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In Chapter 29, we discussed the magnetic force exerted on a charged particle moving 
in a magnetic field. To complete the description of the magnetic interaction, this chapter 
explores the origin of the magnetic field, moving charges. We begin by showing how to use 
the law of Biot and Savart to calculate the magnetic field produced at some point in space 
by a small current element. This formalism is then used to calculate the total magnetic field 
due to various current distributions. Next, we show how to determine the force between 
two  current-carrying conductors, leading to the definition of the ampere. We also introduce 
Ampère’s law, which is useful in calculating the magnetic field of a highly symmetric con-
figuration carrying a steady current.
 This chapter is also concerned with the complex processes that occur in magnetic 
materials. All magnetic effects in matter can be explained on the basis of atomic magnetic 
moments, which arise both from the orbital motion of electrons and from an intrinsic prop-
erty of electrons known as spin.

30.1 The Biot–Savart Law
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a 
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–
1841) performed quantitative experiments on the force exerted by an electric cur-
rent on a nearby magnet. From their experimental results, Biot and Savart arrived 
at a mathematical expression that gives the magnetic field at some point in space 
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A cardiac catheterization laboratory 
stands ready to receive a patient 
suffering from atrial fibrillation.  
The large white objects on either 
side of the operating table are 
strong magnets that place the 
patient in a magnetic field.  The 
electrophysiologist performing 
a catheter ablation procedure 
sits at a computer in the room to 
the left. With guidance from the 
magnetic field, he or she uses a 
joystick and other controls to thread 
the magnetically sensitive tip of 
a cardiac catheter through blood 
vessels and into the chambers of the 
heart.  (© Courtesy of Stereotaxis, Inc.)
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in terms of the current that produces the field. That expression is based on the fol-
lowing experimental observations for the magnetic field d B

S
 at a point P associated 

with a length element d sS of a wire carrying a steady current I (Fig. 30.1):

•	The vector d B
S

 is perpendicular both to d sS (which points in the direction of 
the current) and to the unit vector r̂ directed from d sS toward P.

•	The magnitude of d B
S

 is inversely proportional to r 2, where r is the distance 
from d sS to P.

•	The magnitude of d B
S

 is proportional to the current I and to the magnitude  
ds of the length element d sS.

•	The magnitude of d B
S

 is proportional to sin u, where u is the angle between 
the vectors d sS and r̂.

 These observations are summarized in the mathematical expression known 
today as the Biot–Savart law:

 d B
S

5
m0

4p
  

I d sS 3 r̂
r 2  (30.1)

where m0 is a constant called the permeability of free space:

 m0 5 4p 3 1027 T # m/A  (30.2)

 Notice that the field d B
S

 in Equation 30.1 is the field created at a point by the 
current in only a small length element d sS of the conductor. To find the total mag-
netic field B

S
 created at some point by a current of finite size, we must sum up 

contributions from all current elements I d sS that make up the current. That is, we 
must evaluate B

S
 by integrating Equation 30.1:

 B
S

5
m0I
4p

 3  
d sS 3 r̂ 

r 2  (30.3)

where the integral is taken over the entire current distribution. This expres-
sion must be handled with special care because the integrand is a cross product 
and therefore a vector quantity. We shall see one case of such an integration in 
Example 30.1.
 Although the Biot–Savart law was discussed for a current-carrying wire, it is also 
valid for a current consisting of charges flowing through space such as the particle 
beam in an accelerator. In that case, d sS represents the length of a small segment of 
space in which the charges flow.
 Interesting similarities and differences exist between Equation 30.1 for the 
magnetic field due to a current element and Equation 23.9 for the electric field 
due to a point charge. The magnitude of the magnetic field varies as the inverse 
square of the distance from the source, as does the electric field due to a point 
charge. The directions of the two fields are quite different, however. The electric 
field created by a point charge is radial, but the magnetic field created by a cur-
rent element is perpendicular to both the length element d sS and the unit vector r̂ 
as described by the cross product in Equation 30.1. Hence, if the conductor lies in 
the plane of the page as shown in Figure 30.1, d B

S
 points out of the page at P and 

into the page at P 9.
 Another difference between electric and magnetic fields is related to the 
source of the field. An electric field is established by an isolated electric charge. 
The Biot–Savart law gives the magnetic field of an isolated current element at 
some point, but such an isolated current element cannot exist the way an iso-
lated electric charge can. A current element must be part of an extended current 
distribution because a complete circuit is needed for charges to flow. Therefore, 

WW Biot–Savart law

WW Permeability of free space

Pitfall Prevention 30.1
The Biot–Savart Law The mag-
netic field described by the Biot–
Savart law is the field due to a given 
current-carrying conductor. Do 
not confuse this field with any 
external field that may be applied 
to the conductor from some other 
source.
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The direction of the field 
is out of the page at P.

The direction of the field 
is into the page at P �.

Figure 30.1  The magnetic  
field d B

S
 at a point due to the cur-

rent I through a length element 
d sS is given by the Biot–Savart law. 
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the Biot–Savart law (Eq. 30.1) is only the first step in a calculation of a magnetic 
field; it must be followed by an integration over the current distribution as in 
Equation 30.3.

Q uick Quiz 30.1  Consider the magnetic field due to the current in the wire 
shown in Figure 30.2. Rank the points A, B, and C in terms of magnitude of the 
magnetic field that is due to the current in just the length element d sS shown 
from greatest to least.

A

CB

sSdddd I

Figure 30.2  (Quick Quiz 30.1) 
Where is the magnetic field due to 
the current element the greatest?

Example 30.1   Magnetic Field Surrounding a Thin, Straight Conductor

Consider a thin, straight wire of finite length carrying a constant cur-
rent I and placed along the x axis as shown in Figure 30.3. Determine 
the magnitude and direction of the magnetic field at point P due to 
this current.

Conceptualize  From the Biot–Savart law, we expect that the magnitude 
of the field is proportional to the current in the wire and decreases as 
the distance a from the wire to point P increases. We also expect the 
field to depend on the angles u1 and u2 in Figure 30.3b. We place the ori-
gin at O and let point P be along the positive y axis, with k̂ being a unit 
vector pointing out of the page.

Categorize  We are asked to find the magnetic field due to a simple 
current distribution, so this example is a typical problem for which 
the Biot–Savart law is appropriate. We must find the field contribution 
from a small element of current and then integrate over the current 
distribution.

Analyze  Let’s start by considering a length element d sS located a dis-
tance r from P. The direction of the magnetic field at point P due to  
the current in this element is out of the page because d sS 3 r̂ is out of 
the page. In fact, because all the current elements I d sS lie in the plane 
of the page, they all produce a magnetic field directed out of the page at point P. Therefore, the direction of the mag-
netic field at point P is out of the page and we need only find the magnitude of the field. 

S o L u T I o n
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Figure 30.3  (Example 30.1) (a) A thin, 
straight wire carrying a current I. (b) The angles 
u1 and u2 used for determining the net field.

Evaluate the cross product in the Biot–Savart law: d sS 3 r̂ 5 0d sS 3 r̂ 0 k̂ 5 cdx sin ap

2
2 ub d k̂ 5 1dx cos u 2 k̂

Substitute into Equation 30.1: (1)   d B
S

5 1dB 2 k̂ 5
m0I
4p

  
dx cos u

r 2  k̂

From the geometry in Figure 30.3a, express r in 
terms of u:

(2)   r 5
a

cos u

Notice that tan u 5 2x/a from the right triangle in 
Figure 30.3a (the negative sign is necessary because 
d sS is located at a negative value of x) and solve for x :

x 5 2a tan u

Find the differential dx : (3)   dx 5 2a sec2 u du 5 2
a du

cos2 u

Substitute Equations (2) and (3) into the expression 
for the z component of the field from Equation (1):

(4)   dB 5 2
m0I
4p

 a a du

cos2 u
b acos2 u

a 2  b cos u 5 2
m0I
4pa

  cos u du
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Finalize  We can use this result to find the magnitude of the magnetic field of any straight current- carrying wire if we 
know the geometry and hence the angles u1 and u2. Consider the special case of an infinitely long, straight wire. If the 
wire in Figure 30.3b becomes infinitely long, we see that u1 5 p/2 and u2 5 2p/2 for length elements ranging between 
positions x 5 2` and x 5 1 .̀ Because (sin u1 2 sin u2) 5 [sin p/2 2 sin (2p/2)] 5 2, Equation 30.4 becomes

 B 5
m0I
2pa

 (30.5)

Equations 30.4 and 30.5 both show that the magnitude of the magnetic field is proportional to the current and 
decreases with increasing distance from the wire, as expected. Equation 30.5 has the same mathematical form as the 
expression for the magnitude of the electric field due to a long charged wire (see Eq. 24.7).

Integrate Equation (4) over all length elements on 
the wire, where the subtending angles range from 
u1 to u2 as defined in Figure 30.3b:

B 5 2
m0I
4pa

 3
u2

u1

cos u du 5
m0I
4pa

1sin u1 2 sin u2 2  (30.4)

Example 30.2   Magnetic Field Due to a Curved Wire Segment

Calculate the magnetic field at point O for the current-carrying wire segment 
shown in Figure 30.4. The wire consists of two straight portions and a circular arc 
of radius a, which subtends an angle u.

Conceptualize  The magnetic field at O due to the current in the straight seg-
ments AA9 and CC9 is zero because d sS is parallel to r̂ along these paths, which 
means that d sS 3 r̂ 5 0 for these paths. Therefore, we expect the magnetic field 
at O to be due only to the current in the curved portion of the wire.

Categorize  Because we can ignore segments AA9 and CC9, this example is catego-
rized as an application of the Biot–Savart law to the curved wire segment AC.

Analyze  Each length element d sS along path AC is at the same distance a from O, and the current in each contributes a  
field element d B

S
 directed into the page at O. Furthermore, at every point on AC, d sS is perpendicular to r̂; hence, 

0d sS 3 r̂ 0 5 ds.

S o L u T I o n sSd
O

A

r̂

C

I

a

a

a

u

IIIII

I

C �

A �

Figure 30.4  (Example 30.2) The 
length of the curved segment AC is s.

continued

From Equation 30.1, find the magnitude of the field at O 
due to the current in an element of length ds : dB 5

m0

4p
  

I ds
a 2

Integrate this expression over the curved path AC, noting 
that I and a are constants: B 5

m0I

4pa 2 3ds 5
m0I

4pa 2 s

From the geometry, note that s 5 au and substitute:
B 5

m0I

4pa 2 1a u 2 5
m0I
4pa

 u  (30.6)

Finalize  Equation 30.6 gives the magnitude of the magnetic field at O. The direction of B
S

 is into the page at O 
because d sS 3 r̂ is into the page for every length element.

What if you were asked to find the magnetic field at the center of a circular wire loop of radius R that 
carries a current I? Can this question be answered at this point in our understanding of the source of magnetic 
fields?

