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In Chapter 31, we saw that an emf and a current are induced in a loop of wire when the 
magnetic flux through the area enclosed by the loop changes with time. This phenomenon of 
electromagnetic induction has some practical consequences. In this chapter, we first describe 
an effect known as self-induction, in which a time-varying current in a circuit produces an 
induced emf opposing the emf that initially set up the time-varying current. Self-induction 
is the basis of the inductor, an electrical circuit element. We discuss the energy stored in the 
magnetic field of an inductor and the energy density associated with the magnetic field.
 Next, we study how an emf is induced in a coil as a result of a changing magnetic flux 
produced by a second coil, which is the basic principle of mutual induction. Finally, we 
examine the characteristics of circuits that contain inductors, resistors, and capacitors in 
various combinations.

32.1 Self-Induction and Inductance
In this chapter, we need to distinguish carefully between emfs and currents that are 
caused by physical sources such as batteries and those that are induced by changing 
magnetic fields. When we use a term (such as emf or current) without an adjective, we 
are describing the parameters associated with a physical source. We use the adjective 
induced to describe those emfs and currents caused by a changing magnetic field.
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32 Inductance

A treasure hunter uses a metal 
detector to search for buried objects 
at a beach. At the end of the metal 
detector is a coil of wire that is part 
of a circuit. When the coil comes 
near a metal object, the inductance 
of the coil is affected and the current 
in the circuit changes. This change 
triggers a signal in the earphones 
worn by the treasure hunter. We 
investigate inductance in this 
chapter. (Andy Ryan/Stone/Getty Images)
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 Consider a circuit consisting of a switch, a resistor, and a source of emf as shown 
in Figure 32.1. The circuit diagram is represented in perspective to show the orien-
tations of some of the magnetic field lines due to the current in the circuit. When 
the switch is thrown to its closed position, the current does not immediately jump 
from zero to its maximum value e/R. Faraday’s law of electromagnetic induction 
(Eq. 31.1) can be used to describe this effect as follows. As the current increases 
with time, the magnetic field lines surrounding the wires pass through the loop 
represented by the circuit itself. This magnetic field passing through the loop 
causes a magnetic flux through the loop. This increasing flux creates an induced 
emf in the circuit. The direction of the induced emf is such that it would cause an 
induced current in the loop (if the loop did not already carry a current), which 
would establish a magnetic field opposing the change in the original magnetic 
field. Therefore, the direction of the induced emf is opposite the direction of the 
emf of the battery, which results in a gradual rather than instantaneous increase in 
the current to its final equilibrium value. Because of the direction of the induced 
emf, it is also called a back emf, similar to that in a motor as discussed in Chapter 31. 
This effect is called self-induction because the changing flux through the circuit 
and the resultant induced emf arise from the circuit itself. The emf eL set up in this 
case is called a self-induced emf.
 To obtain a quantitative description of self-induction, recall from Faraday’s law 
that the induced emf is equal to the negative of the time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field, which in turn 
is proportional to the current in the circuit. Therefore, a self-induced emf is always 
proportional to the time rate of change of the current. For any loop of wire, we can 
write this proportionality as

 eL 5 2L 
di
dt

 (32.1)

where L is a proportionality constant—called the inductance of the loop—that 
depends on the geometry of the loop and other physical characteristics. If we  
consider a closely spaced coil of N turns (a toroid or an ideal solenoid) carrying a 
current i and containing N turns, Faraday’s law tells us that eL 5 2N dFB /dt. Com-
bining this expression with Equation 32.1 gives

 L 5
NFB

i
 (32.2)

where it is assumed the same magnetic flux passes through each turn and L is the 
inductance of the entire coil.
 From Equation 32.1, we can also write the inductance as the ratio

 L 5 2
eL

di/dt
 (32.3)

Recall that resistance is a measure of the opposition to current as given by Equa-
tion 27.7, R 5 DV/I ; in comparison, Equation 32.3, being of the same mathematical 
form as Equation 27.7, shows us that inductance is a measure of the opposition to a 
change in current.
 The SI unit of inductance is the henry (H), which as we can see from Equation 
32.3 is 1 volt-second per ampere: 1 H 5 1 V ? s/A.
 As shown in Example 32.1, the inductance of a coil depends on its geometry. This 
dependence is analogous to the capacitance of a capacitor depending on the geome-
try of its plates as we found in Equation 26.3 and the resistance of a resistor depend-
ing on the length and area of the conducting material in Equation 27.10. Inductance 
calculations can be quite difficult to perform for complicated geometries, but the 
examples below involve simple situations for which inductances are easily evaluated.

WW Inductance of an N-turn coil

Joseph Henry
American Physicist (1797–1878)
Henry became the first director of 
the Smithsonian Institution and first 
president of the Academy of Natural 
Science. He improved the design of the 
electromagnet and constructed one of 
the first motors. He also discovered the 
phenomenon of self-induction, but he 
failed to publish his findings. The unit 
of inductance, the henry, is named in 
his honor.
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After the switch is closed, the 
current produces a magnetic flux 
through the area enclosed by the 
loop. As the current increases 
toward its equilibrium value, this 
magnetic flux changes in time
and induces an emf in the loop.
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Figure 32.1  Self-induction in a 
simple circuit.



972 chapter 32 Inductance

 

Example 32.1   Inductance of a Solenoid

Consider a uniformly wound solenoid having N turns and length ,. Assume , is much longer than the radius of the 
windings and the core of the solenoid is air.

(A)  Find the inductance of the solenoid.

Conceptualize  The magnetic field lines from each turn of the solenoid pass through all the turns, so an induced emf 
in each coil opposes changes in the current.

Categorize  We categorize this example as a substitution problem. Because the solenoid is long, we can use the results 
for an ideal solenoid obtained in Chapter 30.

S o l u t I o N

Substitute this expression into Equation 32.2: L 5
NFB

i
5 m0 

N 2

,
 A   (32.4)

Find the magnetic flux through each turn of area A in 
the solenoid, using the expression for the magnetic field 
from Equation 30.17:

FB 5 BA 5 m0niA 5 m0 
N
,

 iA

(B)  Calculate the inductance of the solenoid if it contains 300 turns, its length is 25.0 cm, and its cross-sectional area 
is 4.00 cm2.

S o l u t I o N

Substitute numerical values into Equation 32.4: L 5 14p 3 1027 T # m/A 2  3002

25.0 3 1022 m
 14.00 3 1024 m2 2

5 1.81 3 1024 T ? m2/A 5 0.181 mH

(C)  Calculate the self-induced emf in the solenoid if the current it carries decreases at the rate of 50.0 A/s.

S o l u t I o N

Substitute di/dt 5 250.0 A/s and the answer to part (B) 
into Equation 32.1:

eL 5 2L 
di
dt

5 2 11.81 3 1024 H 2 1250.0 A/s 2

5 9.05 mV

The result for part (A) shows that L depends on geometry and is proportional to the square of the number of turns. 
Because N 5 n,, we can also express the result in the form

 L 5 m0 
1n, 22

,
A 5 m0n2A, 5 m0n

2V  (32.5)

where V 5 A, is the interior volume of the solenoid.

Q uick Quiz 32.1  A coil with zero resistance has its ends labeled a and b. The 
potential at a is higher than at b. Which of the following could be consistent 
with this situation? (a) The current is constant and is directed from a to b. 
(b) The current is constant and is directed from b to a. (c) The current is 
increasing and is directed from a to b. (d) The current is decreasing and is 
directed from a to b. (e) The current is increasing and is directed from b to a.  
(f) The current is decreasing and is directed from b to a.

32.2 RL Circuits
If a circuit contains a coil such as a solenoid, the inductance of the coil prevents 
the current in the circuit from increasing or decreasing instantaneously. A circuit 
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element that has a large inductance is called an inductor and has the circuit symbol 
. We always assume the inductance of the remainder of a circuit is negligi-

ble compared with that of the inductor. Keep in mind, however, that even a circuit 
without a coil has some inductance that can affect the circuit’s behavior.
 Because the inductance of an inductor results in a back emf, an inductor in a cir-
cuit opposes changes in the current in that circuit. The inductor attempts to keep 
the current the same as it was before the change occurred. If the battery voltage in 
the circuit is increased so that the current rises, the inductor opposes this change 
and the rise is not instantaneous. If the battery voltage is decreased, the inductor 
causes a slow drop in the current rather than an immediate drop. Therefore, the 
inductor causes the circuit to be “sluggish” as it reacts to changes in the voltage.
 Consider the circuit shown in Figure 32.2, which contains a battery of negligible 
internal resistance. This circuit is an RL circuit because the elements connected to 
the battery are a resistor and an inductor. The curved lines on switch S2 suggest this 
switch can never be open; it is always set to either a or b. (If the switch is connected 
to neither a nor b, any current in the circuit suddenly stops.) Suppose S2 is set to a 
and switch S1 is open for t , 0 and then thrown closed at t 5 0. The current in the 
circuit begins to increase, and a back emf (Eq. 32.1) that opposes the increasing 
current is induced in the inductor.
 With this point in mind, let’s apply Kirchhoff’s loop rule to this circuit, travers-
ing the circuit in the clockwise direction:

 e 2 iR 2 L 
di
dt

5 0 (32.6)

where iR is the voltage drop across the resistor. (Kirchhoff’s rules were developed 
for circuits with steady currents, but they can also be applied to a circuit in which 
the current is changing if we imagine them to represent the circuit at one instant of 
time.) Now let’s find a solution to this differential equation, which is similar to that 
for the RC circuit (see Section 28.4).
 A mathematical solution of Equation 32.6 represents the current in the circuit as 
a function of time. To find this solution, we change variables for convenience, let-
ting x 5 (e/R) 2 i, so dx 5 2di. With these substitutions, Equation 32.6 becomes

x 1
L
R

  
dx
dt

5 0

Rearranging and integrating this last expression gives

3
x

x0

 
dx
x

5 2
R
L

 3
t

0
 dt 

 ln 
x
x0

5 2
R
L

 t

where x0 is the value of x at time t 5 0. Taking the antilogarithm of this result gives

x 5 x0e2Rt/L

Because i 5 0 at t 5 0, note from the definition of x that x0 5 e/R. Hence, this last 
expression is equivalent to

 
e
R

2 i 5
e
R

 e2Rt/L

 i 5
e
R
11 2 e2Rt/L 2

This expression shows how the inductor affects the current. The current does not 
increase instantly to its final equilibrium value when the switch is closed, but instead 
increases according to an exponential function. If the inductance is removed from 
the circuit, which corresponds to letting L approach zero, the exponential term 

S1

S2

L

Ra

b

�

�
e

When the switch S2 is thrown 
to position b, the battery is no
longer part of the circuit and
the current decreases.

When switch S1 is thrown
closed, the current increases
and an emf that opposes the 
increasing current is induced
in the inductor.

