she experience? (a) She would feel 
heavier. (b) She would find it harder to breathe. (c) Her 
heart rate would change. (d) Some of the dimensions of 
her spacecraft would be shorter. (e) None of those answers 
is correct.

 6. A spacecraft zooms past the Earth with a constant veloc-
ity. An observer on the Earth measures that an undamaged 
clock on the spacecraft is ticking at one-third the rate of 
an identical clock on the Earth. What does an observer on 
the spacecraft measure about the Earth-based clock’s tick-
ing rate? (a) It runs more than three times faster than his 
own clock. (b) It runs three times faster than his own. (c) It 
runs at the same rate as his own. (d) It runs at one-third 
the rate of his own. (e) It runs at less than one-third the 
rate of his own.

Conceptual Questions denotes answer available in Student 
Solutions Manual/Study Guide

 1. The speed of light in water is 230 Mm/s. Suppose an elec-
tron is moving through water at 250 Mm/s. Does that vio-
late the principle of relativity? Explain.

 2. Explain why, when defining the length of a rod, it is neces-
sary to specify that the positions of the ends of the rod are 
to be measured simultaneously.

 3. A train is approaching you at very high speed as you stand 
next to the tracks. Just as an observer on the train passes 
you, you both begin to play the same recorded version of a 
Beethoven symphony on identical MP3 players. (a) Accord-
ing to you, whose MP3 player finishes the symphony first? 
(b) What If? According to the observer on the train, whose 
MP3 player finishes the symphony first? (c) Whose MP3 
player actually finishes the symphony first?

 4. List three ways our day-to-day lives would change if the 
speed of light were only 50 m/s.

 5. How is acceleration indicated on a space–time graph?

 6. Explain how the Doppler effect with microwaves is used to 
determine the speed of an automobile.

 7. In several cases, a nearby star has been found to have a 
large planet orbiting about it, although light from the 
planet could not be seen separately from the starlight. 
Using the ideas of a system rotating about its center of mass 

and of the Doppler shift for light, explain how an astrono-
mer could determine the presence of the invisible planet.

 8. A particle is moving at a speed less than c/2. If the speed of 
the particle is doubled, what happens to its momentum?

 9. Give a physical argument that shows it is impossible to 
accelerate an object of mass m to the speed of light, even 
with a continuous force acting on it.

 10. (a) “Newtonian mechanics correctly describes objects 
moving at ordinary speeds, and relativistic mechanics cor-
rectly describes objects moving very fast.” (b) “Relativistic 
mechanics must make a smooth transition as it reduces to 
Newtonian mechanics in a case in which the speed of an 
object becomes small compared with the speed of light.” 
Argue for or against statements (a) and (b).

 11. It is said that Einstein, in his teenage years, asked the ques-
tion, “What would I see in a mirror if I carried it in my 
hands and ran at a speed near that of light?” How would 
you answer this question?

 12. (i) An object is placed at a position p . f from a concave 
mirror as shown in Figure CQ39.12a (page 1178), where f is 
the focal length of the mirror. In a finite time interval, the 
object is moved to the right to a position at the focal point 
F of the mirror. Show that the image of the object moves at 
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tion as shown in Figure CQ39.12b. Show that the spot of 
light it produces on a distant screen can move across the 
screen at a speed greater than the speed of light. (If you 
carry out this experiment, make sure the direct laser light 
cannot enter a person’s eyes.) (iii) Argue that the experi-
ments in parts (i) and (ii) do not invalidate the principle 
that no material, no energy, and no information can move 
faster than light moves in a vacuum.

 13. With regard to reference frames, how does general relativ-
ity differ from special relativity?

 14. Two identical clocks are in the same house, one upstairs in 
a bedroom and the other downstairs in the kitchen. Which 
clock runs slower? Explain.

a speed greater than the speed of light. (ii) A laser pointer 
is suspended in a horizontal plane and set into rapid rota-

a

p

f

F

b

Figure CQ39.12

Problems

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

denotes Master It tutorial available in Enhanced WebAssign

denotes guided problem

denotes “paired problems” that develop reasoning with 
symbols and numerical values

 The problems found in this chapter may be assigned 
online in Enhanced WebAssign
1. denotes straightforward problem; 2. denotes intermediate problem; 
3. denotes challenging problem 
1.  full solution available in the Student Solutions Manual/Study Guide

1.  denotes problems most often assigned in Enhanced WebAssign; 
these provide students with targeted feedback and either a Master It 
tutorial or a Watch It solution video.

shaded

Section 39.1  The Principle of Galilean Relativity

Problems 35, 36, 38, 40 through 43, and 65 in Chapter 4 
can be assigned with this section.