WhaT IF ?

 

▸ 30.1 c o n t i n u e d
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Answer Yes, it can. The straight wires in Figure 30.4 do not contribute to the magnetic field. The only contribution is 
from the curved segment. As the angle u increases, the curved segment becomes a full circle when u 5 2p. Therefore, 
you can find the magnetic field at the center of a wire loop by letting u 5 2p in Equation 30.6:

B 5
m0I
4pa

 2p 5
m0I
2a

This result is a limiting case of a more general result discussed in Example 30.3.

Example 30.3   Magnetic Field on the Axis of a Circular Current Loop

Consider a circular wire loop of radius a located in the yz 
plane and carrying a steady current I as in Figure 30.5. Cal-
culate the magnetic field at an axial point P a distance x 
from the center of the loop.

Conceptualize  Compare this problem to Example 23.8 for 
the electric field due to a ring of charge. Figure 30.5 shows 
the magnetic field contribution d B

S
  at P due to a single cur-

rent element at the top of the ring. This field vector can be 
resolved into components dBx parallel to the axis of the ring 
and dB� perpendicular to the axis. Think about the mag-
netic field contributions from a current element at the bot-
tom of the loop. Because of the symmetry of the situation, 
the perpendicular components of the field due to elements 
at the top and bottom of the ring cancel. This cancellation 
occurs for all pairs of segments around the ring, so we can ignore the perpendicular component of the field and focus 
solely on the parallel components, which simply add.

Categorize  We are asked to find the magnetic field due to a simple current distribution, so this example is a typical 
problem for which the Biot–Savart law is appropriate.

Analyze  In this situation, every length element d sS is perpendicular to the vector r̂ at the location of the element. 
Therefore, for any element, 0d sS 3 r̂ 0 5 1ds 2 11 2  sin 908 5 ds. Furthermore, all length elements around the loop are at 
the same distance r from P, where r 2 5 a2 1 x2.

S o L u T I o n

O

a

d

y

z

I

r̂

r

x
P

xdBx

dB�
d

u

u

B
S

sS

Figure 30.5  (Example 30.3) Geometry for calculating the 
magnetic field at a point P lying on the axis of a current loop. 
By symmetry, the total field B

S
 is along this axis.

Use Equation 30.1 to find the magnitude of d B
S

  
due to the current in any length element d sS:

dB 5
m0I
4p

  
0 d sS 3 r̂ 0

r 2 5
m0I
4p

  
ds

1a 2 1 x2 2

Find the x component of the field element: dBx 5
m0I
4p

  
ds

1a 2 1 x 2 2   cos u

Integrate over the entire loop: Bx 5 C dBx 5
m0I
4p

 C 
ds cos u
a 2 1 x 2

From the geometry, evaluate cos u: cos u 5
a

1a 2 1 x2 21/2

Substitute this expression for cos u into the inte-
gral and note that x and a are both constant:

Bx 5
m0I
4p

 C  
ds

a 2 1 x 2  c a
1a 2 1 x 2 21/2 d 5

m0I
4p

  
a

1a 2 1 x 2 23/2 C ds

Integrate around the loop: Bx 5
m0I
4p

  
a

1a 2 1 x 2 23/2
12pa 2 5

m0Ia 2

2 1a 2 1 x2 23/2  (30.7)

 

▸ 30.2 c o n t i n u e d
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Finalize  To find the magnetic field at the center of the loop, set x 5 0 in Equation 30.7. At this special point,

 B 5
m0I
2a
 1at x 5 0 2  (30.8)

which is consistent with the result of the What If? feature of Example 30.2.
 The pattern of magnetic field lines for a circular current loop is shown in Fig-
ure 30.6a. For clarity, the lines are drawn for only the plane that contains the axis 
of the loop. The field-line pattern is axially symmetric and looks like the pattern 
around a bar magnet, which is shown in Figure 30.6b.

What if we consider points on the x axis very far from the loop? How 
does the magnetic field behave at these distant points?

Answer In this case, in which x .. a, we can neglect the term a 2 in the denomi-
nator of Equation 30.7 and obtain

 B <
m0Ia 2

2x 3     (for x .. a) (30.9)

The magnitude of the magnetic moment m of the loop is defined as the product of current and loop area (see Eq. 
29.15): m 5 I(pa2) for our circular loop. We can express Equation 30.9 as

 B <
m0

2p
  

m

x3  (30.10)

This result is similar in form to the expression for the electric field due to an electric dipole, E 5 ke(p/y3) (see Example 
23.6), where p 5 2aq is the electric dipole moment as defined in Equation 26.16.

WhaT IF ? a b

S

N

I
S

N

Figure 30.6  (Example 30.3) 
(a) Magnetic field lines surround-
ing a current loop. (b) Magnetic 
field lines surrounding a bar mag-
net. Notice the similarity between 
this line pattern and that of a cur-
rent loop.

30.2  The Magnetic Force Between Two  
Parallel Conductors

In Chapter 29, we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets up 
its own magnetic field, it is easy to understand that two current-carrying conductors 
exert magnetic forces on each other. One wire establishes the magnetic field and 
the other wire is modeled as a collection of particles in a magnetic field. Such forces 
between wires can be used as the basis for defining the ampere and the coulomb.
 Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I 1 and I 2 in the same direction as in Figure 30.7. Let’s determine the 
force exerted on one wire due to the magnetic field set up by the other wire. Wire 
2, which carries a current I2 and is identified arbitrarily as the source wire, creates a 
magnetic field B

S

2 at the location of wire 1, the test wire. The magnitude of this mag-
netic field is the same at all points on wire 1. The direction of B

S

2 is perpendicular to  
wire 1 as shown in Figure 30.7. According to Equation 29.10, the magnetic force  
on a length , of wire 1 is F

S

1 5 I1 <
S

3 B
S

2.  Because <
S

 is perpendicular to B
S

2 in this 
situation, the magnitude of F

S

1 is F1 5 I1,B2. Because the magnitude of B
S

2 is given 
by Equation 30.5,

 F1 5 I1,B 2 5 I1,a
m0I2

2pa
 b 5

m0I1I2

2pa
,  (30.11)

The direction of F
S

1 is toward wire 2 because <
S

3 B
S

2 is in that direction. When the 
field set up at wire 2 by wire 1 is calculated, the force F

S

2 acting on wire 2 is found  
to be equal in magnitude and opposite in direction to F

S

1, which is what we  
expect because Newton’s third law must be obeyed. When the currents are in oppo-
site directions (that is, when one of the currents is reversed in Fig. 30.7), the forces 

B2
S

2

1
�

I1

I2

aF1
S

The field B2 due to the current in 
wire 2 exerts a magnetic force of 
magnitude F1 � I1�B 2 on wire 1.

S

Figure 30.7 Two parallel wires 
that each carry a steady current 
exert a magnetic force on each 
other. The force is attractive if the 
currents are parallel (as shown) 
and repulsive if the currents are 
antiparallel.

 

▸ 30.3 c o n t i n u e d
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are reversed and the wires repel each other. Hence, parallel conductors carrying 
currents in the same direction attract each other, and parallel conductors carrying 
currents in opposite directions repel each other.
 Because the magnitudes of the forces are the same on both wires, we denote the 
magnitude of the magnetic force between the wires as simply FB . We can rewrite 
this magnitude in terms of the force per unit length:

 
FB

,
5

m0 I1I2

2pa
 (30.12)

 The force between two parallel wires is used to define the ampere as follows:

When the magnitude of the force per unit length between two long, parallel 
wires that carry identical currents and are separated by 1 m is 2 3 1027 N/m, 
the current in each wire is defined to be 1 A.

The value 2 3 1027 N/m is obtained from Equation 30.12 with I 1 5 I 2 5 1 A and  
a 5 1 m. Because this definition is based on a force, a mechanical measurement 
can be used to standardize the ampere. For instance, the National Institute of 
Standards and Technology uses an instrument called a current balance for primary 
current measurements. The results are then used to standardize other, more con-
ventional instruments such as ammeters.
 The SI unit of charge, the coulomb, is defined in terms of the ampere: When a 
conductor carries a steady current of 1 A, the quantity of charge that flows through 
a cross section of the conductor in 1 s is 1 C.
 In deriving Equations 30.11 and 30.12, we assumed both wires are long com-
pared with their separation distance. In fact, only one wire needs to be long. The 
equations accurately describe the forces exerted on each other by a long wire and a 
straight, parallel wire of limited length ,.

Q uick Quiz 30.2  A loose spiral spring carrying no current is hung from a ceiling. 
When a switch is thrown so that a current exists in the spring, do the coils  
(a) move closer together, (b) move farther apart, or (c) not move at all?

Definition of the ampere 

Example 30.4   Suspending a Wire 

Two infinitely long, parallel wires are lying on the ground 
a distance a 5 1.00 cm apart as shown in Figure 30.8a. A 
third wire, of length L 5 10.0 m and mass 400 g, carries 
a current of I1 5 100 A and is levitated above the first 
two wires, at a horizontal position midway between them. 
The infinitely long wires carry equal currents I2 in the 
same direction, but in the direction opposite that in the 
levitated wire. What current must the infinitely long wires 
carry so that the three wires form an equilateral triangle?

Conceptualize  Because the current in the short wire is 
opposite those in the long wires, the short wire is repelled 
from both of the others. Imagine the currents in the long 
wires in Figure 30.8a are increased. The repulsive force 
becomes stronger, and the levitated wire rises to the point at which the wire is once again levitated in equilibrium at a 
higher position. Figure 30.8b shows the desired situation with the three wires forming an equilateral triangle.

Categorize  Because the levitated wire is subject to forces but does not accelerate, it is modeled as a particle in equilibrium.

AM

S o L u T I o n

a b

I1

I1

I2 I2
a

LI2 a

a

a u

Fg
S

FB,R
S

FB,L
S

I2

Figure 30.8  (Example 30.4) (a) Two current-carrying wires lie 
on the ground and suspend a third wire in the air by magnetic 
forces. (b) End view. In the situation described in the example, the 
three wires form an equilateral triangle. The two magnetic forces 
on the levitated wire are F

S

B ,L, the force due to the left-hand wire 
on the ground, and F

S

B ,R , the force due to the right-hand wire. The 
gravitational force F

S

g  on the levitated wire is also shown.
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Analyze  The horizontal components of the magnetic forces on the levitated wire cancel. The vertical components are 
both positive and add together. Choose the z axis to be upward through the top wire in Figure 30.8b and in the plane 
of the page.