Figure 32.2 An RL circuit. 
When switch S2 is in position a, 
the battery is in the circuit.
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After switch S1 is thrown closed 
at t � 0,  the current increases 
toward its maximum value 
e/R.

    t �

 

L

t

R R
0.632

i

e

t

R
e

Figure 32.3 Plot of the current 
versus time for the RL circuit 
shown in Figure 32.2. The time 
constant t is the time interval 
required for i to reach 63.2% of its 
maximum value.

becomes zero and there is no time dependence of the current in this case; the cur-
rent increases instantaneously to its final equilibrium value in the absence of the 
inductance.
 We can also write this expression as

 i 5
e
R
11 2 e2t/t 2  (32.7)

where the constant t is the time constant of the RL circuit:

 t 5
L
R

 (32.8)

Physically, t is the time interval required for the current in the circuit to reach  
(1 2 e21) 5 0.632 5 63.2% of its final value e/R. The time constant is a useful 
parameter for comparing the time responses of various circuits.
 Figure 32.3 shows a graph of the current versus time in the RL circuit. Notice 
that the equilibrium value of the current, which occurs as t approaches infinity, is 
e/R. That can be seen by setting di/dt equal to zero in Equation 32.6 and solving 
for the current i. (At equilibrium, the change in the current is zero.) Therefore, the 
current initially increases very rapidly and then gradually approaches the equilib-
rium value e/R as t approaches infinity.
 Let’s also investigate the time rate of change of the current. Taking the first time 
derivative of Equation 32.7 gives

 
di
dt

5
e
L

 e2 t/t (32.9)

This result shows that the time rate of change of the current is a maximum (equal to 
e/L) at t 5 0 and falls off exponentially to zero as t approaches infinity (Fig. 32.4).
 Now consider the RL circuit in Figure 32.2 again. Suppose switch S2 has been 
set at position a long enough (and switch S1 remains closed) to allow the current 
to reach its equilibrium value e/R. In this situation, the circuit is described by the 
outer loop in Figure 32.2. If S2 is thrown from a to b, the circuit is now described by 
only the right-hand loop in Figure 32.2. Therefore, the battery has been eliminated 
from the circuit. Setting e 5 0 in Equation 32.6 gives

iR 1 L 
di
dt

5 0

The time rate of change of 
current is a maximum at t � 0, 
which is the instant at which  
switch S1 is thrown closed.

di
dt

t

L
e

Figure 32.4  Plot of di/dt versus 
time for the RL circuit shown in Fig-
ure 32.2. The rate decreases exponen-
tially with time as i increases toward 
its maximum value.
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Example 32.2   Time Constant of an RL Circuit

Consider the circuit in Figure 32.2 again. Suppose the circuit elements have the following values: e 5 12.0 V, R 5  
6.00 V, and L 5 30.0 mH.

(A)  Find the time constant of the circuit.

Conceptualize  You should understand the operation and behavior of the circuit in Figure 32.2 from the discussion in 
this section.

Categorize  We evaluate the results using equations developed in this section, so this example is a substitution problem.

S o l u t I o N

Evaluate the time constant from Equation 32.8: t 5
L
R

5
30.0 3 1023 H

6.00 V
5 5.00 ms

(B)  Switch S2 is at position a, and switch S1 is thrown closed at t 5 0. Calculate the current in the circuit at t 5 2.00 ms.

S o l u t I o N

Evaluate the current at t 5 2.00 ms from 
Equation 32.7:

i 5
e
R

 11 2 e2t/t 2 5
12.0 V
6.00 V

11 2 e22.00 ms/5.00 ms 2 5 2.00 A 11 2 e20.400 2

5 0.659 A

(C)  Compare the potential difference across the resistor with that across the inductor.

At the instant the switch is closed, there is no current and therefore no potential difference across the resistor. At this 
instant, the battery voltage appears entirely across the inductor in the form of a back emf of 12.0 V as the inductor tries 
to maintain the zero-current condition. (The top end of the inductor in Fig. 32.2 is at a higher electric potential than 
the bottom end.) As time passes, the emf across the inductor decreases and the current in the resistor (and hence the 
voltage across it) increases as shown in Figure 32.6 (page 976). The sum of the two voltages at all times is 12.0 V.

 In Figure 32.6, the voltages across the resistor and inductor are equal at 3.4 ms. What if you wanted to 
delay the condition in which the voltages are equal to some later instant, such as t 5 10.0 ms? Which parameter, L or R, 
would require the least adjustment, in terms of a percentage change, to achieve that?

S o l u t I o N

What IF ?

At t � 0, the switch is thrown to 
position b and the current has 
its maximum value e/R.

i

t

R
e

Figure 32.5 Current versus 
time for the right-hand loop of  
the circuit shown in Figure 32.2. 
For t , 0, switch S2 is at position a.

It is left as a problem (Problem 22) to show that the solution of this differential 
equation is

 i 5
e
R

 e2t/t 5 Ii e
2t/t (32.10)

where e is the emf of the battery and Ii 5 e/R is the initial current at the instant 
the switch is thrown to b.
 If the circuit did not contain an inductor, the current would immediately 
decrease to zero when the battery is removed. When the inductor is present, it 
opposes the decrease in the current and causes the current to decrease exponen-
tially. A graph of the current in the circuit versus time (Fig. 32.5) shows that the 
current is continuously decreasing with time.

Q uick Quiz 32.2  Consider the circuit in Figure 32.2 with S1 open and S2 at posi-
tion a. Switch S1 is now thrown closed. (i) At the instant it is closed, across which 
circuit element is the voltage equal to the emf of the battery? (a) the resistor  
(b) the inductor (c) both the inductor and resistor (ii) After a very long time, 
across which circuit element is the voltage equal to the emf of the battery? 
Choose from among the same answers.

continued
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32.3 Energy in a Magnetic Field
A battery in a circuit containing an inductor must provide more energy than one 
in a circuit without the inductor. Consider Figure 32.2 with switch S  in position 
When switch S  is thrown closed, part of the energy supplied by the battery appears 
as internal energy in the resistance in the circuit, and the remaining energy is 
stored in the magnetic field of the inductor. Multiplying each term in Equation 
32.6 by  and rearranging the expression gives

Li
di
dt

(32.11)

Recognizing  as the rate at which energy is supplied by the battery and  as the 
rate at which energy is delivered to the resistor, we see that di ) must represent 
the rate at which energy is being stored in the inductor. If  is the energy stored 
in the inductor at any time, we can write the rate  at which energy is stored as

dU
dt

Li
di
dt

To find the total energy stored in the inductor at any instant, let’s rewrite this 
expression as Li di  and integrate:

dU Li di di

Li (32.12)

where  is constant and has been removed from the integral. Equation 32.12 repre
sents the energy stored in the magnetic field of the inductor when the current is 
It is similar in form to Equation 26.11 for the energy stored in the electric field of a 
capacitor, . In either case, energy is required to establish a field.

We can also determine the energy density of a magnetic field. For simplicity, con
sider a solenoid whose inductance is given by Equation 32.5:

Energy stored in an inductor

Pitfall Prevention 32.1
Capacitors, Resistors, and Induc
tors Store Energy Differently
Different energy-storage mecha
nisms are at work in capacitors, 
inductors, and resistors. A charged 
capacitor stores energy as electri
cal potential energy. An inductor 
stores energy as what we could call 
magnetic potential energy when it 
carries current. Energy delivered 
to a resistor is transformed to 
internal energy.

Now hold  fixed and find the appropriate value of t 5 5 t 14.4 ms 2 16.00 86.4 10  H

Hold  fixed and find the value of  that gives this 
time constant:

t 5
30.0 10  H

14.4 ms
2.08 

From the desired half-life of 10.0 ms, use the result from 
Example 28.10 to find the time constant of the circuit:

t 5
0.693

10.0 ms
0.693

14.4 ms

The change in  corresponds to a 65% decrease compared with the initial resistance. The change in  represents a 
188% increase in inductance! Therefore, a much smaller percentage adjustment in  can achieve the desired effect 
than would an adjustment in 

Answer Figure 32.6 shows that the voltages are equal 
when the voltage across the inductor has fallen to 
half its original value. Therefore, the time interval 
required for the voltages to become equal is the half-
life 1/2 of the decay. We introduced the half-life in 
the What If? section of Example 28.10 to describe the 
exponential decay in  circuits, where 1/2 0.693 64

Figure 32.6 (Example 32.2) 
The time behavior of the 
voltages across the resistor 
and inductor in Figure 32.2 
given the values provided in 
this example.
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Example 32.3   What Happens to the Energy in the Inductor? 

Consider once again the RL circuit shown in Figure 32.2, with switch S2 at position a and the current having reached 
its steady-state value. When S2 is thrown to position b, the current in the right-hand loop decays exponentially with 
time according to the expression i 5 Iie2t/t, where Ii 5 e/R is the initial current in the circuit and t 5 L/R is the time 
constant. Show that all the energy initially stored in the magnetic field of the inductor appears as internal energy in 
the resistor as the current decays to zero.

Conceptualize  Before S2 is thrown to b, energy is being delivered at a constant rate to the resistor from the battery and 
energy is stored in the magnetic field of the inductor. After t 5 0, when S2 is thrown to b, the battery can no longer 
provide energy and energy is delivered to the resistor only from the inductor.

Categorize  We model the right-hand loop of the circuit as an isolated system so that energy is transferred between com-
ponents of the system but does not leave the system.

Analyze  We begin by evaluating the energy delivered to the resistor, which appears as internal energy in the resistor.

AM

S o l u t I o N

The value of the definite integral can be shown to be 
L/2R (see Problem 36). Use this result to evaluate E int:

E int 5 I i
2R a L

2R
b 5 1

2LI i
2

Solve for dE int and integrate this expression over the lim-
its t 5 0 to t S `:

E int 5 3
`

0
Ii

2Re22Rt/L dt 5 I i
2R 3

`

0
e22Rt/L dt

Substitute the current given by Equation 32.10 into this 
equation:

dE int

dt
5 i 2R 5 1Ii e

2Rt/L 22R 5 Ii
2Re22Rt/L

Begin with Equation 27.22 and recognize that the rate 
of change of internal energy in the resistor is the power 
delivered to the resistor: 

dE int

dt
5 P 5 i 2R

continued

The magnetic field of a solenoid is given by Equation 30.17:

B 5 m0ni

Substituting the expression for L and i 5 B/m0n into Equation 32.12 gives

 UB 5 1
2Li 2 5 1

2 m0n
2V a B

m0n
b

2

5
B 2

2m0
 V  (32.13)

The magnetic energy density, or the energy stored per unit volume in the magnetic 
field of the inductor, is uB 5 UB/V, or

 uB 5
B 2

2m0
 (32.14)

 Although this expression was derived for the special case of a solenoid, it is valid 
for any region of space in which a magnetic field exists. Equation 32.14 is similar  
in form to Equation 26.13 for the energy per unit volume stored in an electric field, 
uE 5 1

2P0 E 2. In both cases, the energy density is proportional to the square of the 
field magnitude.