 1. The truck in Figure P39.1 is moving at a speed of 10.0 m/s 
relative to the ground. The person on the truck throws a 
baseball in the backward direction at a speed of 20.0 m/s 
relative to the truck. What is the velocity of the baseball as 
measured by the observer on the ground?

 3. The speed of the Earth in its 
orbit is 29.8 km/s. If that is 
the magnitude of the veloc-
ity vS of the ether wind in Fig-
ure P39.3, find the angle f 
between the velocity of light 
cS in vacuum and the resul-
tant velocity of light if there 
were an ether.

 4. A car of mass 2 000 kg mov-
ing with a speed of 20.0 m/s 
collides and locks together 
with a 1 500-kg car at rest at a stop sign. Show that momen-
tum is conserved in a reference frame moving at 10.0 m/s 
in the direction of the moving car.

Section 39.2  The Michelson–Morley Experiment

Section 39.3  Einstein’s Principle of Relativity

Section 39.4  Consequences of the Special Theory of Relativity

Problem 66 in Chapter 4 can be assigned with this 
section.

 5. How fast must a meterstick be moving if its length is mea-
sured to shrink to 0.500 m?

 6.  A meterstick moving at 0.900c relative to the Earth’s 
surface approaches an observer at rest with respect to the 
Earth’s surface. (a) What is the meterstick’s length as mea-
sured by the observer? (b) Qualitatively, how would the 

vtruck

vS
S

Figure P39.1

 2. In a laboratory frame of reference, an observer notes that 
Newton’s second law is valid. Assume forces and masses are 
measured to be the same in any reference frame for speeds 
small compared with the speed of light. (a) Show that New-
ton’s second law is also valid for an observer moving at a 
constant speed, small compared with the speed of light, 
relative to the laboratory frame. (b) Show that Newton’s 
second law is not valid in a reference frame moving past the 
laboratory frame with a constant acceleration.

vS

cSMagnitude: c2 � v2 

f

Figure P39.3
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 17.  A spacecraft with a proper length of 300 m passes by an 
observer on the Earth. According to this observer, it takes 
0.750 ms for the spacecraft to pass a fixed point. Determine 
the speed of the spacecraft as measured by the Earth-based 
observer.

 18.  A spacecraft with a proper length of Lp passes by an 
observer on the Earth. According to this observer, it takes 
a time interval Dt for the spacecraft to pass a fixed point. 
Determine the speed of the object as measured by the 
Earth-based observer.

 19. An atomic clock moves at 1 000 km/h for 1.00 h as mea-
sured by an identical clock on the Earth. At the end of the 
1.00-h interval, how many nanoseconds slow will the mov-
ing clock be compared with the Earth-based clock?

 20. Review. An alien civilization occupies a planet circling 
a brown dwarf, several light-years away. The plane of the 
planet’s orbit is perpendicular to a line from the brown 
dwarf to the Sun, so the planet is at nearly a fixed position 
relative to the Sun. The extraterrestrials have come to love 
broadcasts of MacGyver, on television channel 2, at carrier 
frequency 57.0 MHz. Their line of sight to us is in the plane 
of the Earth’s orbit. Find the difference between the high-
est and lowest frequencies they receive due to the Earth’s 
orbital motion around the Sun.

 21. A light source recedes from an observer with a speed vS that 
is small compared with c. (a) Show that the fractional shift 
in the measured wavelength is given by the approximate 
expression

 
Dl

l
<

vS

c
  This phenomenon is known as the redshift because the vis-

ible light is shifted toward the red. (b) Spectroscopic mea-
surements of light at l 5 397 nm coming from a galaxy in 
Ursa Major reveal a redshift of 20.0 nm. What is the reces-
sional speed of the galaxy?

 22.  Review. In 1963, astronaut Gordon Cooper orbited 
the Earth 22 times. The press stated that for each orbit, he 
aged two-millionths of a second less than he would have 
had he remained on the Earth. (a) Assuming Cooper was 
160 km above the Earth in a circular orbit, determine the 
difference in elapsed time between someone on the Earth 
and the orbiting astronaut for the 22 orbits. You may use 
the approximation

 
1

"1 2 x
< 1 1

x
2

  for small x. (b) Did the press report accurate information? 
Explain.