Find the total magnetic force in the upward direction on 
the levitated wire:

F
S

B 5 2 am0I1I2

2pa
 ,b cos u k̂ 5

m0I1I2

pa
, cos u k̂

Find the gravitational force on the levitated wire: F
S

g 5 2mg k̂

Apply the particle in equilibrium model by adding the 
forces and setting the net force equal to zero:

a F
S

5 F
S

B 1 F
S

g 5
m0I1I2

pa
, cos u k̂ 2 mg k̂ 5 0

Solve for the current in the wires on the ground: I 2 5
mg pa

m0I1, cos u

Substitute numerical values: I 2 5
10.400 kg 2 19.80 m/s2 2p 10.010 0 m 2

14p 3 1027 T # m/A 2 1100 A 2 110.0 m 2  cos 30.08

5 113 A

Finalize  The currents in all wires are on the order of 102 A. Such large currents would require specialized equip-
ment. Therefore, this situation would be difficult to establish in practice. Is the equilibrium of wire 1 stable or 
unstable?

30.3 Ampère’s Law
Looking back, we can see that the result of Example 30.1 is important because a 
current in the form of a long, straight wire occurs often. Figure 30.9 is a perspec-
tive view of the magnetic field surrounding a long, straight, current-carrying wire. 
Because of the wire’s symmetry, the magnetic field lines are circles concentric with 
the wire and lie in planes perpendicular to the wire. The magnitude of B

S
 is con-

stant on any circle of radius a and is given by Equation 30.5. A convenient rule for 
determining the direction of B

S
 is to grasp the wire with the right hand, positioning 

the thumb along the direction of the current. The four fingers wrap in the direc-
tion of the magnetic field.
 Figure 30.9 also shows that the magnetic field line has no beginning and no 
end. Rather, it forms a closed loop. That is a major difference between magnetic 
field lines and electric field lines, which begin on positive charges and end on 
negative charges. We will explore this feature of magnetic field lines further in 
Section 30.5.
 Oersted’s 1819 discovery about deflected compass needles demonstrates that a 
current-carrying conductor produces a magnetic field. Figure 30.10a (page 912) 
shows how this effect can be demonstrated in the classroom. Several compass nee-
dles are placed in a horizontal plane near a long, vertical wire. When no current is 
present in the wire, all the needles point in the same direction (that of the horizon-
tal component of the Earth’s magnetic field) as expected. When the wire carries a 
strong, steady current, the needles all deflect in a direction tangent to the circle as 
in Figure 30.10b. These observations demonstrate that the direction of the mag-
netic field produced by the current in the wire is consistent with the right-hand 
rule described in Figure 30.9. When the current is reversed, the needles in Figure 
30.10b also reverse.
 Now let’s evaluate the product B

S
? d sS for a small length element d sS on the cir-

cular path defined by the compass needles and sum the products for all elements 

a

I

B
S

 

Figure 30.9  The right-hand rule 
for determining the direction of 
the magnetic field surrounding a 
long, straight wire carrying a cur-
rent. Notice that the magnetic field 
lines form circles around the wire.

 

▸ 30.4 c o n t i n u e d
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over the closed circular path.1 Along this path, the vectors d sS and B
S

 are parallel at 
each point (see Fig. 30.10b), so B

S
? d sS 5 B ds. Furthermore, the magnitude of B

S
 is 

 constant on this circle and is given by Equation 30.5. Therefore, the sum of the prod-
ucts B ds over the closed path, which is equivalent to the line integral of B

S
? d sS, is

C B
S

? d sS 5 B C ds 5
m0I
2pr

12pr 2 5 m0I

where r ds 5 2pr is the circumference of the circular path of radius r. Although 
this result was calculated for the special case of a circular path surrounding a wire 
of infinite length, it holds for a closed path of any shape (an amperian loop) sur-
rounding a current that exists in an unbroken circuit. The general case, known as 
Ampère’s law, can be stated as follows:

The line integral of B
S

? d sS  around any closed path equals m0I, where I is the 
total steady current passing through any surface bounded by the closed path:

 C B
S

? d sS 5 m0I  (30.13)

 Ampère’s law describes the creation of magnetic fields by all continuous current 
configurations, but at our mathematical level it is useful only for calculating the 
magnetic field of current configurations having a high degree of symmetry. Its use 
is similar to that of Gauss’s law in calculating electric fields for highly symmetric 
charge distributions.

Q uick Quiz 30.3  Rank the 
magnitudes of r B

S
? d sS for 

the closed paths a through  
d in Figure 30.11 from great-
est to least.

ampère’s law 

Andre-Marie Ampère
French Physicist (1775–1836)
Ampère is credited with the discovery of 
electromagnetism, which is the relation-
ship between electric currents and mag-
netic fields. Ampère’s genius, particularly 
in mathematics, became evident by the 
time he was 12 years old; his personal 
life, however, was filled with tragedy. His 
father, a wealthy city official, was guillo-
tined during the French Revolution, and 
his wife died young, in 1803. Ampère 
died at the age of 61 of pneumonia.
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1You may wonder why we would choose to evaluate this scalar product. The origin of Ampère’s law is in 19th-century 
science, in which a “magnetic charge” (the supposed analog to an isolated electric charge) was imagined to be moved 
around a circular field line. The work done on the charge was related to B

S
? d sS, just as the work done moving an 

electric charge in an electric field is related to E
S

? d sS. Therefore, Ampère’s law, a valid and useful principle, arose 
from an erroneous and abandoned work calculation!

Pitfall Prevention 30.2
avoiding Problems with 
Signs When using Ampère’s law, 
apply the following right-hand 
rule. Point your thumb in the 
direction of the current through 
the amperian loop. Your curled 
fingers then point in the direction 
that you should integrate when tra-
versing the loop to avoid having to 
define the current as negative.

Figure 30.10 (a) and (b) Compasses show the effects of the current in a nearby wire. (c) Circular 
magnetic field lines surrounding a current-carrying conductor, displayed with iron filings.

a b

When no current is present in the 
wire, all compass needles point in 
the same direction (toward the 
Earth’s north pole).

When the wire carries a strong 
current, the compass needles 
deflect in a direction tangent to 
the circle, which is the direction 
of the magnetic field created by 
the current.
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Figure 30.11  (Quick 
Quiz 30.3) Four closed 
paths around three 
current-carrying wires.
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Q uick Quiz 30.4  Rank the magnitudes of r B
S

? d sS for the closed paths a through 
d in Figure 30.12 from greatest to least.

a

b

c

d

Figure 30.12  (Quick Quiz 
30.4) Several closed paths near a 
single current-carrying wire.

Example 30.5   The Magnetic Field Created by a Long Current-Carrying Wire

A long, straight wire of radius R carries a steady current I that is uniformly dis-
tributed through the cross section of the wire (Fig. 30.13). Calculate the mag-
netic field a distance r from the center of the wire in the regions r $ R and  
r , R.

Conceptualize  Study Figure 30.13 to understand the structure of the wire and the 
current in the wire. The current creates magnetic fields everywhere, both inside 
and outside the wire. Based on our discussions about long, straight wires, we expect 
the magnetic field lines to be circles centered on the central axis of the wire.

Categorize  Because the wire has a high degree of symmetry, we categorize this 
example as an Ampère’s law problem. For the r $ R case, we should arrive at the 
same result as was obtained in Example 30.1, where we applied the Biot–Savart 
law to the same situation.

Analyze  For the magnetic field exterior to the wire, let us choose for our path 
of integration circle 1 in Figure 30.13. From symmetry, B

S
 must be constant in 

magnitude and parallel to d sS at every point on this circle.

S o L u T I o n 2

R

r

1

d sS 

I

Figure 30.13  (Example 30.5) A 
long, straight wire of radius R car-
rying a steady current I uniformly 
distributed across the cross section 
of the wire. The magnetic field at 
any point can be calculated from 
Ampère’s law using a circular path of 
radius r, concentric with the wire.

Note that the total current passing through the plane of 
the circle is I and apply Ampère’s law:

C B
S

? d sS 5 B C ds 5 B 12pr 2 5 m0I

Solve for B : B 5 
m0I
2pr

    (for r $ R) (30.14)

continued

Now consider the interior of the wire, where r , R. Here the current I 9 passing through the plane of circle 2 is less 
than the total current I.

Apply Ampère’s law to circle 2: C B
S

? d sS 5 B 12pr 2 5 m0I r 5 m0a r 2

R 2 Ib

Solve for I 9: I r 5
r 2

R 2 I

Set the ratio of the current I 9 enclosed by circle 2 to the 
entire current I equal to the ratio of the area pr 2 enclosed 
by circle 2 to the cross-sectional area pR 2 of the wire:

I r
I

5
pr 2

pR 2

Solve for B: B 5 a m0 I

2pR 2b r     (for r , R) (30.15)
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Finalize  The magnetic field exterior to the wire is identi-
cal in form to Equation 30.5. As is often the case in highly 
symmetric situations, it is much easier to use Ampère’s law 
than the Biot–Savart law (Example 30.1). The magnetic 
field interior to the wire is similar in form to the expression 
for the electric field inside a uniformly charged sphere (see 
Example 24.3). The magnitude of the magnetic field versus 
r for this configuration is plotted in Figure 30.14. Inside the 
wire, B S 0 as r S 0. Furthermore, Equations 30.14 and 30.15 give the same value of the magnetic field at r 5 R, dem-
onstrating that the magnetic field is continuous at the surface of the wire.

R
r 

B � r 

 

B

B � 1/r 

Figure 30.14  (Example 30.5) 
Magnitude of the magnetic field 
versus r for the wire shown in Fig-
ure 30.13. The field is proportional 
to r inside the wire and varies as 1/r 
outside the wire.

Example 30.6   The Magnetic Field Created by a Toroid

A device called a toroid (Fig. 30.15) is often used to create an almost 
uniform magnetic field in some enclosed area. The device consists of 
a conducting wire wrapped around a ring (a torus) made of a noncon-
ducting material. For a toroid having N closely spaced turns of wire, 
calculate the magnetic field in the region occupied by the torus, a 
distance r from the center.

Conceptualize  Study Figure 30.15 carefully to understand how the 
wire is wrapped around the torus. The torus could be a solid mate-
rial or it could be air, with a stiff wire wrapped into the shape shown 
in Figure 30.15 to form an empty toroid. Imagine each turn of the 
wire to be a circular loop as in Example 30.3. The magnetic field 
at the center of the loop is perpendicular to the plane of the loop. 
Therefore, the magnetic field lines of the collection of loops will form 
circles within the toroid such as suggested by loop 1 in Figure 30.15.

Categorize  Because the toroid has a high degree of symmetry, we cat-
egorize this example as an Ampère’s law problem.

Analyze  Consider the circular amperian loop (loop 1) of radius r in 
the plane of Figure 30.15. By symmetry, the magnitude of the field is 
constant on this circle and tangent to it, so B

S
? d sS 5 B ds.  Furthermore, the wire passes through the loop N times, so 

the total current through the loop is NI.