Q uick Quiz 32.3  You are performing an experiment that requires the  highest- 
possible magnetic energy density in the interior of a very long current-carrying 
solenoid. Which of the following adjustments increases the energy density? 
(More than one choice may be correct.) (a) increasing the number of turns per 
unit length on the solenoid (b) increasing the cross-sectional area of the sole-
noid (c) increasing only the length of the solenoid while keeping the number of 
turns per unit length fixed (d) increasing the current in the solenoid

WW Magnetic energy density
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Use Equation 32.2 to find the inductance of the cable: L 5
FB

i
5

m0,

2p
 ln a b

a
b

Substitute for the magnetic field and integrate over the 
entire light gold rectangle:

FB 5 3
b

a
 
m0 i
2pr

 , dr 5
m0 i,

2p
 3

b

a
 
dr
r

5
m0 i,

2p
  ln a b

a
 b

Divide the light gold rectangle into strips of width dr 
such as the darker strip in Figure 32.7. Evaluate the mag-
netic flux through such a strip:

dFB 5 B dA 5 B, dr

Finalize  The inductance depends only on geometric factors related to the cable. It increases if , increases, if b 
increases, or if a decreases. This result is consistent with our conceptualization: any of these changes increases the size 
of the loop represented by our radial slice and through which the magnetic field passes, increasing the inductance.

32.4 Mutual Inductance
Very often, the magnetic flux through the area enclosed by a circuit varies with 
time because of time-varying currents in nearby circuits. This condition induces an 

 

Example 32.4   The Coaxial Cable

Coaxial cables are often used to connect electrical devices, such as your video 
system, and in receiving signals in television cable systems. Model a long coaxial 
cable as a thin, cylindrical conducting shell of radius b concentric with a solid 
cylinder of radius a as in Figure 32.7. The conductors carry the same current I in 
opposite directions. Calculate the inductance L of a length , of this cable.

Conceptualize  Consider Figure 32.7. Although we do not have a visible coil in 
this geometry, imagine a thin, radial slice of the coaxial cable such as the light 
gold rectangle in Figure 32.7. If the inner and outer conductors are connected at 
the ends of the cable (above and below the figure), this slice represents one large 
conducting loop. The current in the loop sets up a magnetic field between the 
inner and outer conductors that passes through this loop. If the current changes, 
the magnetic field changes and the induced emf opposes the original change in 
the current in the conductors.

Categorize  We categorize this situation as one in which we must return to the 
fundamental definition of inductance, Equation 32.2.

Analyze  We must find the magnetic flux through the light gold rectangle in Figure 32.7. Ampère’s law (see Section 
30.3) tells us that the magnetic field in the region between the conductors is due to the inner conductor alone and that 
its magnitude is B 5 m0i/2pr, where r is measured from the common center of the cylinders. A sample circular field 
line is shown in Figure 32.7, along with a field vector tangent to the field line. The magnetic field is zero outside the 
outer shell because the net current passing through the area enclosed by a circular path surrounding the cable is zero; 
hence, from Ampère’s law, r B

S
 ? d sS 5 0.

 The magnetic field is perpendicular to the light gold rectangle of length , and width b 2 a, the cross section of 
interest. Because the magnetic field varies with radial position across this rectangle, we must use calculus to find the 
total magnetic flux.

S o l u t I o N

i

�

b
dr

r
i

a

B
S

Figure 32.7  (Example 32.4) Sec-
tion of a long coaxial cable. The inner 
and outer conductors carry equal cur-
rents in opposite directions.

 

▸ 32.3 c o n t i n u e d

Finalize  This result is equal to the initial energy stored in the magnetic field of the inductor, given by Equation 32.12, 
as we set out to prove.
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emf through a process known as mutual induction, so named because it depends on 
the interaction of two circuits.
 Consider the two closely wound coils of wire shown in cross-sectional view in 
Figure 32.8. The current i1 in coil 1, which has N1 turns, creates a magnetic field. 
Some of the magnetic field lines pass through coil 2, which has N 2 turns. The mag-
netic flux caused by the current in coil 1 and passing through coil 2 is represented 
by F12. In analogy to Equation 32.2, we can identify the mutual inductance M12 of 
coil 2 with respect to coil 1:

 M12 5
N2F12

i 1
 (32.15)

 Mutual inductance depends on the geometry of both circuits and on their orien-
tation with respect to each other. As the circuit separation distance increases, the 
mutual inductance decreases because the flux linking the circuits decreases.
 If the current i1 varies with time, we see from Faraday’s law and Equation 32.15 
that the emf induced by coil 1 in coil 2 is

 e2 5 2N2 
dF12

dt
5 2N2 

d
dt

aM12i1

N2
b 5 2M12 

di1

dt
 (32.16)

 In the preceding discussion, it was assumed the current is in coil 1. Let’s also 
imagine a current i 2 in coil 2. The preceding discussion can be repeated to show 
that there is a mutual inductance M 21. If the current i 2 varies with time, the emf 
induced by coil 2 in coil 1 is

 e1 5 2M 21 
di 2

dt
 (32.17)

In mutual induction, the emf induced in one coil is always proportional to the rate 
at which the current in the other coil is changing. Although the proportionality 
constants M12 and M21 have been treated separately, it can be shown that they are 
equal. Therefore, with M12 5 M21 5 M, Equations 32.16 and 32.17 become

e2 5 2M 
di1

dt
 and e1 5 2M 

di 2

dt

These two equations are similar in form to Equation 32.1 for the self-induced emf 
e 5 2L (di/dt). The unit of mutual inductance is the henry.

Q uick Quiz 32.4  In Figure 32.8, coil 1 is moved closer to coil 2, with the orienta-
tion of both coils remaining fixed. Because of this movement, the mutual induc-
tion of the two coils (a) increases, (b) decreases, or (c) is unaffected.

 Example 32.5   “Wireless” Battery Charger

An electric toothbrush has a base designed to hold the 
toothbrush handle when not in use. As shown in Figure 
32.9a, the handle has a cylindrical hole that fits loosely over 
a matching cylinder on the base. When the handle is placed 
on the base, a changing current in a solenoid inside the 
base cylinder induces a current in a coil inside the handle. 
This induced current charges the battery in the handle.
 We can model the base as a solenoid of length , with  
NB turns (Fig. 32.9b), carrying a current i, and having a 
cross-sectional area A. The handle coil contains NH turns 
and completely surrounds the base coil. Find the mutual 
inductance of the system.

b

Coil 1 (base)

Coil 2
(handle)

NB

NH�

a

.
 b

y 
Br

au
n 

Gm
bH

, K
ro

nb
er

g

Figure 32.9  (Example 32.5) (a) This electric toothbrush 
uses the mutual induction of solenoids as part of its battery- 
charging system. (b) A coil of NH turns wrapped around the 
center of a solenoid of NB turns.

A current in coil 1 sets up a 
magnetic field, and some of 
the magnetic field lines pass 
through coil 2.

Coil 1 Coil 2

N1 i1

N2 i2

Figure 32.8  A cross-sectional 
view of two adjacent coils.

continued
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

�

�

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S o l u t I o N

 

▸ 32.5 c o n t i n u e d
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which leads to the phenomenon of resonance. The same phenomenon is observed in 
the LC circuit. (See Section 33.7.)
 A representation of the energy transfer in an LC circuit is shown in Figure 
32.11. As mentioned, the behavior of the circuit is analogous to that of the par-
ticle in simple harmonic motion studied in Chapter 15. For example, consider 
the block–spring system shown in Figure 15.10. The oscillations of this system 
are shown at the right of Figure 32.11. The potential energy 1

2kx2 stored in the 
stretched spring is analogous to the potential energy Q 2

max/2C stored in the capaci-
tor in Figure 32.11. The kinetic energy 1

2mv2 of the moving block is analogous to  
the magnetic energy 1

2Li 2 stored in the inductor, which requires the presence of 
moving charges. In Figure 32.11a, all the energy is stored as electric potential energy 
in the capacitor at t 5 0 (because i 5 0), just as all the energy in a block–spring sys-
tem is initially stored as potential energy in the spring if it is stretched and released 
at t 5 0. In Figure 32.11b, all the energy is stored as magnetic energy 1

2LI 2
max in the 

inductor, where Imax is the maximum current. Figures 32.11c and 32.11d show sub-
sequent quarter-cycle situations in which the energy is all electric or all magnetic. 
At intermediate points, part of the energy is electric and part is magnetic.

L

i = 0+Q max

–Q max C

L

C

max

�Q

�Q

�q

max

�q

C

L

C

L

Imax

C

L

a

c

d

e

b

Energy in
capacitor

Total
energy

Energy in
inductor

Energy in
capacitor

Total
energy

Energy in
inductor

Energy in
capacitor

Total
energy

Energy in
inductor

Energy in
capacitor

Total
energy

Energy in
inductor

Energy in
capacitor

Total
energy

Energy in
inductor

%

0
50

100

%

0
50

100

%

0
50

100

%

0
50

100

%

0
50

100

0–A –A

x

vmax
S

vmax
S

x

k

k

k

k

k

v � 0

m

m

m

m

vS

v � 0

m

B
S

B
S

i � 

i

q � 0

Imaxi � 

q � 0

B
S

i � 0

E
S

E
S

E
S

� � �

� � �

� � � � � � �

� � � � � � �

+

–

+

–

+

–

+

–

+

–

+

–

+

–

Figure 32.11 Energy transfer in a resistanceless, nonradiating LC circuit. The capacitor has a 
charge Q max at t 5 0, the instant at which the switch in Figure 32.10 is closed. The mechanical analog 
of this circuit is the particle in simple harmonic motion, represented by the block–spring system at 
the right of the figure. (a)–(d)  At these special instants, all of the energy in the circuit resides in one 
of the circuit elements. (e) At an arbitrary instant, the energy is split between the capacitor and the 
inductor.
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 Consider some arbitrary time t after the switch is closed so that the capacitor has 
a charge q , Q max and the current is i , Imax. At this time, both circuit elements 
store energy, as shown in Figure 32.11e, but the sum of the two energies must equal 
the total initial energy U stored in the fully charged capacitor at t 5 0:

 U 5 UE 1 UB 5
q 2

2C
1 1

2Li2 5
Q max

2

2C
 (32.18)