 23. Police radar detects the speed of a car (Fig. P39.23 on page 
1180) as follows. Microwaves of a precisely known frequency 
are broadcast toward the car. The moving car reflects the 
microwaves with a Doppler shift. The reflected waves are 
received and combined with an attenuated version of the 
transmitted wave. Beats occur between the two microwave 
signals. The beat frequency is measured. (a) For an electro-
magnetic wave reflected back to its source from a mirror 
approaching at speed v, show that the reflected wave has 
frequency

f r 5
c 1 v
c 2 v

 f

answer to part (a) change if the observer started running 
toward the meterstick?

 7. At what speed does a clock move if it is measured to run at 
a rate one-half the rate of a clock at rest with respect to an 
observer?

 8. A muon formed high in the Earth’s atmosphere is measured 
by an observer on the Earth’s surface to travel at speed v 5 
0.990c for a distance of 4.60 km before it decays into an elec-
tron, a neutrino, and an antineutrino (m2 S e2 1 n 1 n). 
(a) For what time interval does the muon live as measured 
in its reference frame? (b) How far does the Earth travel as 
measured in the frame of the muon?

 9. A star is 5.00 ly from the Earth. At what speed must a space-
craft travel on its journey to the star such that the Earth–
star distance measured in the frame of the spacecraft is 
2.00 ly?

 10. An astronaut is traveling in a space vehicle moving at 
0.500c relative to the Earth. The astronaut measures her 
pulse rate at 75.0 beats per minute. Signals generated by 
the astronaut’s pulse are radioed to the Earth when the 
vehicle is moving in a direction perpendicular to the line 
that connects the vehicle with an observer on the Earth. 
(a) What pulse rate does the Earth-based observer mea-
sure? (b) What If? What would be the pulse rate if the 
speed of the space vehicle were increased to 0.990c?

 11. A physicist drives through a stop light. When he is pulled 
over, he tells the police officer that the Doppler shift made 
the red light of wavelength 650 nm appear green to him, 
with a wavelength of 520 nm. The police officer writes out 
a traffic citation for speeding. How fast was the physicist 
traveling, according to his own testimony?

 12. A fellow astronaut passes by you in a spacecraft traveling at 
a high speed. The astronaut tells you that his craft is 20.0 m 
long and that the identical craft you are sitting in is 19.0 m 
long. According to your observations, (a) how long is your 
craft, (b) how long is the astronaut’s craft, and (c) what is 
the speed of the astronaut’s craft relative to your craft?

 13. A deep-space vehicle moves away from the Earth with a 
speed of 0.800c. An astronaut on the vehicle measures a 
time interval of 3.00 s to rotate her body through 1.00 rev 
as she floats in the vehicle. What time interval is required 
for this rotation according to an observer on the Earth?

 14. For what value of v does g 5 1.010 0? Observe that for 
speeds lower than this value, time dilation and length con-
traction are effects amounting to less than 1%.

 15. A supertrain with a proper length of 100 m travels at 
a speed of 0.950c as it passes through a tunnel having a 
proper length of 50.0 m. As seen by a trackside observer, is 
the train ever completely within the tunnel? If so, by how 
much do the train’s ends clear the ends of the tunnel?

 16. The identical twins Speedo and Goslo join a migration 
from the Earth to Planet X, 20.0 ly away in a reference 
frame in which both planets are at rest. The twins, of the 
same age, depart at the same moment on different space-
craft. Speedo’s spacecraft travels steadily at 0.950c and Gos-
lo’s at 0.750c. (a) Calculate the age difference between the 
twins after Goslo’s spacecraft lands on Planet X. (b) Which 
twin is older?
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Section 39.6 The Lorentz Velocity Transformation Equations

 28.  Figure P39.28 shows a jet of material (at the upper 
right) being ejected by galaxy M87 (at the lower left). Such 
jets are believed to be evidence of supermassive black holes 
at the center of a galaxy. Suppose two jets of material from 
the center of a galaxy are ejected in opposite directions. 
Both jets move at 0.750c relative to the galaxy center. Deter-
mine the speed of one jet relative to the other.

  where f is the source frequency. (b) Noting that v is much 
less than c, show that the beat frequency can be written 
as fbeat 5 2v/l. (c) What beat frequency is measured for 
a car speed of 30.0 m/s if the microwaves have frequency 
10.0 GHz? (d) If the beat frequency measurement in part 
(c) is accurate to 65.0 Hz, how accurate is the speed 
measurement?