S o L u T I o n caI

I

r

b

Loop 1

Loop 2

B
S

 d sS 

Figure 30.15  (Example 30.6) A toroid consist-
ing of many turns of wire. If the turns are closely 
spaced, the magnetic field in the interior of the 
toroid is tangent to the dashed circle (loop 1) and 
varies as 1/r. The dimension a is the cross-sectional 
radius of the torus. The field outside the toroid is 
very small and can be described by using the ampe-
rian loop (loop 2) at the right side, perpendicular 
to the page.

Finalize  This result shows that B varies as 1/r and hence 
is nonuniform in the region occupied by the torus. If, how-
ever, r is very large compared with the cross-sectional 
radius a of the torus, the field is approximately uniform 
inside the torus.
 For an ideal toroid, in which the turns are closely 
spaced, the external magnetic field is close to zero, but it 
is not exactly zero. In Figure 30.15, imagine the radius r 

of amperian loop 1 to be either smaller than b or larger 
than c. In either case, the loop encloses zero net current, 
so r B

S
? d sS 5 0. You might think this result proves that 

B
S

5 0,  but it does not. Consider the amperian loop (loop 
2) on the right side of the toroid in Figure 30.15. The 
plane of this loop is perpendicular to the page, and the 
toroid passes through the loop. As charges enter the toroid 
as indicated by the current directions in Figure 30.15, 

Apply Ampère’s law to loop 1: C B
S

? d sS 5 B C ds 5 B 12pr 2 5 m0NI

Solve for B : B 5 
m0NI
2pr

 (30.16)

 

▸ 30.5 c o n t i n u e d
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30.4 The Magnetic Field of a Solenoid
A solenoid is a long wire wound in the form of a helix. With this configuration, a 
reasonably uniform magnetic field can be produced in the space surrounded by the 
turns of wire—which we shall call the interior of the solenoid—when the solenoid 
carries a current. When the turns are closely spaced, each can be approximated as 
a circular loop; the net magnetic field is the vector sum of the fields resulting from 
all the turns.
 Figure 30.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. The field lines in the interior are nearly parallel to one another, are uni-
formly distributed, and are close together, indicating that the field in this space is 
strong and almost uniform.
 If the turns are closely spaced and the solenoid is of finite length, the external 
magnetic field lines are as shown in Figure 30.17a. This field line distribution is 
similar to that surrounding a bar magnet (Fig. 30.17b). Hence, one end of the sole-
noid behaves like the north pole of a magnet and the opposite end behaves like the 
south pole. As the length of the solenoid increases, the interior field becomes more 
uniform and the exterior field becomes weaker. An ideal solenoid is approached 
when the turns are closely spaced and the length is much greater than the radius of 
the turns. Figure 30.18 (page 916) shows a longitudinal cross section of part of such 
a solenoid carrying a current I. In this case, the external field is close to zero and 
the interior field is uniform over a great volume.
 Consider the amperian loop (loop 1) perpendicular to the page in Figure 
30.18 (page 916), surrounding the ideal solenoid. This loop encloses a small  

Exterior

Interior

Figure 30.16  The magnetic field 
lines for a loosely wound solenoid.

Figure 30.17  (a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a steady 
current. The field in the interior space is strong and nearly uniform. (b) The magnetic field pattern of 
a bar magnet, displayed with small iron filings on a sheet of paper.

a
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The magnetic field lines 
resemble those of a bar 
magnet, meaning that the 
solenoid effectively has 
north and south poles.
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they work their way counterclockwise around the toroid. 
Therefore, there is a counterclockwise current around the 
toroid, so that a current passes through amperian loop 2! 
This current is small, but not zero. As a result, the toroid 

acts as a current loop and produces a weak external field of 
the form shown in Figure 30.6. The reason r B

S
? d sS 5 0 

for amperian loop 1 of radius r , b or r . c is that the field 
lines are perpendicular to d sS, not because B

S
5 0.

▸ 30.6 c o n t i n u e d
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current as the charges in the wire move coil by coil along the length of the sole-
noid. Therefore, there is a nonzero magnetic field outside the solenoid. It is a 
weak field, with circular field lines, like those due to a line of current as in Fig-
ure 30.9. For an ideal solenoid, this weak field is the only field external to the 
solenoid. 
 We can use Ampère’s law to obtain a quantitative expression for the interior 
magnetic field in an ideal solenoid. Because the solenoid is ideal, B

S
 in the inte-

rior space is uniform and parallel to the axis and the magnetic field lines in the 
exterior space form circles around the solenoid. The planes of these circles are 
perpendicular to the page. Consider the rectangular path (loop 2) of length , 
and width w shown in Figure 30.18. Let’s apply Ampère’s law to this path by evalu-
ating the integral of B

S
? d sS  over each side of the rectangle. The contribution 

along side 3 is zero because the external magnetic field lines are perpendicular 
to the path in this region. The contributions from sides 2 and 4 are both zero, 
again because B

S
 is perpendicular to d sS along these paths, both inside and out-

side the solenoid. Side 1 gives a contribution to the integral because along this 
path B

S
 is uniform and parallel to d sS. The integral over the closed rectangular 

path is therefore

C B
S

? d sS 5 3
path 1

B
S

? d sS 5 B 3
path 1

ds 5 B,

 The right side of Ampère’s law involves the total current I through the area 
bounded by the path of integration. In this case, the total current through the 
rectangular path equals the current through each turn multiplied by the number 
of turns. If N is the number of turns in the length ,, the total current through the 
rectangle is NI. Therefore, Ampère’s law applied to this path gives

C B
S

? d sS 5 B, 5 m0NI

 B 5 m0 
N
,

 I 5 m0nI  (30.17)

where n 5 N/, is the number of turns per unit length.
 We also could obtain this result by reconsidering the magnetic field of a toroid 
(see Example 30.6). If the radius r of the torus in Figure 30.15 containing N turns is 
much greater than the toroid’s cross-sectional radius a, a short section of the toroid 
approximates a solenoid for which n 5 N/2pr. In this limit, Equation 30.16 agrees 
with Equation 30.17.
 Equation 30.17 is valid only for points near the center (that is, far from the ends) of 
a very long solenoid. As you might expect, the field near each end is smaller than the 
value given by Equation 30.17. As the length of a solenoid increases, the magnitude of 
the field at the end approaches half the magnitude at the center (see Problem 69).

Q uick Quiz 30.5  Consider a solenoid that is very long compared with its radius. 
Of the following choices, what is the most effective way to increase the magnetic 
field in the interior of the solenoid? (a) double its length, keeping the number 
of turns per unit length constant (b) reduce its radius by half, keeping the num-
ber of turns per unit length constant (c) overwrap the entire solenoid with an 
additional layer of current-carrying wire

30.5 Gauss’s Law in Magnetism
The flux associated with a magnetic field is defined in a manner similar to that 
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an 

Magnetic field inside  
a solenoid

Ampère’s law applied to the 
circular path whose plane is 
perpendicular to the page can be 
used to show that there is a weak 
field outside the solenoid.

Ampère’s law applied to the 
rectangular dashed path can be 
used to calculate the 
magnitude of the interior field.

3

2

4

1 �

w

Loop 1

Loop 2

B
S

Figure 30.18  Cross-sectional view 
of an ideal solenoid, where the inte-
rior magnetic field is uniform and 
the exterior field is close to zero.
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arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; 3  B
S

? d A
S

 (30.18)

 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u  (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

WW Definition of magnetic flux

Figure 30.20 Magnetic flux 
through a plane lying in a mag-
netic field.a

b

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

a

b

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7   Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S o L u T I o n

continued

b
r

I

c a

dr

Figure 30.21  (Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.
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 In Chapter 24, we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the 
number of electric field lines leaving the surface depends only on the net charge 
within it. This behavior exists because electric field lines originate and terminate 
on electric charges.
 The situation is quite different for magnetic fields, which are continuous and 
form closed loops. In other words, as illustrated by the magnetic field lines of a cur-
rent in Figure 30.9 and of a bar magnet in Figure 30.22, magnetic field lines do not 
begin or end at any point. For any closed surface such as the one outlined by the 
dashed line in Figure 30.22, the number of lines entering the surface equals the 
number leaving the surface; therefore, the net magnetic flux is zero. In contrast, 
for a closed surface surrounding one charge of an electric dipole (Fig. 30.23), the 
net electric flux is not zero.
 Gauss’s law in magnetism states that

the net magnetic flux through any closed surface is always zero:

 C B
S

? d A
S

5 0  (30.20)Gauss’s law in magnetism 

Integrate from r 5 c to r 5 a 1 c :
FB 5

m0Ib
2p

 3
a1c

c
  

dr
r

5
m0Ib
2p

  ln r `
a1c

c

 5
m0Ib
2p

 ln aa 1 c
c

b 5
m0Ib
2p

  ln a1 1
a
c
b

Express the area element (the tan strip in Fig. 30.21) as 
dA 5 b dr and substitute:

FB 5 3 
m0I
2pr

 b dr 5
m0Ib
2p

 3 
dr
r

Finalize  Notice how the flux depends on the size of the loop. Increasing either a or b increases the flux as expected. 
If c becomes large such that the loop is very far from the wire, the flux approaches zero, also as expected. If c goes 
to zero, the flux becomes infinite. In principle, this infinite value occurs because the field becomes infinite at r 5 0 
(assuming an infinitesimally thin wire). That will not happen in reality because the thickness of the wire prevents the 
left edge of the loop from reaching r 5 0.

N

S

The net magnetic flux 
through a closed surface 
surrounding one of the 
poles or any other 
closed surface is zero.

Figure 30.22  The magnetic field lines of a bar mag-
net form closed loops. (The dashed line represents 
the intersection of a closed surface with the page.)

�

�

The electric flux 
through a closed 
surface surrounding 
one of the charges 
is not zero.

Figure 30.23  The electric field lines surrounding 
an electric dipole begin on the positive charge and 
terminate on the negative charge.
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This statement represents that isolated magnetic poles (monopoles) have never 
been detected and perhaps do not exist. Nonetheless, scientists continue the search 
because certain theories that are otherwise successful in explaining fundamental 
physical behavior suggest the possible existence of magnetic monopoles.

30.6 Magnetism in Matter
The magnetic field produced by a current in a coil of wire gives us a hint as to 
what causes certain materials to exhibit strong magnetic properties. Earlier we 
found that a solenoid like the one shown in Figure 30.17a has a north pole and a 
south pole. In general, any current loop has a magnetic field and therefore has a 
magnetic dipole moment, including the atomic-level current loops described in 
some models of the atom.