Because we have assumed the circuit resistance to be zero and we ignore electromag-
netic radiation, no energy is transformed to internal energy and none is transferred 
out of the system of the circuit. Therefore, with these assumptions, the system of the 
circuit is isolated: the total energy of the system must remain constant in time. We describe 
the constant energy of the system mathematically by setting dU/dt 5 0. Therefore, 
by differentiating Equation 32.18 with respect to time while noting that q and i vary 
with time gives

 
dU
dt

5
d
dt

a q 2

2C
1 1

2Li 2b 5
q

C
  

dq

dt
1 Li 

di
dt

5 0  (32.19)

We can reduce this result to a differential equation in one variable by remembering 
that the current in the circuit is equal to the rate at which the charge on the capaci-
tor changes: i 5 dq/dt. It then follows that di/dt 5 d 2q/dt 2. Substitution of these 
relationships into Equation 32.19 gives

q

C
1 L 

d2q

dt 2 5 0

 
d2q

dt 2 5 2
1

LC
 q (32.20)

Let’s solve for q by noting that this expression is of the same form as the analogous 
Equations 15.3 and 15.5 for a particle in simple harmonic motion:

d2x
dt 2 5 2

k
m

 x 5 2v2x

where k is the spring constant, m is the mass of the block, and v 5 !k/m. The solu-
tion of this mechanical equation has the general form (Eq. 15.6):

x 5 A cos (vt 1 f)

where A is the amplitude of the simple harmonic motion (the maximum value of x), 
v is the angular frequency of this motion, and f is the phase constant; the values 
of A and f depend on the initial conditions. Because Equation 32.20 is of the same 
mathematical form as the differential equation of the simple harmonic oscillator, 
it has the solution

 q 5 Q max cos (vt 1 f) (32.21)

where Q max is the maximum charge of the capacitor and the angular frequency v is

 v 5
1

"LC
 (32.22)

Note that the angular frequency of the oscillations depends solely on the induc-
tance and capacitance of the circuit. Equation 32.22 gives the natural frequency of 
oscillation of the LC circuit.
 Because q varies sinusoidally with time, the current in the circuit also varies sinu-
soidally. We can show that by differentiating Equation 32.21 with respect to time:

 i 5
dq

dt
5 2vQ max sin 1vt 1 f 2  (32.23)

 total energy stored in 
an lC circuit

 Charge as a function of time 
for an ideal lC circuit

 angular frequency of 
oscillation in an lC circuit

 Current as a function of 
time for an ideal lC current
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The charge q and the current i 
are 90� out of phase with each 
other.

q

Imax

Q max

i

t

t

0 T 2TT
2

3T
2

Figure 32.12 Graphs of charge 
versus time and current versus 
time for a resistanceless, nonradi-
ating LC circuit.

 To determine the value of the phase angle f, let’s examine the initial conditions, 
which in our situation require that at t 5 0, i 5 0, and q 5 Q max. Setting i 5 0 at  
t 5 0 in Equation 32.23 gives

0 5 2vQ max sin f

which shows that f 5 0. This value for f also is consistent with Equation 32.21 and 
the condition that q 5 Q max at t 5 0. Therefore, in our case, the expressions for q 
and i are

 q 5 Q max cos vt (32.24)

 i 5 2vQ max sin vt 5 2Imax sin vt (32.25)

 Graphs of q versus t and i versus t are shown in Figure 32.12. The charge on the 
capacitor oscillates between the extreme values Q max and 2Q max, and the current 
oscillates between Imax and 2Imax. Furthermore, the current is 908 out of phase 
with the charge. That is, when the charge is a maximum, the current is zero, and 
when the charge is zero, the current has its maximum value.
 Let’s return to the energy discussion of the LC circuit. Substituting Equations 
32.24 and 32.25 in Equation 32.18, we find that the total energy is

 U 5 UE 1 UB 5
Q 2

max

2C
  cos2 vt 1 1

2LI 2
max sin2 vt  (32.26)

This expression contains all the features described qualitatively at the beginning of 
this section. It shows that the energy of the LC circuit continuously oscillates between 
energy stored in the capacitor’s electric field and energy stored in the inductor’s 
magnetic field. When the energy stored in the capacitor has its maximum value 
Q 2

max/2C, the energy stored in the inductor is zero. When the energy stored in the 
inductor has its maximum value 12 LI 2

max, the energy stored in the capacitor is zero.
 Plots of the time variations of UE and UB are shown in Figure 32.13. The sum  
UE 1 UB is a constant and is equal to the total energy Q 2

max/2C, or 12LI 2
max. Analytical 

verification is straightforward. The amplitudes of the two graphs in Figure 32.13 
must be equal because the maximum energy stored in the capacitor (when I 5 0) 
must equal the maximum energy stored in the inductor (when q 5 0). This equality 
is expressed mathematically as

Q 2
max

2C
5

LI 2
max

2

The sum of the two curves is a 
constant and is equal to the total 
energy stored in the circuit.

t

t
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Figure 32.13  Plots of UE versus t 
and UB versus t for a resistanceless, 
nonradiating LC circuit.
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Example 32.6   Oscillations in an LC Circuit

In Figure 32.14, the battery has an emf of 12.0 V, the inductance is 2.81 mH, 
and the capacitance is 9.00 pF. The switch has been set to position a for a long 
time so that the capacitor is charged. The switch is then thrown to position 
b, removing the battery from the circuit and connecting the capacitor directly 
across the inductor.

(A)  Find the frequency of oscillation of the circuit.

Conceptualize  When the switch is thrown to position b, the active part of the 
circuit is the right-hand loop, which is an LC circuit.

Categorize  We use equations developed in this section, so we categorize this example as a substitution problem.

S o l u t I o N

L

a

b

S

C
�

�
e

Figure 32.14  (Example 32.6) First 
the capacitor is fully charged with 
the switch set to position a. Then the 
switch is thrown to position b, and the 
battery is no longer in the circuit.

Substitute numerical values: f 5
1

2p 3 12.81 3 1023 H 2 19.00 3 10212 F 2 41/2 5 1.00 3 106 Hz

Use Equation 32.22 to find the frequency: f 5
v

2p
5

1

2p"LC

(B)  What are the maximum values of charge on the capacitor and current in the circuit?

S o l u t I o N

Find the initial charge on the capacitor, which equals 
the maximum charge:

Q max 5 C DV 5 (9.00 3 10212 F)(12.0 V) 5  1.08 3 10210 C

Use Equation 32.25 to find the maximum current 
from the maximum charge:

Imax 5 vQ max 5 2pf Q max 5 (2p 3 106 s21)(1.08 3 10210 C)

5 6.79 3 1024 A

Using this expression in Equation 32.26 for the total energy gives

 U 5
Q 2

max

2C
 1cos2 vt 1 sin2 vt 2 5

Q 2
max

2C
 (32.27)

because cos2 vt 1 sin2 vt 5 1.
 In our idealized situation, the oscillations in the circuit persist indefinitely; the 
total energy U of the circuit, however, remains constant only if energy transfers and 
transformations are neglected. In actual circuits, there is always some resistance 
and some energy is therefore transformed to internal energy. We mentioned at the 
beginning of this section that we are also ignoring radiation from the circuit. In 
reality, radiation is inevitable in this type of circuit, and the total energy in the cir-
cuit continuously decreases as a result of this process.

Q uick Quiz 32.5  (i) At an instant of time during the oscillations of an LC circuit, 
the current is at its maximum value. At this instant, what happens to the volt-
age across the capacitor? (a) It is different from that across the inductor. (b) It is 
zero. (c) It has its maximum value. (d) It is impossible to determine. (ii) Now con-
sider an instant when the current is momentarily zero. From the same choices, 
describe the magnitude of the voltage across the capacitor at this instant.

32.6 The RLC Circuit
Let’s now turn our attention to a more realistic circuit consisting of a resistor, an 
inductor, and a capacitor connected in series as shown in Figure 32.15. We assume 
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� L

R

a
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S

Ce

The switch is set first to position
a, and the capacitor is charged. 
The switch is then thrown to 
position b.

Figure 32.15 A series RLC 
circuit.

the resistance of the resistor represents all the resistance in the circuit. Suppose the 
switch is at position a so that the capacitor has an initial charge Q max. The switch 
is now thrown to position b. At this instant, the total energy stored in the capacitor 
and inductor is Q max

2 /2C . This total energy, however, is no longer constant as it 
was in the LC circuit because the resistor causes transformation to internal energy.  
(We continue to ignore electromagnetic radiation from the circuit in this discus-
sion.) Because the rate of energy transformation to internal energy within a resis-
tor is i 2R,

dU
dt

5 2i 2R

where the negative sign signifies that the energy U of the circuit is decreasing in 
time. Substituting U 5 UE 1 UB gives

 
q

C
  

dq

dt
1  Li 

di
dt

 5 2i 2R  (32.28)

To convert this equation into a form that allows us to compare the electrical oscilla-
tions with their mechanical analog, we first use i 5 dq/dt and move all terms to the 
left-hand side to obtain

Li 
d2q

dt 2 1 i 2R 1
q

C
 i 5 0

Now divide through by i:

L 
d2q

dt 2 1 iR 1
q

C
5 0

 L 
d2q

dt 2 1 R 
dq

dt
1

q

C
5 0 (32.29)

 The RLC circuit is analogous to the damped harmonic oscillator discussed in 
Section 15.6 and illustrated in Figure 15.20. The equation of motion for a damped 
block–spring system is, from Equation 15.31,

 m 
d2x
dt 2 1 b 

dx
dt

1 kx 5 0 (32.30)

Comparing Equations 32.29 and 32.30, we see that q corresponds to the position 
x of the block at any instant, L to the mass m of the block, R to the damping coef-
ficient b, and C to 1/k, where k is the force constant of the spring. These and other 
relationships are listed in Table 32.1 on page 986.
 Because the analytical solution of Equation 32.29 is cumbersome, we give only 
a qualitative description of the circuit behavior. In the simplest case, when R 5 0, 
Equation 32.29 reduces to that of a simple LC circuit as expected, and the charge 
and the current oscillate sinusoidally in time. This situation is equivalent to remov-
ing all damping in the mechanical oscillator.
 When R is small, a situation that is analogous to light damping in the mechani-
cal oscillator, the solution of Equation 32.29 is

 q 5 Q maxe2Rt/2L cos vdt (32.31)

where vd, the angular frequency at which the circuit oscillates, is given by

 vd 5 c 1
LC

2 a R
2L

b
2

d
1/2

 (32.32)

That is, the value of the charge on the capacitor undergoes a damped harmonic 
oscillation in analogy with a block–spring system moving in a viscous medium. 
Equation 32.32 shows that when R ,, !4L/C  (so that the second term in the 
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Table 32.1 Analogies Between the RLC Circuit and the Particle in Simple Harmonic Motion
  One-Dimensional
RLC Circuit  Particle in Simple Harmonic Motion

Charge q 4 x Position

Current i 4 vx Velocity

Potential difference DV 4 Fx Force

Resistance R 4 b Viscous damping coefficient

Capacitance C 4 1/k (k 5 spring constant)