Section 39.5  The Lorentz Transformation Equations

 24. Shannon observes two light pulses to be emitted from the 
same location, but separated in time by 3.00 ms. Kimmie 
observes the emission of the same two pulses to be sepa-
rated in time by 9.00 ms. (a) How fast is Kimmie moving 
relative to Shannon? (b) According to Kimmie, what is the 
separation in space of the two pulses?

 25. A red light flashes at position xR 5 3.00 m and time tR 5 
1.00 3 1029 s, and a blue light flashes at xB 5 5.00 m and 
tB 5 9.00 3 1029 s, all measured in the S reference frame. 
Reference frame S9 moves uniformly to the right and has 
its origin at the same point as S at t 5 t9 5 0. Both flashes 
are observed to occur at the same place in S9. (a) Find the 
relative speed between S and S9. (b) Find the location of 
the two flashes in frame S9. (c) At what time does the red 
flash occur in the S9 frame?

 26. Keilah, in reference frame S, measures two events to be 
simultaneous. Event A occurs at the point (50.0 m, 0, 0) 
at the instant 9:00:00 Universal time on January 15, 2010. 
Event B occurs at the point (150 m, 0, 0) at the same 
moment. Torrey, moving past with a velocity of 0.800c i^, 
also observes the two events. In her reference frame S9, 
which event occurred first and what time interval elapsed 
between the events?

 27. A moving rod is observed to 
have a length of , 5 2.00 m 
and to be oriented at an angle 
of u 5 30.0° with respect to 
the direction of motion as 
shown in Figure P39.27. The 
rod has a speed of 0.995c. 
(a) What is the proper length 
of the rod? (b) What is the 
orientation angle in the 
proper frame?

Figure P39.23
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 29. An enemy spacecraft moves away from the Earth at a speed 
of v 5 0.800c (Fig. P39.29). A galactic patrol spacecraft 
pursues at a speed of u 5 0.900c relative to the Earth. 
Observers on the Earth measure the patrol craft to be over-
taking the enemy craft at a relative speed of 0.100c. With 
what speed is the patrol craft overtaking the enemy craft as 
measured by the patrol craft’s crew?

S

Galactic patrol
spacecraft

Enemy spacecraft

x

S �

x �

vS

uS

Figure P39.29

Section 39.7  Relativistic Linear Momentum

 30. Calculate the momentum of an electron moving with a 
speed of (a) 0.010 0c, (b) 0.500c, and (c) 0.900c.

 31.  An electron has a momentum that is three times 
larger than its classical momentum. (a) Find the speed of 
the electron. (b) What If? How would your result change if 
the particle were a proton?

 32. The speed limit on a certain roadway is 90.0 km/h. Sup-
pose speeding fines are made proportional to the amount 
by which a vehicle’s momentum exceeds the momentum 
it would have when traveling at the speed limit. The fine 
for driving at 190 km/h (that is, 100 km/h over the speed 
limit) is $80.0. What, then, is the fine for traveling (a) at 
1 090 km/h? (b) At 1 000 000 090 km/h?

 33. A golf ball travels with a speed of 90.0 m/s. By what fraction 
does its relativistic momentum magnitude p differ from its 
classical value mu? That is, find the ratio (p 2 mu)/mu.
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 46. Consider a car moving at highway speed u. Is its actual 
kinetic energy larger or smaller than 12mu2? Make an order-
of-magnitude estimate of the amount by which its actual 
kinetic energy differs from 12mu2. In your solution, state the 
quantities you take as data and the values you measure or 
estimate for them. You may find Appendix B.5 useful.

 47.  A pion at rest (mp 5 273me) decays to a muon (mm 5 
207me) and an antineutrino (mv– < 0). The reaction is writ-
ten p 2 S m2 1 n. Find (a) the kinetic energy of the muon 
and (b) the energy of the antineutrino in electron volts.

 48.  An unstable particle with mass m 5 3.34 3 10227 kg 
is initially at rest. The particle decays into two fragments 
that fly off along the x axis with velocity components u1 5 
0.987c and u2 5 20.868c. From this information, we wish to 
determine the masses of fragments 1 and 2. (a) Is the initial 
system of the unstable particle, which becomes the system 
of the two fragments, isolated or nonisolated? (b) Based on 
your answer to part (a), what two analysis models are appro-
priate for this situation? (c) Find the values of g for the 
two fragments after the decay. (d) Using one of the analysis 
models in part (b), find a relationship between the masses 
m1 and m2 of the fragments. (e) Using the second analysis 
model in part (b), find a second relationship between the 
masses m1 and m2. (f) Solve the relationships in parts (d) 
and (e) simultaneously for the masses m1 and m2.