The Magnetic Moments of Atoms
Let’s begin our discussion with a classical model of the atom in which electrons 
move in circular orbits around the much more massive nucleus. In this model, an 
orbiting electron constitutes a tiny current loop (because it is a moving charge), 
and the magnetic moment of the electron is associated with this orbital motion. 
Although this model has many deficiencies, some of its predictions are in good 
agreement with the correct theory, which is expressed in terms of quantum 
physics.
 In our classical model, we assume an electron is a particle in uniform circular 
motion: it moves with constant speed v in a circular orbit of radius r about the 
nucleus as in Figure 30.24. The current I associated with this orbiting electron is its 
charge e divided by its period T. Using Equation 4.15 from the particle in uniform 
circular motion model, T 5 2pr/v, gives

I 5
e
T

5
ev

2pr
The magnitude of the magnetic moment associated with this current loop is given 
by m 5 IA, where A 5 pr 2 is the area enclosed by the orbit. Therefore,

 m 5 IA 5 a ev
2pr

bpr 2 5 1
2evr  (30.21)

Because the magnitude of the orbital angular momentum of the electron is given 
by L 5 mevr (Eq. 11.12 with f 5 908), the magnetic moment can be written as

 m 5 a e
2me

bL  (30.22)

This result demonstrates that the magnetic moment of the electron is proportional 
to its orbital angular momentum. Because the electron is negatively charged, the 
 vectors mS and L

S
 point in opposite directions. Both vectors are perpendicular to the 

plane of the orbit as indicated in Figure 30.24.
 A fundamental outcome of quantum physics is that orbital angular momentum 
is quantized and is equal to multiples of " 5 h/2p 5 1.05 3 10234 J ? s, where h is 
Planck’s constant (see Chapter 40). The smallest nonzero value of the electron’s 
magnetic moment resulting from its orbital motion is

 m 5 "2 
e

2me
 U  (30.23)

We shall see in Chapter 42 how expressions such as Equation 30.23 arise.
 Because all substances contain electrons, you may wonder why most substances 
are not magnetic. The main reason is that, in most substances, the magnetic 

WW orbital magnetic moment

The electron has an angular 
momentum     in one direction 
and a magnetic moment     in 
the opposite direction.

r

I
m
S

m
S

L
S

L
S

e�

Figure 30.24  An electron mov-
ing in the direction of the gray 
arrow in a circular orbit of radius 
r. Because the electron carries 
a negative charge, the direction 
of the current due to its motion 
about the nucleus is opposite the 
direction of that motion.
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moment of one electron in an atom is canceled by that of another electron orbiting 
in the opposite direction. The net result is that, for most materials, the magnetic 
effect produced by the orbital motion of the electrons is either zero or very small.
 In addition to its orbital magnetic moment, an electron (as well as protons, neu-
trons, and other particles) has an intrinsic property called spin that also contrib-
utes to its magnetic moment. Classically, the electron might be viewed as spinning 
about its axis as shown in Figure 30.25, but you should be very careful with the clas-
sical interpretation. The magnitude of the angular momentum S

S
 associated with 

spin is on the same order of magnitude as the magnitude of the angular momen-
tum L

S
 due to the orbital motion. The magnitude of the spin angular momentum 

of an electron predicted by quantum theory is

S 5
"3

2
 U

The magnetic moment characteristically associated with the spin of an electron has 
the value

 mspin 5
e U

2me
 (30.24)

This combination of constants is called the Bohr magneton mB:

 mB 5
e U

2me
5 9.27 3 10224 J/T  (30.25)

Therefore, atomic magnetic moments can be expressed as multiples of the Bohr 
magneton. (Note that 1 J/T 5 1 A ? m2.)
 In atoms containing many electrons, the electrons usually pair up with their 
spins opposite each other; therefore, the spin magnetic moments cancel. Atoms 
containing an odd number of electrons, however, must have at least one unpaired 
electron and therefore some spin magnetic moment. The total magnetic moment 
of an atom is the vector sum of the orbital and spin magnetic moments, and a few 
examples are given in Table 30.1. Notice that helium and neon have zero moments 
because their individual spin and orbital moments cancel.
 The nucleus of an atom also has a magnetic moment associated with its constitu-
ent protons and neutrons. The magnetic moment of a proton or neutron, however, 
is much smaller than that of an electron and can usually be neglected. We can 
understand this smaller value by inspecting Equation 30.25 and replacing the mass 
of the electron with the mass of a proton or a neutron. Because the masses of the 
proton and neutron are much greater than that of the electron, their magnetic 
moments are on the order of 103 times smaller than that of the electron.

Ferromagnetism
A small number of crystalline substances exhibit strong magnetic effects called fer-
romagnetism. Some examples of ferromagnetic substances are iron, cobalt, nickel, 
gadolinium, and dysprosium. These substances contain permanent atomic mag-
netic moments that tend to align parallel to each other even in a weak external 
magnetic field. Once the moments are aligned, the substance remains magnetized 
after the external field is removed. This permanent alignment is due to a strong 
coupling between neighboring moments, a coupling that can be understood only 
in quantum-mechanical terms.
 All ferromagnetic materials are made up of microscopic regions called domains, 
regions within which all magnetic moments are aligned. These domains have vol-
umes of about 10212 to 1028 m3 and contain 1017 to 1021 atoms. The boundaries 
between the various domains having different orientations are called domain walls. 
In an unmagnetized sample, the magnetic moments in the domains are randomly 

Pitfall Prevention 30.3
The Electron Does not Spin The 
electron is not physically spinning. 
It has an intrinsic angular momen-
tum as if it were spinning, but the 
notion of rotation for a point 
particle is meaningless. Rotation 
applies only to a rigid object, with 
an extent in space, as in Chapter 
10. Spin angular momentum is 
actually a relativistic effect.

spin

S
S

m
S

Figure 30.25  Classical model of 
a spinning electron. We can adopt 
this model to remind ourselves 
that electrons have an intrinsic 
angular momentum. The model 
should not be pushed too far, 
however; it gives an incorrect mag-
nitude for the magnetic moment, 
incorrect quantum numbers, and 
too many degrees of freedom.

Table 30.1 Magnetic 
Moments of Some Atoms 
and Ions
 Magnetic
 Moment
Atom or Ion (10224 J/T)

H 9.27
He 0
Ne 0
Ce31 19.8
Yb31 37.1
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.

a

c

b

In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 

B
S

B
S

dA
S

B
S

When an external field     is 
applied, the domains with 
components of magnetic moment 
in the same direction as     grow 
larger, giving the sample a net 
magnetization.

B
S

B
S

As the field is made even stronger, 
the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 30.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893
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 As you recall from Chapter 27, a superconductor is a substance in which the elec-
trical resistance is zero below some critical temperature. Certain types of supercon-
ductors also exhibit perfect diamagnetism in the superconducting state. As a result, 
an applied magnetic field is expelled by the superconductor so that the field is zero 
in its interior. This phenomenon is known as the Meissner effect. If a permanent 
magnet is brought near a superconductor, the two objects repel each other. This 
repulsion is illustrated in Figure 30.27, which shows a small permanent magnet levi-
tated above a superconductor maintained at 77 K.

Figure 30.27  An illustration of 
the Meissner effect, shown by this 
magnet suspended above a cooled 
ceramic superconductor disk, has 
become our most visual image of 
high-temperature superconductivity. 
Superconductivity is the loss of all 
resistance to electrical current and is 
a key to more-efficient energy use. 

In the Meissner effect, the small 
magnet at the top induces currents 
in the superconducting disk below, 
which is cooled to �321�F (77 K). 
The currents create a repulsive 
magnetic force on the magnet 
causing it to levitate above the 
superconducting disk.
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Liquid oxygen, a 
paramagnetic material, 
is attracted to the poles 
of a magnet.
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The levitation force is exerted on 
the diamagnetic water molecules 
in the frog’s body. 
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(Left) Paramagnetism. (Right) Diamagnetism: a frog is levitated in a 16-T magnetic field at the 
Nijmegen High Field Magnet Laboratory in the Netherlands.

Summary

 The magnetic flux FB through a surface is defined by the surface integral

 FB ; 3 B
S

? d A
S

 (30.18)

Definition

Concepts and Principles

 The Biot–Savart law says that the magnetic field d B
S

  at  
a point P due to a length element d sS that carries a steady 
current I is

 d B
S

5
m0

4p
 

I d sS 3 r̂ 
r 2  (30.1)

where m0 is the permeability of free space, r is the distance 
from the element to the point P, and r̂ is a unit vector 
pointing from d sS toward point P. We find the total field 
at P by integrating this expression over the entire current 
distribution.

 The magnetic force per unit length between 
two parallel wires separated by a distance a and 
carrying currents I 1 and I 2 has a magnitude

 
FB

,
5

m0I1I2

2pa
 (30.12)

The force is attractive if the currents are in the 
same direction and repulsive if they are in oppo-
site directions.
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 1. (i) What happens to the magnitude of the magnetic 
field inside a long solenoid if the current is doubled? 
(a) It becomes four times larger. (b) It becomes twice 
as large. (c) It is unchanged. (d) It becomes one-half as 
large. (e) It becomes one-fourth as large. (ii) What hap-
pens to the field if instead the length of the solenoid 
is doubled, with the number of turns remaining the 
same? Choose from the same possibilities as in part (i). 
(iii) What happens to the field if the number of turns is 
doubled, with the length remaining the same? Choose 
from the same possibilities as in part (i). (iv) What hap-
pens to the field if the radius is doubled? Choose from 
the same possibilities as in part (i).

 2. In Figure 30.7, assume I 1 5 2.00 A and I 2 5 6.00 A. 
What is the relationship between the magnitude F1 of 
the force exerted on wire 1 and the magnitude F2 of 
the force exerted on wire 2? (a) F1 5 6F2 (b) F1 5 3F2 
(c) F1 5 F2 (d) F1 5 1

3 F2 (e) F1 5 1
6 F2

 3. Answer each question yes or no. (a) Is it possible for 
each of three stationary charged particles to exert a 
force of attraction on the other two? (b) Is it possible 
for each of three stationary charged particles to repel 
both of the other particles? (c) Is it possible for each of 
three current-carrying metal wires to attract the other 
two wires? (d) Is it possible for each of three current- 
carrying metal wires to repel the other two wires? 
André-Marie Ampère’s experiments on electromagne-
tism are models of logical precision and included obser-
vation of the phenomena referred to in this question.

 4. Two long, parallel wires each carry the same current I in 
the same direction (Fig. OQ30.4). Is the total magnetic 

field at the point P midway between the wires (a) zero, 
(b) directed into the page, (c) directed out of the page, 
(d) directed to the left, or (e) directed to the right?

I

I

P

Figure oQ30.4

 5. Two long, straight wires cross each other at a right 
angle, and each carries the same current I (Fig. 
OQ30.5). Which of the following statements is true 
regarding the total magnetic field due to the two wires 
at the various points in the figure? More than one 
statement may be correct. (a) The field is strongest at 
points B and D. (b) The field is strong est at points A 
and C. (c) The field is out of the page at point B and 

 Ampère’s law says that the 
line integral of B

S
? d sS around 

any closed path equals m0I, 
where I is the total steady 
current through any surface 
bounded by the closed path:

 C B
S

? d sS 5 m0I  (30.13)

 Gauss’s law of magnetism 
states that the net magnetic 
flux through any closed sur-
face is zero:

 C B
S

? d A
S

5 0  (30.20)

 The magnitude of the magnetic field at a distance r from a long, straight 
wire carrying an electric current I is

 B 5
m0I
2pr

 (30.14)

The field lines are circles concentric with the wire.
 The magnitudes of the fields inside a toroid and solenoid are

 B 5
m0NI
2pr
 1 toroid 2  (30.16)

 B 5 m0 
N
,

 I 5 m0nI 1solenoid 2  (30.17)

where N is the total number of turns.