Inductance L 4 m Mass

Current 5 time derivative 
 i 5

dq

dt
 4 vx 5

dx
dt

 
Velocity 5 time derivative 

 of charge    of position 

Rate of change of current 5 
 
di
dt

5
d 2q

dt 2 4 ax 5
dvx

dt
5

d 2x
dt 2  

Acceleration 5 second time 
 second time derivative    derivative of position 
 of charge

Energy in inductor  UB 5 1
2 Li 2 4 K 5 1

2mv 2  Kinetic energy of moving object

Energy in capacitor  UE 5 1
2 

q 2

C
 4 U 5 1

2 kx 2  Potential energy stored in a spring

Rate of energy loss due  i 2R 4 bv 2  Rate of energy loss due 
 to resistance    to friction

RLC circuit L 
d 2q

dt2 1 R 
dq

dt
1

q

C
5 0 4 m 

d 2x
dt2 1 b 

dx
dt

1 kx 5 0  Damped object on a spring

brackets is much smaller than the first), the frequency vd of the damped oscillator 
is close to that of the undamped oscillator, 1/!LC . Because i 5 dq/dt, it follows that 
the current also undergoes damped harmonic oscillation. A plot of the charge ver-
sus time for the damped oscillator is shown in Figure 32.16a, and an oscilloscope 
trace for a real RLC circuit is shown in Figure 32.16b. The maximum value of q 
decreases after each oscillation, just as the amplitude of a damped block–spring 
system decreases in time.
 For larger values of R, the oscillations damp out more rapidly; in fact, there 
exists a critical resistance value Rc 5 !4L/C  above which no oscillations occur. A 
system with R 5 Rc is said to be critically damped. When R exceeds Rc, the system is 
said to be overdamped.

a

The q -versus-t curve represents 
a plot of Equation 32.31.

Q max

q

0 t

b

iS
to

ck
ph

ot
o.

co
m

/A
_C

ar
in

a

Figure 32.16 (a) Charge versus 
time for a damped RLC circuit. 
The charge decays in this way 
when R , !4L/C . (b) Oscillo-
scope pattern showing the decay in 
the oscillations of an RLC circuit.
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Concepts and Principles

 When the current in a loop of wire 
changes with time, an emf is induced in 
the loop according to Faraday’s law. The 
self-induced emf is

 eL 5 2L 
di
dt

 (32.1)

where L is the inductance of the loop. 
Inductance is a measure of how much 
opposition a loop offers to a change in the 
current in the loop. Inductance has the SI 
unit of henry (H), where 1 H 5 1 V ? s/A.

 The energy stored in the magnetic 
field of an inductor carrying a current i is

 UB 5 1
2Li 2 (32.12)

This energy is the magnetic counterpart 
to the energy stored in the electric field of 
a charged capacitor.
 The energy density at a point where 
the magnetic field is B is

 uB 5
B 2

2m0
 (32.14)

 In an LC circuit that has zero resistance and does not 
radiate electromagnetically (an idealization), the values 
of the charge on the capacitor and the current in the 
circuit vary sinusoidally in time at an angular frequency 
given by

 v 5
1

"LC
 (32.22)

The energy in an LC circuit continuously transfers 
between energy stored in the capacitor and energy 
stored in the inductor.

 The inductance of any coil is

 L 5
NFB

i
 (32.2)

where N is the total number of turns and FB is the magnetic flux 
through the coil. The inductance of a device depends on its geom-
etry. For example, the inductance of an air-core solenoid is

 L 5 m0 
N 2

,
 A  (32.4)

where , is the length of the solenoid and A is the cross-sectional area.

 If a resistor and inductor are connected in series to a battery of 
emf e at time t 5 0, the current in the circuit varies in time accord-
ing to the expression

 i 5
e
R

11 2 e2t/t 2  (32.7)

where t 5 L/R is the time constant of the RL circuit. If we replace 
the battery in the circuit by a resistanceless wire, the current decays 
exponentially with time according to the expression

 i 5
e
R

 e2t/t (32.10)

where e/R is the initial current in the circuit.

 The mutual inductance of a system of two coils is

 M12 5
N2F12

i1
5 M21 5

N1F21

i 2
5 M  (32.15)

This mutual inductance allows us to relate the induced 
emf in a coil to the changing source current in a nearby 
coil using the relationships

 e2 5 2M12 
di1

dt
 and e1 5 2M21 

di 2

dt
 (32.16, 32.17)

 In an RLC circuit with small resistance, the charge 
on the capacitor varies with time according to

 q 5 Q maxe2Rt/2L cos vdt (32.31)

where

 vd 5 c 1
LC

2 a R
2L

b
2

d
1/2

 (32.32)

Summary
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 1. The centers of two circular loops are separated by a 
fixed distance. (i) For what relative orientation of the 
loops is their mutual inductance a maximum? (a) coax-
ial and lying in parallel planes (b) lying in the same 
plane (c) lying in perpendicular planes, with the cen-
ter of one on the axis of the other (d) The orientation 
makes no difference. (ii) For what relative orientation is 
their mutual inductance a minimum? Choose from the 
same possibilities as in part (i).

 2. A long, fine wire is wound into a coil with inductance 
5 mH. The coil is connected across the terminals of 
a battery, and the current is measured a few seconds 
after the connection is made. The wire is unwound 
and wound again into a different coil with L 5 10 mH. 
This second coil is connected across the same battery, 
and the current is measured in the same way. Com-
pared with the current in the first coil, is the current 
in the second coil (a) four times as large, (b)  twice 
as large, (c) unchanged, (d) half as large, or (e) one-
fourth as large?

 3. A solenoidal inductor for a printed circuit board is 
being redesigned. To save weight, the number of turns 
is reduced by one-half, with the geometric dimensions 
kept the same. By how much must the current change 
if the energy stored in the inductor is to remain the 
same? (a) It must be four times larger. (b) It must be 
two times larger. (c) It should be left the same. (d) It 
should be one-half as large. (e) No change in the cur-
rent can compensate for the reduction in the number 
of turns.

 4. In Figure OQ32.4, the switch is left in position a for a 
long time interval and is then quickly thrown to posi-

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

tion b. Rank the magnitudes of the voltages across the 
four circuit elements a short time thereafter from the 
largest to the smallest.

12.0 V
1 200 �

12.0 �

2.00 H

Sa

b

�

�

�

�

Figure oQ32.4

 5. Two solenoids, A and B, are wound using equal lengths 
of the same kind of wire. The length of the axis of each 
solenoid is large compared with its diameter. The axial 
length of A is twice as large as that of B, and A has 
twice as many turns as B. What is the ratio of the induc-
tance of solenoid A to that of solenoid B? (a) 4 (b) 2  
(c) 1 (d) 1

2  (e) 1
4

 6. If the current in an inductor is doubled, by what factor 
is the stored energy multiplied? (a) 4 (b) 2 (c) 1 (d) 1

2  
(e) 1

4

 7. Initially, an inductor with no resistance carries a con-
stant current. Then the current is brought to a new 
constant value twice as large. After this change, when 
the current is constant at its higher value, what has 
happened to the emf in the inductor? (a) It is larger 
than before the change by a factor of 4. (b) It is larger 
by a factor of 2. (c) It has the same nonzero value. (d) It 
continues to be zero. (e) It has decreased.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Consider this thesis: “Joseph Henry, America’s first pro-
fessional physicist, caused a basic change in the human 
view of the Universe when he discovered self-induction  
during a school vacation at the Albany Academy 
about 1830. Before that time, one could think of the 
Universe as composed of only one thing: matter. The 
energy that temporarily maintains the current after a 
battery is removed from a coil, on the other hand, is 
not energy that belongs to any chunk of matter. It is 
energy in the massless magnetic field surrounding the 
coil. With Henry’s discovery, Nature forced us to admit 
that the Universe consists of fields as well as matter.”  
(a) Argue for or against the statement. (b) In your 
view, what makes up the Universe?

 2. (a) What parameters affect the inductance of a coil? 
(b) Does the inductance of a coil depend on the cur-
rent in the coil?

 3. A switch controls the current in a circuit that has a 
large inductance. The electric arc at the switch (Fig. 

CQ32.3) can melt and oxidize the contact surfaces, 
resulting in high resistivity of the contacts and even-
tual destruction of the switch. Is a spark more likely 
to be produced at the switch when the switch is being 
closed, when it is being opened, or does it not matter?

Figure CQ32.3
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 4. Consider the four circuits shown in Figure CQ32.4, 
each consisting of a battery, a switch, a lightbulb, a 
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which current must change through it to produce an 
emf of 75.0 mV.

 5. An emf of 24.0 mV is induced in a 500-turn coil when 
the current is changing at the rate of 10.0 A/s. What is 
the magnetic flux through each turn of the coil at an 
instant when the current is 4.00 A?

 6. A 40.0-mA current is carried by a uniformly wound air-
core solenoid with 450 turns, a 15.0-mm diameter, and 
12.0-cm length. Compute (a) the magnetic field inside 
the solenoid, (b) the magnetic flux through each turn, 
and (c)  the inductance of the solenoid. (d) What If? 
If the current were different, which of these quantities 
would change?

 7. The current in a coil changes from 3.50 A to 2.00 A in 
the same direction in 0.500 s. If the average emf induced 
in the coil is 12.0 mV, what is the inductance of the coil?

Q/C

resistor, and either a capacitor or an inductor. Assume 
the capacitor has a large capacitance and the inductor 
has a large inductance but no resistance. The lightbulb 
has high efficiency, glowing whenever it carries electric 
current. (i) Describe what the lightbulb does in each 
of circuits (a) through (d) after the switch is thrown 
closed. (ii) Describe what the lightbulb does in each of 
circuits (a) through (d) when, having been closed for a 
long time interval, the switch is opened.
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a b

c d

Figure CQ32.4

 5. The current in a circuit containing a coil, a resistor, 
and a battery has reached a constant value. (a) Does 
the coil have an inductance? (b) Does the coil affect 
the value of the current?

Section 32.1  Self-Induction and Inductance

 1. A coil has an inductance of 3.00 mH, and the current 
in it changes from 0.200 A to 1.50 A in a time interval 
of 0.200 s. Find the magnitude of the average induced 
emf in the coil during this time interval.

 2. A coiled telephone cord forms a spiral with 70.0 turns, 
a diameter of 1.30 cm, and an unstretched length of 
60.0 cm. Determine the inductance of one conductor 
in the unstretched cord.

 3. A 2.00-H inductor carries a steady current of 0.500 A. 
When the switch in the circuit is opened, the current 
is effectively zero after 10.0 ms. What is the average 
induced emf in the inductor during this time interval?