 49. Massive stars ending their lives in supernova explosions 
produce the nuclei of all the atoms in the bottom half of 
the periodic table by fusion of smaller nuclei. This prob-
lem roughly models that process. A particle of mass m 5 
1.99 3 10226 kg moving with a velocity uS 5 0.500c i^ collides 
head-on and sticks to a particle of mass m9 5 m/3 moving 
with the velocity uS 5 20.500c i^ . What is the mass of the 
resulting particle?

 50.   Massive stars ending their lives in supernova 
explosions produce the nuclei of all the atoms in the bot-
tom half of the periodic table by fusion of smaller nuclei. 
This problem roughly models that process. A particle of 
mass m moving along the x axis with a velocity component 
1u collides head-on and sticks to a particle of mass m/3 
moving along the x axis with the velocity component 2u. 
(a) What is the mass M of the resulting particle? (b) Eval-
uate the expression from part (a) in the limit u S 0. 
(c) Explain whether the result agrees with what you should 
expect from nonrelativistic physics.

Section 39.9  Mass and Energy

 51.  When 1.00 g of hydrogen combines with 8.00 g of oxy-
gen, 9.00 g of water is formed. During this chemical reac-
tion, 2.86 3 105 J of energy is released. (a) Is the mass of 
the water larger or smaller than the mass of the reactants? 
(b) What is the difference in mass? (c) Explain whether the 
change in mass is likely to be detectable.

 52. In a nuclear power plant, the fuel rods last 3 yr before they 
are replaced. The plant can transform energy at a maxi-
mum possible rate of 1.00 GW. Supposing it operates at 
80.0% capacity for 3.00 yr, what is the loss of mass of the 
fuel?

 53. The power output of the Sun is 3.85 3 1026 W. By how much 
does the mass of the Sun decrease each second?

 34. The nonrelativistic expression for the momentum of a par-
ticle, p 5 mu, agrees with experiment if u ,, c. For what 
speed does the use of this equation give an error in the 
measured momentum of (a) 1.00% and (b) 10.0%?

 35.  An unstable particle at rest spontaneously breaks into 
two fragments of unequal mass. The mass of the first frag-
ment is 2.50 3 10228 kg, and that of the other is 1.67 3 
10227 kg. If the lighter fragment has a speed of 0.893c after 
the breakup, what is the speed of the heavier fragment?

Section 39.8  Relativistic Energy

 36. Protons in an accelerator at the Fermi National Labora-
tory near Chicago are accelerated to a total energy that is 
400 times their rest energy. (a) What is the speed of these 
protons in terms of c? (b) What is their kinetic energy in 
MeV?

 37. A proton moves at 0.950c. Calculate its (a) rest energy, 
(b) total energy, and (c) kinetic energy.

 38.  (a) Find the kinetic energy of a 78.0-kg spacecraft 
launched out of the solar system with speed 106 km/s by 
using the classical equation K 5 1

2mu2. (b) What If? Cal-
culate its kinetic energy using the relativistic equation. 
(c) Explain the result of comparing the answers of parts (a) 
and (b).

 39.  A proton in a high-energy accelerator moves with a 
speed of c/2. Use the work–kinetic energy theorem to find 
the work required to increase its speed to (a) 0.750c and 
(b) 0.995c.

 40. Show that for any object moving at less than one-tenth the 
speed of light, the relativistic kinetic energy agrees with 
the result of the classical equation K 5 1

2mu2 to within 
less than 1%. Therefore, for most purposes, the classical 
equation is sufficient to describe these objects.

 41. The total energy of a proton is twice its rest energy. Find 
the momentum of the proton in MeV/c units.

 42. Consider electrons accelerated to a total energy of 20.0 GeV 
in the 3.00-km-long Stanford Linear Accelerator. (a) What 
is the factor g for the electrons? (b) What is the electrons’ 
speed at the given energy? (c) What is the length of the 
accelerator in the electrons’ frame of reference when they 
are moving at their highest speed?

 43. A spaceship of mass 2.40 3 106 kg is to be accelerated to a 
speed of 0.700c. (a) What minimum amount of energy does 
this acceleration require from the spaceship’s fuel, assum-
ing perfect efficiency? (b) How much fuel would it take to 
provide this much energy if all the rest energy of the fuel 
could be transformed to kinetic energy of the spaceship?

 44.  Show that the energy–momentum relationship in Equa-
tion 39.27, E 2 5 p2c 2 1 (mc2)2, follows from the expressions 
E 5 gmc2 and p 5 gmu.