 Substances can be classified into one of three categories that describe their 
magnetic behavior. Diamagnetic substances are those in which the magnetic 
moment is weak and opposite the applied magnetic field. Paramagnetic sub-
stances are those in which the magnetic moment is weak and in the same direc-
tion as the applied magnetic field. In ferromagnetic substances, interactions 
between atoms cause magnetic moments to align and create a strong magneti-
zation that remains after the external field is removed.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

I
IB A

C D

Figure oQ30.5
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ment may be correct. (a) In region I, the magnetic 
field is into the page and is never zero. (b) In region II, 
the field is into the page and can be zero. (c) In region 
III, it is possible for the field to be zero. (d) In region I, 
the magnetic field is out of the page and is never zero. 
(e) There are no points where the field is zero.

 10. Consider the two parallel wires carrying currents in 
opposite directions in Figure OQ30.9. Due to the mag-
netic interaction between the wires, does the lower 
wire experience a magnetic force that is (a) upward, 
(b) downward, (c)  to the left, (d) to the right, or  
(e) into the paper?

 11. What creates a magnetic field? More than one answer 
may be correct. (a) a stationary object with electric 
charge (b) a moving object with electric charge (c) a 
stationary conductor carrying electric current (d) a 
difference in electric potential (e) a charged capacitor 
disconnected from a battery and at rest Note: In Chap-
ter 34, we will see that a changing electric field also 
creates a magnetic field.

 12. A long solenoid with closely spaced turns carries 
electric current. Does each turn of wire exert (a) an 
attractive force on the next adjacent turn, (b) a repul-
sive force on the next adjacent turn, (c) zero force on 
the next adjacent turn, or (d) either an attractive or 
a repulsive force on the next turn, depending on the 
direction of current in the solenoid?

 13. A uniform magnetic field is directed along the x axis. 
For what orientation of a flat, rectangular coil is the 
flux through the rectangle a maximum? (a) It is a max-
imum in the xy plane. (b) It is a maximum in the xz 
plane. (c) It is a maximum in the yz plane. (d) The flux 
has the same nonzero value for all these orientations. 
(e) The flux is zero in all cases.

 14. Rank the magnitudes of the following magnetic fields 
from largest to smallest, noting any cases of equality. 
(a) the field 2 cm away from a long, straight wire carry-
ing a current of 3 A (b) the field at the center of a flat, 
compact, circular coil, 2 cm in radius, with 10 turns, 
carrying a current of 0.3 A (c) the field at the center  
of a solenoid 2 cm in radius and 200 cm long, with  
1 000 turns, carrying a current of 0.3 A (d) the field at 
the center of a long, straight, metal bar, 2 cm in radius, 
carrying a current of 300 A (e) a field of 1 mT

 15. Solenoid A has length L and N turns, solenoid B has 
length 2L and N turns, and solenoid C has length L/2 
and 2N turns. If each solenoid carries the same cur-
rent, rank the magnitudes of the magnetic fields in the 
centers of the solenoids from largest to smallest.

into the page at point D. (d) The field is out of the page 
at point C and out of the page at point D. (e) The field 
has the same magnitude at all four points.

 6. A long, vertical, metallic wire carries downward elec-
tric current. (i) What is the direction of the magnetic 
field it creates at a point 2 cm horizontally east of the 
center of the wire? (a) north (b) south (c) east (d) west 
(e) up (ii) What would be the direction of the field if 
the current consisted of positive charges moving down-
ward instead of electrons moving upward? Choose 
from the same possibilities as in part (i).

 7. Suppose you are facing a tall makeup mirror on a verti-
cal wall. Fluorescent tubes framing the mirror carry a 
clockwise electric current. (i) What is the direction of 
the magnetic field created by that current at the center 
of the mirror? (a) left (b) right (c) horizontally toward 
you (d)  horizontally away from you (e) no direction 
because the field has zero magnitude (ii) What is the 
direction of the field the current creates at a point on 
the wall outside the frame to the right? Choose from 
the same possibilities as in part (i).

 8. A long, straight wire carries a current I (Fig. OQ30.8). 
Which of the following statements is true regarding 
the magnetic field due to the wire? More than one 
statement may be correct. (a)  The magnitude is pro-
portional to I/r, and the direction is out of the page at 
P. (b) The magnitude is proportional to I/r 2, and the 
direction is out of the page at P. (c) The magnitude is 
proportional to I/r, and the direction is into the page 
at P. (d) The magnitude is proportional to I/r 2, and 
the direction is into the page at P. (e) The magnitude 
is proportional to I, but does not depend on r.

I

P
r

Figure oQ30.8

 9. Two long, parallel wires carry currents of 20.0 A and 
10.0 A in opposite directions (Fig. OQ30.9). Which of 
the following statements is true? More than one state-

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Is the magnetic field created by a current loop uni-
form? Explain.

 2. One pole of a magnet attracts a nail. Will the other 
pole of the magnet attract the nail? Explain. Also 
explain how a magnet sticks to a refrigerator door.

 3. Compare Ampère’s law with the Biot–Savart law. Which 
is more generally useful for calculating B

S
 for a current- 

carrying conductor?

 4. A hollow copper tube carries a current along its length. 
Why is B 5 0 inside the tube? Is B nonzero outside the 
tube?

I 20.0 A

10.0 AIII

II

Figure oQ30.9 Objective Questions 9 and 10.
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 3. Calculate the magnitude of the magnetic field at a 
point 25.0 cm from a long, thin conductor carrying a 
current of 2.00 A.

W

Section 30.1  The Biot–Savart Law

 1. Review. In studies of the possibility of migrating 
birds using the Earth’s magnetic field for navigation,  
birds have been fitted with coils as “caps” and “col-
lars” as shown in Figure P30.1. (a) If the identical coils  
have radii of 1.20 cm and are 2.20 cm apart, with 50 
turns of wire apiece, what current should they both 
carry to produce a magnetic field of 4.50 3 1025 T 
halfway between them? (b) If the resistance of each 
coil is 210 V, what voltage should the battery supply-
ing each coil have? (c) What power is delivered to 
each coil?

Figure P30.1

 2. In each of parts (a) through (c) of Figure P30.2, find 
the direction of the current in the wire that would pro-
duce a magnetic field directed as shown.

 5. Imagine you have a compass whose needle can rotate 
vertically as well as horizontally. Which way would the 
compass needle point if you were at the Earth’s north 
magnetic pole?

 6. Is Ampère’s law valid for all closed paths surrounding a 
conductor? Why is it not useful for calculating B

S
 for all 

such paths?

 7. A magnet attracts a piece of iron. The iron can then 
attract another piece of iron. On the basis of domain 
alignment, explain what happens in each piece of iron.

 8. Why does hitting a magnet with a hammer cause the 
magnetism to be reduced?

 9. The quantity e B
S

? d sS in Ampère’s law is called magnetic 
circulation. Figures 30.10 and 30.13 show paths around 
which the magnetic circulation is evaluated. Each of 
these paths encloses an area. What is the magnetic flux 
through each area? Explain your answer.

 10. Figure CQ30.10 shows four per-
manent magnets, each having a 
hole through its center. Notice 
that the blue and yellow magnets 
are levitated above the red ones.  
(a) How does this levitation 
occur? (b) What purpose do the 
rods serve? (c) What can you say 
about the poles of the magnets 
from this observation? (d) If the 
blue magnet were inverted, what 
do you suppose would happen?

 11. Explain why two parallel wires carrying currents in 
opposite directions repel each other.

 12. Consider a magnetic field that is uniform in direction 
throughout a certain volume. (a) Can the field be uni-
form in magnitude? (b) Must it be uniform in magni-
tude? Give evidence for your answers.

Figure CQ30.10
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The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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Figure P30.2
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direction of the field produced at P if the current is 
3.00 A?

 14. One long wire carries current 30.0 A to the left along 
the x axis. A second long wire carries current 50.0 A to 
the right along the line (y 5 0.280 m, z 5 0). (a) Where  
in the plane of the two wires is the total magnetic field 
equal to zero? (b) A particle with a charge of 22.00 mC 
is moving with a velocity of 150 î Mm/s along the line  
(y 5 0.100 m, z 5 0). Calculate the vector magnetic 
force acting on the particle. (c) What If? A uni-
form electric field is applied to allow this particle to 
pass through this region undeflected. Calculate the 
required vector electric field.

 15. Three long, parallel conductors each carry a current of 
I 5 2.00 A. Figure P30.15 is an end view of the conduc-
tors, with each current coming out of the page. Taking 
a 5 1.00 cm, determine the magnitude and direction 
of the magnetic field at (a) point A, (b) point B, and  
(c) point C.

I

I

aa

a

a

a
BA C I

Figure P30.15

 16. In a long, straight, vertical lightning stroke, electrons 
move downward and positive ions move upward and 
constitute a current of magnitude 20.0 kA. At a loca-
tion 50.0 m east of the middle of the stroke, a free elec-
tron drifts through the air toward the west with a speed 
of 300 m/s. (a) Make a sketch showing the various vec-
tors involved. Ignore the effect of the Earth’s magnetic 
field. (b) Find the vector force the lightning stroke 
exerts on the electron. (c) Find the radius of the elec-
tron’s path. (d) Is it a good approximation to model the 
electron as moving in a uniform field? Explain your 
answer. (e) If it does not collide with any obstacles, how 
many revolutions will the electron complete during the 
60.0-ms duration of the lightning stroke?

 17. Determine the magnetic field (in terms of I, a, and d) 
at the origin due to the current loop in Figure P30.17. 
The loop extends to infinity above the figure.

P

I

I
u

Figure P30.13

AMT
M

Q/C

S

rent I 2. The total magnetic field at the origin due 
to the current-carrying wires has the magnitude  
2m0I1/(2pa). The current I 2 can have either of two pos-
sible values. (a) Find the value of I 2 with the smaller 
magnitude, stating it in terms of I 1 and giving its direc-
tion. (b) Find the other possible value of I 2.

x

I2 I1

2a–2a 0

Figure P30.9

 10. An infinitely long wire carrying a current I is bent at a 
right angle as shown in Figure P30.10. Determine the 
magnetic field at point P, located a distance x from the 
corner of the wire.

x

P

I

I

Figure P30.10

 11. A long, straight wire carries a current I. A right-angle 
bend is made in the middle of the wire. The bend 
forms an arc of a circle of radius r as shown in Figure 
P30.11. Determine the magnetic field at point P, the 
center of the arc.

r

P
I

Figure P30.11

 12. Consider a flat, circular current loop of radius R car-
rying a current I. Choose the x axis to be along the 
axis of the loop, with the origin at the loop’s center. 
Plot a graph of the ratio of the magnitude of the mag-
netic field at coordinate x to that at the origin for x 5 0  
to x 5 5R. It may be helpful to use a programmable 
calculator or a computer to solve this problem.