 4. A solenoid of radius 2.50 cm has 400 turns and a length 
of 20.0 cm. Find (a) its inductance and (b) the rate at M

 6. (a) Can an object exert a force on itself? (b) When a 
coil induces an emf in itself, does it exert a force on 
itself?

 7. The open switch in Figure 
CQ32.7 is thrown closed at t 5 
0. Before the switch is closed, 
the capacitor is uncharged and 
all currents are zero. Determine 
the currents in L, C, and R, the 
emf across L, and the potential 
differences across C and 
R (a) at the instant after 
the switch is closed and 
(b) long after it is closed.

 8. After the switch is closed 
in the LC circuit shown in 
Figure CQ32.8, the charge 
on the capacitor is some-
times zero, but at such 
instants the current in the 
circuit is not zero. How is 
this behavior possible?

 9. How can you tell whether an RLC circuit is overdamped 
or underdamped?

 10. Discuss the similarities between the energy stored in 
the electric field of a charged capacitor and the energy 
stored in the magnetic field of a current-carrying coil.

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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Figure CQ32.8 Conceptual 
Question 8 and Problems 52, 
54, and 55.
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Section 32.2  Rl Circuits

 15. A 510-turn solenoid has a radius of 8.00 mm and an 
overall length of 14.0 cm. (a) What is its inductance? 
(b) If the solenoid is connected in series with a 2.50-V 
resistor and a battery, what is the time constant of the 
circuit?

 16. A 12.0-V battery is connected into a series circuit con-
taining a 10.0-V resistor and a 2.00-H inductor. In 
what time interval will the current reach (a) 50.0% and 
(b) 90.0% of its final value?

 17. A series RL circuit with L 5 3.00 H and a series RC cir-
cuit with C 5 3.00 mF have equal time constants. If the 
two circuits contain the same resistance R, (a) what is 
the value of R? (b) What is the time constant?

 18. In the circuit diagrammed in Figure P32.18, take e 5 
12.0 V and R 5 24.0 V. Assume the switch is open for  
t , 0 and is closed at t 5 0. On a single set of axes, 
sketch graphs of the current in the circuit as a func-
tion of time for t $ 0, assuming (a) the inductance in 
the circuit is essentially zero, (b) the inductance has 
an intermediate value, and (c)  the inductance has a 
very large value. Label the initial and final values of 
the current.

L

R
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e
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Figure P32.18  
Problems 18, 20, 23, 24, and 27.

 19. Consider the circuit shown in Figure P32.19. (a) When 
the switch is in position a, for what value of R will the 
circuit have a time constant of 15.0 ms? (b) What is 
the current in the inductor at the instant the switch is 
thrown to position b?

24.0 V

5.00 mHS

R

a

b

�

�

�

�
450 �

Figure P32.19

 20. When the switch in Figure P32.18 is closed, the current 
takes 3.00 ms to reach 98.0% of its final value. If R 5 
10.0 V, what is the inductance?

 21. A circuit consists of a coil, a switch, and a battery, all 
in series. The internal resistance of the battery is neg-
ligible compared with that of the coil. The switch is 
originally open. It is thrown closed, and after a time 
interval Dt, the current in the circuit reaches 80.0% 

M

Q/C

 8. A technician wraps wire around a tube of length  
36.0 cm having a diameter of 8.00 cm. When the wind-
ings are evenly spread over the full length of the tube, 
the result is a solenoid containing 580 turns of wire.  
(a) Find the inductance of this solenoid. (b) If the cur-
rent in this solenoid increases at the rate of 4.00 A/s, 
find the self-induced emf in the solenoid.

 9. The current in a 90.0-mH inductor changes with time 
as i 5 1.00t 2 2 6.00t, where i is in amperes and t is in 
seconds. Find the magnitude of the induced emf at  
(a) t 5 1.00 s and (b) t 5 4.00 s. (c) At what time is the 
emf zero?

 10. An inductor in the form of a solenoid contains 420 
turns and is 16.0 cm in length. A uniform rate of 
decrease of current through the inductor of 0.421 A/s 
induces an emf of 175 mV. What is the radius of the 
solenoid?

 11. A self-induced emf in a solenoid of inductance L 
changes in time as e 5 e0e2kt. Assuming the charge is 
finite, find the total charge that passes a point in the 
wire of the solenoid.

 12. A toroid has a major radius R and a minor radius r 
and is tightly wound with N turns of wire on a hol-
low cardboard torus. Figure P32.12 shows half of this 
toroid, allowing us to see its cross section. If R .. r, 
the magnetic field in the region enclosed by the wire 
is essentially the same as the magnetic field of a sole-
noid that has been bent into a large circle of radius 
R. Modeling the field as the uniform field of a long 
solenoid, show that the inductance of such a toroid is 
approximately

 L <
1
2 m0 N 2 

r 2

R

R Area
Ar

Figure P32.12

 13. A 10.0-mH inductor carries a current i 5 Imax sin vt, 
with Imax 5 5.00 A and f 5 v/2p 5 60.0 Hz. What is the 
self-induced emf as a function of time?

 14. The current in a 4.00 mH-inductor varies in time as 
shown in Figure P32.14. Construct a graph of the self-
induced emf across the inductor over the time interval 
t 5 0 to t 5 12.0 ms.
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Figure P32.14
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circuit shown in Figure P32.28b. Determine the cur-
rent in the inductor as a function of time.

10.0 mH100 �5

0

10

i (A)
i (t)

t (ms)
100 200

a b

Figure P32.28

 29. An inductor that has an inductance of 15.0 H and a 
resistance of 30.0 V is connected across a 100-V bat-
tery. What is the rate of increase of the current (a) at  
t 5 0 and (b) at t 5 1.50 s?

 30. Two ideal inductors, L1 and L 2, have zero internal resis-
tance and are far apart, so their magnetic fields do not 
influence each other. (a) Assuming these inductors are 
connected in series, show that they are equivalent to a 
single ideal inductor having Leq 5 L1 + L 2. (b) Assum-
ing these same two inductors are connected in parallel, 
show that they are equivalent to a single ideal inductor 
having 1/Leq 5 1/L1 1 1/L 2. (c) What If? Now consider  
two inductors L1 and L 2 that have nonzero internal 
resistances R1 and R 2, respectively. Assume they are 
still far apart, so their mutual inductance is zero, 
and assume they are connected in series. Show that 
they are equivalent to a single inductor having Leq 5  
L1 1 L 2 and Req 5 R1 1 R 2. (d) If these same inductors 
are now connected in parallel, is it necessarily true that 
they are equivalent to a single ideal inductor having  
1/Leq 5 1/L1 1 1/L 2 and 1/Req 5 1/R1 1 1/R 2? 
Explain your answer.

 31. A 140-mH inductor and a 4.90-V resistor are con-
nected with a switch to a 6.00-V battery as shown in 
Figure P32.31. (a) After the switch is first thrown to 
a (connecting the battery), what time interval elapses 
before the current reaches 220 mA? (b) What is the 
current in the inductor 10.0 s after the switch is closed? 
(c) Now the switch is quickly thrown from a to b. What 
time interval elapses before the current in the inductor 
falls to 160 mA?

a

b
LR

S

e
� �

Figure P32.31

Section 32.3  Energy in a Magnetic Field

 32. Calculate the energy associated with the magnetic 
field of a 200-turn solenoid in which a current of 1.75 A 
produces a magnetic flux of 3.70 3 1024 T ? m2 in each 
turn.

S
Q/C

M

of its final value. The switch then remains closed for 
a time interval much longer than Dt. The wires con-
nected to the terminals of the battery are then short-
circuited with another wire and removed from the 
battery, so that the current is uninterrupted. (a) At an 
instant that is a time interval Dt after the short circuit, 
the current is what percentage of its maximum value? 
(b) At the moment 2Dt after the coil is short-circuited, 
the current in the coil is what percentage of its maxi-
mum value?

 22. Show that i 5 Iie2t/t is a solution of the differential 
equation

iR 1 L
di
dt

5 0

  where Ii is the current at t 5 0 and t 5 L/R.

 23. In the circuit shown in Figure P32.18, let L 5 7.00 H,  
R 5 9.00 V, and e 5 120 V. What is the self-induced 
emf 0.200 s after the switch is closed?

 24. Consider the circuit in Figure P32.18, taking e 5 6.00 V,  
L 5 8.00 mH, and R 5 4.00 V. (a) What is the induc-
tive time constant of the circuit? (b) Calculate the 
current in the circuit 250 ms after the switch is closed.  
(c) What is the value of the final steady-state current? 
(d) After what time interval does the current reach 
80.0% of its maximum value?

 25. The switch in Figure P32.25 is open for t , 0 and is 
then thrown closed at time t 5 0. Assume R 5 4.00 V, 
L 5 1.00 H, and e 5 10.0 V. Find (a) the current in the 
inductor and (b) the current in the switch as functions 
of time thereafter.
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Figure P32.25 Problems 25, 26, and 64.

 26. The switch in Figure P32.25 is open for t , 0 and is 
then thrown closed at time t 5 0. Find (a) the current 
in the inductor and (b) the current in the switch as 
functions of time thereafter.

 27. For the RL circuit shown in Figure P32.18, let the 
inductance be 3.00 H, the resistance 8.00 V, and  
the battery emf 36.0 V. (a) Calculate DVR/eL, that is, the 
ratio of the potential difference across the resistor to 
the emf across the inductor when the current is 2.00 A.  
(b) Calculate the emf across the inductor when the 
current is 4.50 A.

 28. Consider the current pulse i(t) shown in Figure 
P32.28a. The current begins at zero, becomes 10.0 A 
between t 5 0 and t 5 200 ms, and then is zero once 
again. This pulse is applied to the input of the partial 

W
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 33. An air-core solenoid with 68 turns is 8.00 cm long and 
has a diameter of 1.20 cm. When the solenoid carries 
a current of 0.770 A, how much energy is stored in its 
magnetic field?

 34. A 10.0-V battery, a 5.00-V resistor, and a 10.0-H inductor 
are connected in series. After the current in the circuit 
has reached its maximum value, calculate (a) the power 
being supplied by the battery, (b) the power being deliv-
ered to the resistor, (c) the power being delivered to 
the inductor, and (d) the energy stored in the magnetic 
field of the inductor.

 35. On a clear day at a certain location, a 100-V/m verti-
cal electric field exists near the Earth’s surface. At the 
same place, the Earth’s magnetic field has a magnitude 
of 0.500  3 1024  T. Compute the energy densities of  
(a) the electric field and (b) the magnetic field.

 36. Complete the calculation in Example 32.3 by proving 
that 

3
`

0
 e22Rt/L dt 5

L
2R

 37. A 24.0-V battery is connected in series with a resistor 
and an inductor, with R 5 8.00 V and L 5 4.00 H,  
respectively. Find the energy stored in the inductor  
(a) when the current reaches its maximum value and 
(b) at an instant that is a time interval of one time con-
stant after the switch is closed.