 45. The rest energy of an electron is 0.511 MeV. The rest energy 
of a proton is 938 MeV. Assume both particles have kinetic 
energies of 2.00 MeV. Find the speed of (a) the electron 
and (b) the proton. (c) By what factor does the speed of the 
electron exceed that of the proton? (d) Repeat the calcula-
tions in parts (a) through (c) assuming both particles have 
kinetic energies of 2 000 MeV.
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off for a planet that is 50 ly away. He travels at a constant 
speed of 0.85c and immediately turns around and comes 
back to the Earth after arriving at the planet. Upon arriv-
ing back at the Earth, Speedo has a joyous reunion with 
Goslo.

 59. An astronaut wishes to visit the Andromeda galaxy, mak-
ing a one-way trip that will take 30.0 yr in the spacecraft’s 
frame of reference. Assume the galaxy is 2.00 3 106 ly away 
and the astronaut’s speed is constant. (a) How fast must he 
travel relative to the Earth? (b) What will be the kinetic 
energy of his 1 000-metric-ton spacecraft? (c) What is the 
cost of this energy if it is purchased at a typical consumer 
price for electric energy of $0.110/kWh?

 60.   The equation

K 5 a 1

"1 2 u2/c 2
2 1bmc 2

  gives the kinetic energy of a particle moving at speed u. 
(a) Solve the equation for u. (b) From the equation for u, 
identify the minimum possible value of speed and the cor-
responding kinetic energy. (c) Identify the maximum pos-
sible speed and the corresponding kinetic energy. (d) Dif-
ferentiate the equation for u with respect to time to obtain 
an equation describing the acceleration of a particle as a 
function of its kinetic energy and the power input to the 
particle. (e) Observe that for a nonrelativistic particle we 
have u 5 (2K/m)1/2 and that differentiating this equa-
tion with respect to time gives a 5 P/(2mK)1/2. State the 
limiting form of the expression in part (d) at low energy. 
State how it compares with the nonrelativistic expression. 
(f) State the limiting form of the expression in part (d) 
at high energy. (g) Consider a particle with constant input 
power. Explain how the answer to part (f) helps account 
for the answer to part (c).

 61.  The cosmic rays of highest energy are protons that have 
kinetic energy on the order of 1013 MeV. (a) As measured 
in the proton’s frame, what time interval would a proton of 
this energy require to travel across the Milky Way galaxy, 
which has a proper diameter , 105 ly? (b) From the point 
of view of the proton, how many kilometers across is the 
galaxy?

 62. An object disintegrates into two fragments. One fragment 
has mass 1.00 MeV/c2 and momentum 1.75 MeV/c in the 
positive x direction, and the other has mass 1.50 MeV/c2 
and momentum 2.00 MeV/c in the positive y direction. Find 
(a) the mass and (b) the speed of the original object.

 63. Review. Around the core of a nuclear reactor shielded by 
a large pool of water, Cerenkov radiation appears as a blue 
glow. (See Fig. P17.38 on page 507.) Cerenkov radiation 
occurs when a particle travels faster through a medium 
than the speed of light in that medium. It is the electro-
magnetic equivalent of a bow wave or a sonic boom. An 
electron is traveling through water at a speed 10.0% faster 
than the speed of light in water. Determine the electron’s 
(a) total energy, (b) kinetic energy, and (c) momentum. 
(d) Find the angle between the shock wave and the elec-
tron’s direction of motion.

 64.  Spacecraft I, containing students taking a physics 
exam, approaches the Earth with a speed of 0.600c (rela-
tive to the Earth), while spacecraft II, containing profes-

 54. A gamma ray (a high-energy photon) can produce an elec-
tron (e2) and a positron (e1) of equal mass when it enters 
the electric field of a heavy nucleus: g S e1 1 e2. What 
minimum gamma-ray energy is required to accomplish 
this task?

Section 39.10  The General Theory of Relativity

 55. Review. A global positioning system (GPS) satellite moves 
in a circular orbit with period 11 h 58 min. (a) Determine 
the radius of its orbit. (b) Determine its speed. (c) The 
nonmilitary GPS signal is broadcast at a frequency of 
1 575.42 MHz in the reference frame of the satellite. When 
it is received on the Earth’s surface by a GPS receiver (Fig. 
P39.55), what is the fractional change in this frequency due 
to time dilation as described by special relativity? (d) The 
gravitational “blueshift” of the frequency according to gen-
eral relativity is a separate effect. It is called a blueshift to 
indicate a change to a higher frequency. The magnitude of 
that fractional change is given by

 
Df

f
5

DUg

mc 2

  where Ug is the change in gravitational potential energy of 
an object–Earth system when the object of mass m is moved 
between the two points where the signal is observed. Calcu-
late this fractional change in frequency due to the change 
in position of the satellite from the Earth’s surface to its 
orbital position. (e) What is the overall fractional change 
in frequency due to both time dilation and gravitational 
blueshift?