 13. A current path shaped as shown in Figure P30.13 pro-
duces a magnetic field at P, the center of the arc. If 
the arc subtends an angle of u 5 30.08 and the radius 
of the arc is 0.600 m, what are the magnitude and 

S

S

 4. In 1962, measurements of the magnetic field of a large 
tornado were made at the Geophysical Observatory in 
Tulsa, Oklahoma. If the magnitude of the tornado’s 
field was B 5 1.50 3 1028 T pointing north when the 
tornado was 9.00 km east of the observatory, what cur-
rent was carried up or down the funnel of the tornado? 
Model the vortex as a long, straight wire carrying a 
current.

 5. (a) A conducting loop in the shape of a square of 
edge length , 5 0.400 m carries a current I 5 10.0 A 
as shown in Figure P30.5. Calculate the magnitude 
and direction of the magnetic field at the center of 
the square. (b) What If? If this conductor is reshaped 
to form a circular loop and carries the same current, 
what is the value of the magnetic field at the center?

I

�

Figure P30.5

 6. In Niels Bohr’s 1913 model of the hydrogen atom, 
an electron circles the proton at a distance of 5.29 3  
10211 m with a speed of 2.19 3 106 m/s. Compute the 
magnitude of the magnetic field this motion produces 
at the location of the proton.

 7. A conductor consists of a circular loop of radius R 5 
15.0 cm and two long, straight sections as shown in Fig-
ure P30.7. The wire lies in the plane of the paper and 
carries a current I 5 1.00 A. Find the magnetic field at 
the center of the loop.

RI

Figure P30.7 Problems 7 and 8.

 8. A conductor consists of a circular loop of radius R and 
two long, straight sections as shown in Figure P30.7. 
The wire lies in the plane of the paper and carries a 
current I. (a) What is the direction of the magnetic 
field at the center of the loop? (b) Find an expression 
for the magnitude of the magnetic field at the center 
of the loop.

 9. Two long, straight, parallel wires carry currents that 
are directed perpendicular to the page as shown 
in Figure P30.9. Wire 1 carries a current I1 into 
the page (in the negative z direction) and passes 
through the x axis at x 5 1a. Wire 2 passes through 
the x axis at x 5 22a and carries an unknown cur-

M

W

S

S
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direction of the field produced at P if the current is 
3.00 A?

 14. One long wire carries current 30.0 A to the left along 
the x axis. A second long wire carries current 50.0 A to 
the right along the line (y 5 0.280 m, z 5 0). (a) Where  
in the plane of the two wires is the total magnetic field 
equal to zero? (b) A particle with a charge of 22.00 mC 
is moving with a velocity of 150 î Mm/s along the line  
(y 5 0.100 m, z 5 0). Calculate the vector magnetic 
force acting on the particle. (c) What If? A uni-
form electric field is applied to allow this particle to 
pass through this region undeflected. Calculate the 
required vector electric field.

 15. Three long, parallel conductors each carry a current of 
I 5 2.00 A. Figure P30.15 is an end view of the conduc-
tors, with each current coming out of the page. Taking 
a 5 1.00 cm, determine the magnitude and direction 
of the magnetic field at (a) point A, (b) point B, and  
(c) point C.

I

I

aa

a

a

a
BA C I

Figure P30.15

 16. In a long, straight, vertical lightning stroke, electrons 
move downward and positive ions move upward and 
constitute a current of magnitude 20.0 kA. At a loca-
tion 50.0 m east of the middle of the stroke, a free elec-
tron drifts through the air toward the west with a speed 
of 300 m/s. (a) Make a sketch showing the various vec-
tors involved. Ignore the effect of the Earth’s magnetic 
field. (b) Find the vector force the lightning stroke 
exerts on the electron. (c) Find the radius of the elec-
tron’s path. (d) Is it a good approximation to model the 
electron as moving in a uniform field? Explain your 
answer. (e) If it does not collide with any obstacles, how 
many revolutions will the electron complete during the 
60.0-ms duration of the lightning stroke?

 17. Determine the magnetic field (in terms of I, a, and d) 
at the origin due to the current loop in Figure P30.17. 
The loop extends to infinity above the figure.

P

I

I
u

Figure P30.13
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 18. A wire carrying a current I is bent into the shape of 
an equilateral triangle of side L. (a) Find the magni-
tude of the magnetic field at the center of the triangle.  
(b) At a point halfway between the center and any ver-
tex, is the field stronger or weaker than at the center? 
Give a qualitative argument for your answer.

 19. The two wires shown in Figure P30.19 are separated by 
d 5 10.0 cm and carry currents of I 5 5.00 A in oppo-
site directions. Find the magnitude and direction of 
the net magnetic field (a) at a point midway between 
the wires; (b) at point P1, 10.0 cm to the right of the 
wire on the right; and (c) at point P2, 2d 5 20.0 cm to 
the left of the wire on the left.

2d d d

P1P2

I I

Figure P30.19

 20. Two long, parallel wires carry currents of I1 5 3.00 A 
and I2 5 5.00 A in the directions indicated in Figure 
P30.20. (a)  Find the magnitude and direction of the 
magnetic field at a point midway between the wires. 
(b) Find the magnitude and direction of the magnetic 
field at point P, located d 5 20.0 cm above the wire car-
rying the 5.00-A current.

d

d

P

I 1 I 2

Figure P30.20

Section 30.2  The Magnetic Force Between Two  
Parallel Conductors

 21. Two long, parallel conductors, separated by 10.0 cm, 
carry currents in the same direction. The first wire car-
ries a current I1 5 5.00 A, and the second carries I2 5 
8.00 A. (a) What is the magnitude of the magnetic field 
created by I1 at the location of I2? (b) What is the force 
per unit length exerted by I1 on I2? (c) What is the 
magnitude of the magnetic field created by I2 at the 
location of I1? (d) What is the force per length exerted 
by I2 on I1?

 22. Two parallel wires separated by 4.00 cm repel each 
other with a force per unit length of 2.00 3 1024 N/m. 
The current in one wire is 5.00 A. (a) Find the current 
in the other wire. (b) Are the currents in the same 
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vidual accomplishments, Weber and Gauss built a tele-
graph in 1833 that consisted of a battery and switch, 
at one end of a transmission line 3 km long, operat-
ing an electromagnet at the other end. Suppose their 
transmission line was as diagrammed in Figure P30.29. 
Two long, parallel wires, each having a mass per unit 
length of 40.0 g/m, are supported in a horizontal plane 
by strings , 5 6.00 cm long. When both wires carry 
the same current I, the wires repel each other so that 
the angle between the supporting strings is u 5 16.08.  
(a) Are the currents in the same direction or in oppo-
site directions? (b) Find the magnitude of the current. 
(c) If this transmission line were taken to Mars, would 
the current required to separate the wires by the same 
angle be larger or smaller than that required on the 
Earth? Why?

u

,

Figure P30.29

Section 30.3  ampère’s Law

 30. Niobium metal becomes a superconductor when 
cooled below 9 K. Its superconductivity is destroyed 
when the surface magnetic field exceeds 0.100 T. In 
the absence of any external magnetic field, determine 
the maximum current a 2.00-mm-diameter niobium 
wire can carry and remain superconducting.

 31. Figure P30.31 is a cross-sectional view of a coaxial 
cable. The center conductor is surrounded by a rubber 
layer, an outer conductor, and another rubber layer.  
In a particular application, the current in the inner 
conductor is I1 5 1.00 A out of the page and the cur-
rent in the outer conductor is I2 5 3.00 A into the 
page. Assuming the distance d 5 1.00 mm, determine 
the magnitude and direction of the magnetic field at 
(a) point a and (b) point b.

ba

I1

d d d

I2 

Figure P30.31

 32. The magnetic coils of a tokamak fusion reactor are 
in the shape of a toroid having an inner radius of  
0.700 m and an outer radius of 1.30 m. The toroid has 
900 turns of large-diameter wire, each of which carries 
a current of 14.0 kA. Find the magnitude of the mag-

W

W

direction or in opposite directions? (c) What would 
happen if the direction of one current were reversed 
and doubled?

 23. Two parallel wires are separated by 6.00 cm, each car-
rying 3.00 A of current in the same direction. (a) What 
is the magnitude of the force per unit length between 
the wires? (b) Is the force attractive or repulsive?

 24. Two long wires hang vertically. Wire 1 carries an 
upward current of 1.50 A. Wire 2, 20.0 cm to the right 
of wire 1, carries a downward current of 4.00 A. A third 
wire, wire 3, is to be hung vertically and located such 
that when it carries a certain current, each wire experi-
ences no net force. (a) Is this situation possible? Is it 
possible in more than one way? Describe (b) the posi-
tion of wire 3 and (c) the magnitude and direction of 
the current in wire 3.

 25. In Figure P30.25, the current in the long, straight wire 
is I1 5 5.00 A and the wire lies in the plane of the rect-
angular loop, which carries a current I2 5 10.0 A. The 
dimensions in the figure are c 5 0.100 m, a 5 0.150 m, 
and , 5 0.450 m. Find the magnitude and direction of 
the net force exerted on the loop by the magnetic field 
created by the wire.

I1

�

c a

I2

Figure P30.25 Problems 25 and 26.

 26. In Figure P30.25, the current in the long, straight wire 
is I1 and the wire lies in the plane of a rectangular 
loop, which carries a current I2. The loop is of length 
, and width a. Its left end is a distance c from the wire. 
Find the magnitude and direction of the net force 
exerted on the loop by the magnetic field created by 
the wire.

 27. Two long, parallel wires are attracted to each other by 
a force per unit length of 320 mN/m. One wire carries 
a current of 20.0 A to the right and is located along 
the line y 5 0.500 m. The second wire lies along the  
x axis. Determine the value of y for the line in the 
plane of the two wires along which the total magnetic 
field is zero.

 28. Why is the following situation impossible? Two parallel 
copper conductors each have length , 5 0.500 m and 
radius r 5 250 mm. They carry currents I 5 10.0 A in 
opposite directions and repel each other with a mag-
netic force FB 5 1.00 N.

 29. The unit of magnetic flux is named for Wilhelm Weber. 
A practical-size unit of magnetic field is named for 
Johann Karl Friedrich Gauss. Along with their indi-
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 38. A long, cylindrical conductor of radius R carries a cur-
rent I as shown in Figure P30.38. The current density 
J, however, is not uniform over the cross section of the 
conductor but rather is a function of the radius accord-
ing to J 5 br, where b is a constant. Find an expression 
for the magnetic field magnitude B (a) at a distance  
r1 , R and (b) at a distance r2 . R, measured from the 
center of the conductor.