 38. A flat coil of wire has an inductance of 40.0 mH and 
a resistance of 5.00 V. It is connected to a 22.0-V bat-
tery at the instant t 5 0. Consider the moment when 
the current is 3.00 A. (a) At what rate is energy being 
delivered by the battery? (b) What is the power being 
delivered to the resistance of the coil? (c) At what rate 
is energy being stored in the magnetic field of the coil? 
(d) What is the relationship among these three power 
values? (e) Is the relationship described in part (d) 
true at other instants as well? (f) Explain the relation-
ship at the moment immediately after t 5 0 and at a 
moment several seconds later.

 39. The magnetic field inside a superconducting sole-
noid is 4.50 T. The solenoid has an inner diameter of  
6.20 cm and a length of 26.0 cm. Determine (a) the 
magnetic energy density in the field and (b) the energy 
stored in the magnetic field within the solenoid.

Section 32.4  Mutual Inductance

 40. An emf of 96.0 mV is induced in the windings of a coil 
when the current in a nearby coil is increasing at the 
rate of 1.20 A/s. What is the mutual inductance of the 
two coils?

 41. Two coils, held in fixed positions, have a mutual induc-
tance of 100 mH. What is the peak emf in one coil when 
the current in the other coil is i(t) 5 10.0 sin (1.00 3 
103t), where i is in amperes and t is in seconds?

 42. Two coils are close to each other. The first coil carries 
a current given by i(t) 5 5.00 e20.025 0t sin 120pt, where i 

M
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is in amperes and t is in seconds. At t 5 0.800 s, the emf 
measured across the second coil is 23.20 V. What is the 
mutual inductance of the coils?

 43. Two solenoids A and B, spaced close to each other and 
sharing the same cylindrical axis, have 400 and 700 
turns, respectively. A current of 3.50 A in solenoid A 
produces an average flux of 300 mWb through each 
turn of A and a flux of 90.0 mWb through each turn of 
B. (a) Calculate the mutual inductance of the two sole-
noids. (b) What is the inductance of A? (c) What emf is 
induced in B when the current in A changes at the rate 
of 0.500 A/s?

 44. Solenoid S1 has N1 turns, radius R1, and length ,. It is 
so long that its magnetic field is uniform nearly every-
where inside it and is nearly zero outside. Solenoid S2 
has N2 turns, radius R 2 , R 1, and the same length as 
S1. It lies inside S1, with their axes parallel. (a) Assume 
S1 carries variable current i. Compute the mutual 
inductance characterizing the emf induced in S2.  
(b) Now assume S2 carries current i. Compute the 
mutual inductance to which the emf in S1 is propor-
tional. (c) State how the results of parts (a) and (b) 
compare with each other.

 45. On a printed circuit board, a relatively long, straight 
conductor and a conducting rectangular loop lie in 
the same plane as shown in Figure P32.45. Taking h 5 
0.400 mm, w 5 1.30 mm, and , 5 2.70 mm, find their 
mutual inductance.

I

w

,

h

Figure P32.45

 46. Two single-turn circular loops of wire have radii R and 
r, with R .. r. The loops lie in the same plane and are 
concentric. (a) Show that the mutual inductance of the 
pair is approximately M 5 m0pr 2/2R. (b) Evaluate M 
for r 5 2.00 cm and R 5 20.0 cm.

Section 32.5  oscillations in an lC Circuit

 47. In the circuit of Figure P32.47, the battery emf is  
50.0 V, the resistance is 250 V, and the capacitance 
is 0.500 mF. The switch S is closed for a long time 
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interval, and zero potential difference is measured 
across the capacitor. After the switch is opened, the 
potential difference across the capacitor reaches a 
maximum value of 150 V. What is the value of the 
inductance?

 48. A 1.05-mH inductor is connected in series with a vari-
able capacitor in the tuning section of a shortwave 
radio set. What capacitance tunes the circuit to the sig-
nal from a transmitter broadcasting at 6.30 MHz?

 49. A 1.00-mF capacitor is charged by a 40.0-V power sup-
ply. The fully charged capacitor is then discharged 
through a 10.0-mH inductor. Find the maximum cur-
rent in the resulting oscillations.

 50. Calculate the inductance of an LC circuit that oscil-
lates at 120 Hz when the capacitance is 8.00 mF.

 51. An LC circuit consists of a 20.0-mH inductor and a 
0.500-mF capacitor. If the maximum instantaneous 
current is 0.100 A, what is the greatest potential differ-
ence across the capacitor?

 52. Why is the following situation impossible? The LC circuit 
shown in Figure CQ32.8 has L 5 30.0 mH and C 5 
50.0 mF. The capacitor has an initial charge of 200 mC.  
The switch is closed, and the circuit undergoes 
undamped LC oscillations. At periodic instants, the 
energies stored by the capacitor and the inductor 
are equal, with each of the two components storing  
250 mJ.

 53. The switch in Figure P32.53 is connected to position a 
for a long time interval. At t 5 0, the switch is thrown to 
position b. After this time, what are (a) the frequency of 
oscillation of the LC circuit, (b) the maximum charge 
that appears on the capacitor, (c) the maximum cur-
rent in the inductor, and (d) the total energy the cir-
cuit possesses at t 5 3.00 s?

1.00 mF
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Figure P32.53

 54. An LC circuit like that in Figure CQ32.8 consists of a 
3.30-H inductor and an 840-pF capacitor that initially 
carries a 105-mC charge. The switch is open for t , 0 
and is then thrown closed at t 5 0. Compute the fol-
lowing quantities at t 5 2.00 ms: (a) the energy stored 
in the capacitor, (b) the energy stored in the inductor, 
and (c) the total energy in the circuit.

 55. An LC circuit like the one in Figure CQ32.8 contains 
an 82.0-mH inductor and a 17.0-mF capacitor that ini-
tially carries a 180-mC charge. The switch is open for 
t , 0 and is then thrown closed at t 5 0. (a) Find the 
frequency (in hertz) of the resulting oscillations. At  
t 5 1.00 ms, find (b) the charge on the capacitor and  
(c) the current in the circuit.

AMT

M

AMT

Section 32.6  the RlC Circuit

 56. Show that Equation 32.28 in the text is Kirchhoff’s 
loop rule as applied to the circuit in Figure P32.56 
with the switch thrown to position b.
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Figure P32.56 Problems 56 and 57.

 57. In Figure P32.56, let R 5 7.60 V, L 5 2.20 mH, and C 5  
1.80 mF. (a) Calculate the frequency of the damped 
oscillation of the circuit when the switch is thrown 
to position b. (b) What is the critical resistance for 
damped oscillations?

 58. Consider an LC circuit in which L 5 500 mH and  
C 5 0.100 mF. (a) What is the resonance frequency v0? 
(b)  If a resistance of 1.00 kV is introduced into this 
circuit, what is the frequency of the damped oscilla-
tions? (c) By what percentage does the frequency of 
the damped oscillations differ from the resonance 
frequency?

 59. Electrical oscillations are initiated in a series circuit 
containing a capacitance C, inductance L, and resis-
tance R. (a) If R ,, !4L/C  (weak damping), what 
time interval elapses before the amplitude of the 
current oscillation falls to 50.0% of its initial value?  
(b) Over what time interval does the energy decrease 
to 50.0% of its initial value?

additional Problems

 60. Review. This problem extends the reasoning of Sec-
tion 26.4, Problem 38 in Chapter 26, Problem 34 in 
Chapter 30, and Section 32.3. (a) Consider a capacitor 
with vacuum between its large, closely spaced, oppo-
sitely charged parallel plates. Show that the force on 
one plate can be accounted for by thinking of the elec-
tric field between the plates as exerting a “negative 
pressure” equal to the energy density of the electric 
field. (b) Consider two infinite plane sheets carrying 
electric currents in opposite directions with equal lin-
ear current densities Js . Calculate the force per area 
acting on one sheet due to the magnetic field, of mag-
nitude m0 Js/2, created by the other sheet. (c) Calcu-
late the net magnetic field between the sheets and the 
field outside of the volume between them. (d) Calcu-
late the energy density in the magnetic field between 
the sheets. (e) Show that the force on one sheet can 
be accounted for by thinking of the magnetic field 
between the sheets as exerting a positive pressure 
equal to its energy density. This result for magnetic 
pressure applies to all current configurations, not only 
to sheets of current.
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 61. A 1.00-mH inductor and a 1.00-mF capacitor are con-
nected in series. The current in the circuit increases 
linearly in time as i 5 20.0t, where i is in amperes and t 
is in seconds. The capacitor initially has no charge. 
Determine (a) the voltage across the inductor as a 
function of time, (b) the voltage across the capacitor as 
a function of time, and (c) the time when the energy 
stored in the capacitor first exceeds that in the 
inductor.

 62. An inductor having inductance L and a capacitor hav-
ing capacitance C are connected in series. The current 
in the circuit increases linearly in time as described 
by i 5 Kt, where K is a constant. The capacitor is ini-
tially uncharged. Determine (a) the voltage across the 
inductor as a function of time, (b) the voltage across 
the capacitor as a function of time, and (c) the time 
when the energy stored in the capacitor first exceeds 
that in the inductor.

 63. A capacitor in a series LC circuit has an initial charge 
Q and is being discharged. When the charge on the 
capacitor is Q /2, find the flux through each of the N 
turns in the coil of the inductor in terms of Q , N, L, 
and C.

 64. In the circuit diagrammed in Figure P32.25, assume 
the switch has been closed for a long time interval and 
is opened at t 5 0. Also assume R 5 4.00 V, L 5 1.00 H, 
and e 5 10.0 V. (a) Before the switch is opened, does 
the inductor behave as an open circuit, a short circuit, a 
resistor of some particular resistance, or none of those 
choices? (b) What current does the inductor carry?  
(c) How much energy is stored in the inductor for t , 
0? (d) After the switch is opened, what happens to the 
energy previously stored in the inductor? (e) Sketch a 
graph of the current in the inductor for t $ 0. Label the 
initial and final values and the time constant.

 65. When the current in the portion of the circuit shown 
in Figure P32.65 is 2.00 A and increases at a rate of 
0.500 A/s, the measured voltage is DVab 5 9.00 V. 
When the current is 2.00 A and decreases at the rate of  
0.500 A/s, the measured voltage is DVab 5 5.00 V. Cal-
culate the values of (a) L and (b) R.

a

L R

b

Figure P32.65

 66. At the moment t 5 0, a 24.0-V battery is connected 
to a 5.00-mH coil and a 6.00-V resistor. (a) Immedi-
ately thereafter, how does the potential difference 
across the resistor compare to the emf across the coil?  
(b) Answer the same question about the circuit several 
seconds later. (c) Is there an instant at which these two 
voltages are equal in magnitude? If so, when? Is there 
more than one such instant? (d) After a 4.00-A current 
is established in the resistor and coil, the battery is sud-
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denly replaced by a short circuit. Answer parts (a), (b), 
and (c) again with reference to this new circuit.