Figure P39.55

©
 iS

to
ck

ph
ot

o.
co

m
/R

ob
er

ta
 C

as
al

ig
gi

Additional Problems

 56. An electron has a speed of 0.750c. (a) Find the speed of a 
proton that has the same kinetic energy as the electron. 
(b) What If? Find the speed of a proton that has the same 
momentum as the electron.

 57.  The net nuclear fusion reaction inside the Sun can be 
written as 41H S 4He 1 E. The rest energy of each hydro-
gen atom is 938.78 MeV, and the rest energy of the helium-4 
atom is 3 728.4 MeV. Calculate the percentage of the start-
ing mass that is transformed to other forms of energy.

 58. Why is the following situation impossible? On their 40th birth-
day, twins Speedo and Goslo say good-bye as Speedo takes 
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spacecraft is a distance d 5 5.66 3 1010 m from the mirror 
(as measured by observers in S) at the moment the light 
pulse leaves the spacecraft. What is the total travel time of 
the pulse as measured by observers in (a) the S frame and 
(b) the spacecraft?

sors proctoring the exam, moves at 0.280c (relative to 
the Earth) directly toward the students. If the professors 
stop the exam after 50.0 min have passed on their clock, 
for what time interval does the exam last as measured by 
(a) the students and (b) an observer on the Earth?

 65. Imagine that the entire Sun, of mass MS, collapses to a 
sphere of radius Rg such that the work required to remove 
a small mass m from the surface would be equal to its rest 
energy mc2. This radius is called the gravitational radius for 
the Sun. (a) Use this approach to show that Rg 5 GMS/c2. 
(b) Find a numerical value for Rg.

 66.  The motion of a transparent medium influences the 
speed of light. This effect was first observed by Fizeau in 
1851. Consider a light beam in water. The water moves with 
speed v in a horizontal pipe. Assume the light travels in 
the same direction as the water moves. The speed of light 
with respect to the water is c/n, where n 5 1.33 is the index 
of refraction of water. (a) Use the velocity transformation 
equation to show that the speed of the light measured in 
the laboratory frame is

u 5
c
n
a1 1 nv/c

1 1 v/nc
b

  (b) Show that for v ,, c, the expression from part (a) 
becomes, to a good approximation,

u <
c
n

1 v 2
v
n2

  (c) Argue for or against the view that we should expect the 
result to be u 5 (c/n) 1 v according to the Galilean trans-
formation and that the presence of the term 2v/n2 repre-
sents a relativistic effect appearing even at “nonrelativistic” 
speeds. (d) Evaluate u in the limit as the speed of the water 
approaches c.

 67. An alien spaceship traveling at 0.600c toward the Earth 
launches a landing craft. The landing craft travels in 
the same direction with a speed of 0.800c relative to the 
mother ship. As measured on the Earth, the spaceship is 
0.200 ly from the Earth when the landing craft is launched. 
(a) What speed do the Earth-based observers measure for 
the approaching landing craft? (b) What is the distance to 
the Earth at the moment of the landing craft’s launch as 
measured by the aliens? (c) What travel time is required 
for the landing craft to reach the Earth as measured by 
the aliens on the mother ship? (d) If the landing craft has 
a mass of 4.00 3 105 kg, what is its kinetic energy as mea-
sured in the Earth reference frame?

 68. Why is the following situation impossible? An experimenter is 
accelerating electrons for use in probing a material. She 
finds that when she accelerates them through a potential 
difference of 84.0 kV, the electrons have half the speed she 
wishes. She quadruples the potential difference to 336 kV, 
and the electrons accelerated through this potential differ-
ence have her desired speed.

 69. An observer in a coasting spacecraft moves toward a mirror 
at speed v 5 0.650c relative to the reference frame labeled 
S in Figure P39.69. The mirror is stationary with respect 
to S. A light pulse emitted by the spacecraft travels toward 
the mirror and is reflected back to the spacecraft. The 

Mirror
S

vS

d

O

Figure P39.69 Problems 69 and 70.