 67. (a) A flat, circular coil does not actually produce a uni-
form magnetic field in the area it encloses. Neverthe-
less, estimate the inductance of a flat, compact, circu-
lar coil with radius R and N turns by assuming the field 
at its center is uniform over its area. (b) A circuit on a 
laboratory table consists of a 1.50-volt battery, a 270-V 
resistor, a switch, and three 30.0-cm-long patch cords 
connecting them. Suppose the circuit is arranged to 
be circular. Think of it as a flat coil with one turn. 
Compute the order of magnitude of its inductance and  
(c) of the time constant describing how fast the current 
increases when you close the switch.

 68. Why is the following situation impossible? You are working 
on an experiment involving a series circuit consisting 
of a charged 500-mF capacitor, a 32.0-mH inductor, 
and a resistor R. You discharge the capacitor through 
the inductor and resistor and observe the decaying 
oscillations of the current in the circuit. When the 
resistance R is 8.00 V, the decay in the oscillations is 
too slow for your experimental design. To make the 
decay faster, you double the resistance. As a result, you 
generate decaying oscillations of the current that are 
perfect for your needs.

 69. A time-varying current i is sent through a 50.0-mH 
inductor from a source as shown in Figure P32.69a. 
The current is constant at i 5 21.00 mA until t 5 0 
and then varies with time afterward as shown in Figure 
P32.69b. Make a graph of the emf across the inductor 
as a function of time.

a

b

Current
source 50.0 mH

i
i (mA)

0

1

�1

2

2 4
t (ms)

a b

Figure P32.69

 70. At t 5 0, the open switch in Figure P32.70 is thrown 
closed. We wish to find a symbolic expression for the 
current in the inductor for time t . 0. Let this cur-
rent be called i and choose it to be downward in the 
inductor in Figure P32.70. Identify i1 as the current to 
the right through R1 and i 2 as the current downward 
through R 2. (a) Use Kirchhoff’s junction rule to find 

GP
S

R1

S

R2 Le
�

�

�

�

Figure P32.70
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 75. Review. The use of superconductors has been proposed 
for power transmission lines. A single coaxial cable 
(Fig. P32.75) could carry a power of 1.00  3 103 MW  
(the output of a large power plant) at 200 kV, DC, over 
a distance of 1.00 3 103  km without loss. An inner 
wire of radius a 5 2.00 cm, made from the supercon-
ductor Nb3Sn, carries the current I in one direction. 
A surrounding superconducting cylinder of radius  
b 5 5.00 cm would carry the return current I. In such 
a system, what is the magnetic field (a) at the surface 
of the inner conductor and (b) at the inner surface of 
the outer conductor? (c) How much energy would be 
stored in the magnetic field in the space between the 
conductors in a 1.00 3 103 km superconducting line? 
(d) What is the pressure exerted on the outer conduc-
tor due to the current in the inner conductor?

I

a
I

b

Figure P32.75

 76. Review. A fundamental property of a type I supercon-
ducting material is perfect diamagnetism, or demonstra-
tion of the Meissner effect, illustrated in Figure 30.27 in 
Section 30.6 and described as follows. If a sample of 
superconducting material is placed into an externally 
produced magnetic field or is cooled to become super-
conducting while it is in a magnetic field, electric cur-
rents appear on the surface of the sample. The currents 
have precisely the strength and orientation required 
to make the total magnetic field be zero throughout 
the interior of the sample. This problem will help you 
understand the magnetic force that can then act on 
the sample. Compare this problem with Problem 65 in 
Chapter 26, pertaining to the force attracting a perfect 
dielectric into a strong electric field.

   A vertical solenoid with a length of 120 cm and a 
diameter of 2.50 cm consists of 1 400 turns of copper 
wire carrying a counterclockwise current (when viewed 
from above) of 2.00 A as shown in Figure P32.76a (page 
996). (a) Find the magnetic field in the vacuum inside 
the solenoid. (b) Find the energy density of the mag-
netic field. Now a superconducting bar 2.20 cm in diam-
eter is inserted partway into the solenoid. Its upper end 
is far outside the solenoid, where the magnetic field is 
negligible. The lower end of the bar is deep inside the 
solenoid. (c) Explain how you identify the direction 
required for the current on the curved surface of the 
bar so that the total magnetic field is zero within the 
bar. The field created by the supercurrents is sketched 
in Figure P32.76b, and the total field is sketched in Fig-
ure P32.76c. (d) The field of the solenoid exerts a force 
on the current in the superconductor. Explain how 
you determine the direction of the force on the bar.  
(e) Noting that the units J/m3 of energy density are the 
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a relation among the three currents. (b) Use Kirch-
hoff’s loop rule around the left loop to find another 
relationship. (c) Use Kirchhoff’s loop rule around the 
outer loop to find a third relationship. (d) Eliminate i1 
and i2 among the three equations to find an equation 
involving only the current i. (e)  Compare the equa-
tion in part (d) with Equation 32.6 in the text. Use this 
comparison to rewrite Equation 32.7 in the text for the 
situation in this problem and show that

i 1t 2 5
e
R 1

31 2 e21R r/L 2t 4

  where R9 5 R 1R 2/(R 1 1 R 2).

 71. The toroid in Figure P32.71 consists of N turns and has 
a rectangular cross section. Its inner and outer radii 
are a and b, respectively. The figure shows half of the 
toroid to allow us to see its cross-section. Compute the 
inductance of a 500-turn toroid for which a 5 10.0 cm, 
b 5 12.0 cm, and h 5 1.00 cm.

h

a

b

Figure P32.71 Problems 71 and 72.

 72. The toroid in Figure P32.71 consists of N turns and has 
a rectangular cross section. Its inner and outer radii 
are a and b, respectively. Find the inductance of the 
toroid.

Problems 73 through 76 apply ideas from this and earlier 
chapters to some properties of superconductors, which 
were introduced in Section 27.5.

 73. Review. A novel method of storing energy has been 
proposed. A huge underground superconducting coil, 
1.00 km in diameter, would be fabricated. It would 
carry a maximum current of 50.0 kA through each 
winding of a 150-turn Nb3Sn solenoid. (a) If the induc-
tance of this huge coil were 50.0 H, what would be the 
total energy stored? (b) What would be the compres-
sive force per unit length acting between two adjacent 
windings 0.250 m apart?

 74. Review. In an experiment carried out by S. C. Collins 
between 1955 and 1958, a current was maintained in a 
superconducting lead ring for 2.50 yr with no observed 
loss, even though there was no energy input. If the 
inductance of the ring were 3.14 3 1028 H and the sen-
sitivity of the experiment were 1 part in 109, what was 
the maximum resistance of the ring? Suggestion: Treat 
the ring as an RL circuit carrying decaying current 
and recall that the approximation e2x < 1 2 x  is valid 
for small x.

S
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magnetic field outside the sphere. (b) Evaluate your 
result from part (a) for B0 5 5.00 3 1025 T and R 5 
6.00 3 106 m, values appropriate for the Earth’s mag-
netic field.

 80. In Figure P32.80, the battery has emf e 5 18.0 V and 
the other circuit elements have values L 5 0.400 H, R1 5 
2.00 kV, and R 2 5 6.00 kV. The switch is closed for t , 0,  
and steady-state conditions are established. The switch 
is then opened at t 5 0. (a) Find the emf across L 
immediately after t 5 0. (b) Which end of the coil, a 
or b, is at the higher potential? (c) Make graphs of the 
currents in R1 and in R 2 as a function of time, treat-
ing the steady-state directions as positive. Show values 
before and after t 5 0. (d) At what moment after t 5 0 
does the current in R 2 have the value 2.00 mA?

S

L

R1

R2

a

b
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Figure P32.80

 81. To prevent damage from arcing in an electric motor, a 
discharge resistor is sometimes placed in parallel with 
the armature. If the motor is suddenly unplugged while 
running, this resistor limits the voltage that appears 
across the armature coils. Consider a 12.0-V DC motor 
with an armature that has a resistance of 7.50 V and an 
inductance of 450 mH. Assume the magnitude of the 
self-induced emf in the armature coils is 10.0 V when 
the motor is running at normal speed. (The equivalent 
circuit for the armature is shown in Fig. P32.81.) Cal-
culate the maximum resistance R that limits the volt-
age across the armature to 80.0 V when the motor is 
unplugged.

7.50 �

450 mH

10.0 V

12.0 V

Armature

R

�

�

�

�

�

�

Figure P32.81

 82. One application of an RL circuit is the generation of 
time-varying high voltage from a low-voltage source as 
shown in Figure P32.82. (a) What is the current in the 
circuit a long time after the switch has been in posi-

same as the units N/m2 of pressure, calculate the mag-
nitude of the force by multiplying the energy density of 
the solenoid field times the area of the bottom end of 
the superconducting bar.

Btot
S

I

B0
S

a b c

Figure P32.76

 77. A wire of nonmagnetic material, with radius R, carries 
current uniformly distributed over its cross section. 
The total current carried by the wire is I. Show that 
the magnetic energy per unit length inside the wire is 
m0I 2/16p.

Challenge Problems

 78. In earlier times when many households received non-
digital television signals from an antenna, the lead-in 
wires from the antenna were often constructed in the 
form of two parallel wires (Fig. P32.78). The two wires 
carry currents of equal magnitude in opposite direc-
tions. The center-to-center separation of the wires is w, 
and a is their radius. Assume w is large enough com-
pared with a that the wires carry the current uniformly 
distributed over their surfaces and negligible magnetic 
field exists inside the wires. (a) Why does this configu-
ration of conductors have an inductance? (b) What con-
stitutes the flux loop for this configuration? (c) Show  
that the inductance of a length x of this type of lead-in 
is

L 5
m0x
p

  ln aw 2 a
a

b

TV setI

I

TV antenna

Figure P32.78

 79. Assume the magnitude of the magnetic field outside a 
sphere of radius R is B 5 B0(R/r)2, where B0 is a con-
stant. (a) Determine the total energy stored in the 
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 83. Two inductors having inductances L1 and L 2 are con-
nected in parallel as shown in Figure P32.83a. The 
mutual inductance between the two inductors is M. 
Determine the equivalent inductance Leq for the sys-
tem (Fig. P32.83b).

S

L1

i (t )

LeqL2M

i (t )

a b

Figure P32.83

tion a? (b) Now the switch is thrown quickly from a to 
b. Compute the initial voltage across each resistor and 
across the inductor. (c) How much time elapses before 
the voltage across the inductor drops to 12.0 V? 

12.0 V
1200 Ω

12.0 Ω 

2.00 H

Sa

b

�

�

Figure P32.82