 70.  An observer in a coasting spacecraft moves toward a 
mirror at speed v relative to the reference frame labeled 
S in Figure P39.69. The mirror is stationary with respect 
to S. A light pulse emitted by the spacecraft travels toward 
the mirror and is reflected back to the spacecraft. The 
spacecraft is a distance d from the mirror (as measured 
by observers in S) at the moment the light pulse leaves 
the spacecraft. What is the total travel time of the pulse 
as measured by observers in (a) the S frame and (b) the 
spacecraft?

 71. A 57Fe nucleus at rest emits a 14.0-keV photon. Use conser-
vation of energy and momentum to find the kinetic energy 
of the recoiling nucleus in electron volts. Use Mc2 5 8.60 3 
1029 J for the final state of the 57Fe nucleus.

 72. (a) Prepare a graph of the relativistic kinetic energy and 
the classical kinetic energy, both as a function of speed, 
for an object with a mass of your choice. (b) At what speed 
does the classical kinetic energy underestimate the experi-
mental value by 1%? (c) By 5%? (d) By 50%?

Challenge Problems

 73.  The creation and study of new and very massive ele-
mentary particles is an important part of contemporary 
physics. To create a particle of mass M requires an energy 
Mc2. With enough energy, an exotic particle can be cre-
ated by allowing a fast-moving proton to collide with a 
similar target particle. Consider a perfectly inelastic col-
lision between two protons: an incident proton with mass 
mp, kinetic energy K, and momentum magnitude p joins 
with an originally stationary target proton to form a single 
product particle of mass M. Not all the kinetic energy of 
the incoming proton is available to create the product par-
ticle because conservation of momentum requires that the 
system as a whole still must have some kinetic energy after 
the collision. Therefore, only a fraction of the energy of 
the incident particle is available to create a new particle. 
(a) Show that the energy available to create a product par-
ticle is given by

Mc 2 5 2mpc
2

Å1 1
K

2mpc
2

  This result shows that when the kinetic energy K of the 
incident proton is large compared with its rest energy mpc2, 
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to Owen), and their separation (measured in S9) is equal 
to 1.80 3 1012 m. (a) According to Dina, how fast is the 
ball moving? (b) According to Dina, what time interval is 
required for the ball to reach her? According to Ed, (c) how 
far apart are Owen and Dina, (d) how fast is the ball mov-
ing, and (e) what time interval is required for the ball to 
reach Dina?

then M approaches (2mpK)1/2/c. Therefore, if the energy 
of the incoming proton is increased by a factor of 9, the 
mass you can create increases only by a factor of 3, not by 
a factor of 9 as would be expected. (b) This problem can 
be alleviated by using colliding beams as is the case in most 
modern accelerators. Here the total momentum of a pair 
of interacting particles can be zero. The center of mass can 
be at rest after the collision, so, in principle, all the initial 
kinetic energy can be used for particle creation. Show that

Mc 2 5 2mc 2a1 1
K

mc 2b

  where K is the kinetic energy of each of the two identical 
colliding particles. Here, if K .. mc2, we have M directly 
proportional to K as we would desire.

 74.   A particle with electric charge q moves along 
a straight line in a uniform electric field E

S
 with speed u. 

The electric force exerted on the charge is qE
S

. The velocity 
of the particle and the electric field are both in the x direc-
tion. (a) Show that the acceleration of the particle in the x 
direction is given by

a 5
du
dt

5
qE

m
a1 2

u2

c 2 b
3/2

  (b) Discuss the significance of the dependence of the 
acceleration on the speed. (c) What If? If the particle starts 
from rest at x 5 0 at t 5 0, how would you proceed to find 
the speed of the particle and its position at time t?

 75. Owen and Dina are at rest in frame S9, which is moving 
at 0.600c with respect to frame S. They play a game of 
catch while Ed, at rest in frame S, watches the action (Fig. 
P39.75). Owen throws the ball to Dina at 0.800c (according 
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x
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Figure P39.75

 76.  Suppose our Sun is about to explode. In an effort to 
escape, we depart in a spacecraft at v 5 0.800c and head 
toward the star Tau Ceti, 12.0 ly away. When we reach 
the midpoint of our journey from the Earth, we see our 
Sun explode, and, unfortunately, at the same instant, we 
see Tau Ceti explode as well. (a) In the spacecraft’s frame 
of reference, should we conclude that the two explosions 
occurred simultaneously? If not, which occurred first? 
(b) What If? In a frame of reference in which the Sun and 
Tau Ceti are at rest, did they explode simultaneously? If 
not, which exploded first?