R
r1

I

r2

Figure P30.38

 39. Four long, parallel conductors carry equal currents of 
I 5 5.00 A. Figure P30.39 is an end view of the conduc-
tors. The current direction is into the page at points 
A and B and out of the page at points C and D. Cal-
culate (a) the magnitude and (b) the direction of the 
magnetic field at point P, located at the center of the 
square of edge length , 5 0.200 m.

,

,

A

B

C

P

D

Figure P30.39

Section 30.4  The Magnetic Field of a Solenoid

 40. A certain superconducting magnet in the form of a 
solenoid of length 0.500 m can generate a magnetic 
field of 9.00 T in its core when its coils carry a current 
of 75.0 A. Find the number of turns in the solenoid.

 41. A long solenoid that has 1 000 turns uniformly dis-
tributed over a length of 0.400 m produces a magnetic 
field of magnitude 1.00 3 1024 T at its center. What 
current is required in the windings for that to occur?

 42. You are given a certain volume of copper from which 
you can make copper wire. To insulate the wire, you 
can have as much enamel as you like. You will use the 
wire to make a tightly wound solenoid 20 cm long hav-
ing the greatest possible magnetic field at the center 
and using a power supply that can deliver a current 
of 5 A. The solenoid can be wrapped with wire in one 
or more layers. (a) Should you make the wire long 
and thin or shorter and thick? Explain. (b) Should 
you make the radius of the solenoid small or large? 
Explain.

 43. A single-turn square loop of wire, 2.00 cm on each edge, 
carries a clockwise current of 0.200 A. The loop is inside 
a solenoid, with the plane of the loop perpendicular 
to the magnetic field of the solenoid. The solenoid has 
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netic field inside the toroid along (a) the inner radius 
and (b) the outer radius.

 33. A long, straight wire lies on a horizontal table and car-
ries a current of 1.20 mA. In a vacuum, a proton moves 
parallel to the wire (opposite the current) with a con-
stant speed of 2.30 3 104 m/s at a distance d above the 
wire. Ignoring the magnetic field due to the Earth, 
determine the value of d.

 34. An infinite sheet of current lying in the yz plane car-
ries a surface current of linear density Js . The current 
is in the positive z direction, and Js represents the cur-
rent per unit length measured along the y axis. Figure 
P30.34 is an edge view of the sheet. Prove that the mag-
netic field near the sheet is parallel to the sheet and 
perpendicular to the current direction, with magni-
tude m0 Js /2.

Js  (out of paper)

x

Figure P30.34

 35. The magnetic field 40.0 cm away from a long, straight 
wire carrying current 2.00 A is 1.00 mT. (a) At what dis-
tance is it 0.100 mT? (b) What If? At one instant, the 
two conductors in a long household extension cord 
carry equal 2.00-A currents in opposite directions. The 
two wires are 3.00 mm apart. Find the magnetic field 
40.0 cm away from the middle of the straight cord, in 
the plane of the two wires. (c)  At what distance is it 
one-tenth as large? (d) The center wire in a coaxial 
cable carries current 2.00 A in one direction, and the 
sheath around it carries current 2.00 A in the opposite 
direction. What magnetic field does the cable create at 
points outside the cable?

 36. A packed bundle of 100 long, straight, insulated wires 
forms a cylinder of radius R 5 0.500 cm. If each wire 
carries 2.00 A, what are (a) the magnitude and (b) the 
direction of the magnetic force per unit length acting 
on a wire located 0.200 cm from the center of the bun-
dle? (c) What If? Would a wire on the outer edge of the 
bundle experience a force greater or smaller than the 
value calculated in parts (a) and (b)? Give a qualitative 
argument for your answer.

 37. The magnetic field created by a large current passing 
through plasma (ionized gas) can force current-carrying  
particles together. This pinch effect has been used in 
designing fusion reactors. It can be demonstrated by 
making an empty aluminum can carry a large cur-
rent parallel to its axis. Let R represent the radius of 
the can and I the current, uniformly distributed over 
the can’s curved wall. Determine the magnetic field  
(a) just inside the wall and (b) just outside. (c) Deter-
mine the pressure on the wall.
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shown in Figure P30.48a. (b) Figure P30.48b shows an 
enlarged end view of the same solenoid. Calculate the 
flux through the tan area, which is an annulus with 
an inner radius of a 5 0.400 cm and an outer radius 
of b 5 0.800 cm.

rR

a

b

I

I

a b

,

Figure P30.48

Section 30.6  Magnetism in Matter

 49. The magnetic moment of the Earth is approximately 
8.00  3 1022 A ? m2. Imagine that the planetary mag-
netic field were caused by the complete magnetiza-
tion of a huge iron deposit with density 7 900 kg/m3  
and approximately 8.50 3 1028 iron atoms/m3.  
(a) How many unpaired electrons, each with a mag-
netic moment of 9.27 3 10224 A ? m2, would participate? 
(b) At two unpaired electrons per iron atom, how many 
kilograms of iron would be present in the deposit?

 50. At saturation, when nearly all the atoms have their 
magnetic moments aligned, the magnetic field is 
equal to the permeability constant m0 multiplied by 
the magnetic moment per unit volume. In a sample of 
iron, where the number density of atoms is approxi-
mately 8.50 3 1028 atoms/m3, the magnetic field can 
reach 2.00 T. If each electron contributes a magnetic 
moment of 9.27 3 10224 A ? m2 (1 Bohr magneton), 
how many electrons per atom contribute to the satu-
rated field of iron?

additional Problems

 51. A 30.0-turn solenoid of length 6.00 cm produces a 
magnetic field of magnitude 2.00 mT at its center. Find 
the current in the solenoid.

 52. A wire carries a 7.00-A current along the x axis, and 
another wire carries a 6.00-A current along the y axis, 
as shown in Figure P30.52. What is the magnetic field 
at point P, located at x 5 4.00 m, y 5 3.00 m?

M

M

7.00 A

(4.00, 3.00) m

y

x
P

77777 0000000000 A

6.00 A

Figure P30.52

30.0 turns/cm and carries a clockwise current of 15.0 A. 
Find (a) the force on each side of the loop and (b) the 
torque acting on the loop.

 44. A solenoid 10.0 cm in diameter and 75.0 cm long is 
made from copper wire of diameter 0.100 cm, with very 
thin insulation. The wire is wound onto a cardboard 
tube in a single layer, with adjacent turns touching 
each other. What power must be delivered to the sole-
noid if it is to produce a field of 8.00 mT at its center?

 45. It is desired to construct a solenoid that will have a 
resistance of 5.00 V (at 20.08C) and produce a mag-
netic field of 4.00 3 1022 T at its center when it carries 
a current of 4.00 A. The solenoid is to be constructed 
from copper wire having a diameter of 0.500 mm. If 
the radius of the solenoid is to be 1.00 cm, determine 
(a) the number of turns of wire needed and (b) the 
required length of the solenoid.

Section 30.5  Gauss’s Law in Magnetism

 46. Consider the hemispherical closed surface in Figure 
P30.46. The hemisphere is in a uniform magnetic 
field that makes an angle u with the vertical. Calculate 
the magnetic flux through (a) the flat surface S1 and 
(b) the hemispherical surface S2.

S1 R

S2

u

B
S

Figure P30.46

 47. A cube of edge length , 5 2.50 cm is positioned as 
shown in Figure P30.47. A uniform magnetic field 
given by B

S
5 15î 1 4 ĵ 1 3k̂ 2  T  exists throughout the 

region. (a)  Calculate the magnetic flux through the 
shaded face. (b) What is the total f lux through the six 
faces?
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z
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Figure P30.47

 48. A solenoid of radius r 5 1.25 cm and length , 5 30.0 cm  
has 300 turns and carries 12.0 A. (a) Calculate the 
flux through the surface of a disk-shaped area of 
radius R 5 5.00 cm that is positioned perpendicu-
lar to and centered on the axis of the solenoid as 
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needle” is a magnetic compass mounted so that it can 
rotate in a vertical north–south plane. At this location, 
a dip needle makes an angle of 13.08 from the vertical. 
What is the total magnitude of the Earth’s magnetic 
field at this location?

 59. A very large parallel-plate capacitor has uniform 
charge per unit area 1s on the upper plate and 2s 
on the lower plate. The plates are horizontal, and both 
move horizontally with speed v to the right. (a) What 
is the magnetic field between the plates? (b) What is 
the magnetic field just above or just below the plates?  
(c) What are the magnitude and direction of the mag-
netic force per unit area on the upper plate? (d) At 
what extrapolated speed v will the magnetic force on a 
plate balance the electric force on the plate? Suggestion:  
Use Ampere’s law and choose a path that closes 
between the plates of the capacitor.

 60. Two circular coils of radius R, each with N turns, are 
perpendicular to a common axis. The coil centers are 
a distance R apart. Each coil carries a steady current 
I in the same direction as shown in Figure P30.60.  
(a) Show that the magnetic field on the axis at a dis-
tance x from the center of one coil is

  B 5
Nm0IR 2

2
c 1
1R 2 1 x 2 23/2 1

1
12R 2 1 x 2 2 2Rx 23/2 d

  (b) Show that dB/dx and d 2B/dx 2 are both zero at the 
point midway between the coils. We may then conclude 
that the magnetic field in the region midway between 
the coils is uniform. Coils in this configuration are 
called Helmholtz coils.

R

R

I

R

I

Figure P30.60 Problems 60 and 61.

 61. Two identical, flat, circular coils of wire each have 100 
turns and radius R 5 0.500 m. The coils are arranged 
as a set of Helmholtz coils so that the separation dis-
tance between the coils is equal to the radius of the 
coils (see Fig. P30.60). Each coil carries current I 5 
10.0 A. Determine the magnitude of the magnetic field 
at a point on the common axis of the coils and halfway 
between them.

 62. Two circular loops are parallel, coaxial, and almost in 
contact, with their centers 1.00 mm apart (Fig. P30.62, 
page 932). Each loop is 10.0 cm in radius. The top loop 
carries a clockwise current of I 5 140 A. The bottom 
loop carries a counterclockwise current of I 5 140 A. 
(a) Calculate the magnetic force exerted by the bot-
tom loop on the top loop. (b) Suppose a student thinks 
the first step in solving part (a) is to use Equation 30.7 
to find the magnetic field created by one of the loops. 
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 53. Suppose you install a compass on the center of a car’s 
dashboard. (a) Assuming the dashboard is made 
mostly of plastic, compute an order-of-magnitude esti-
mate for the magnetic field at this location produced 
by the current when you switch on the car’s headlights. 
(b) How does this estimate compare with the Earth’s 
magnetic field?

 54. Why is the following situation impossible? The magnitude 
of the Earth’s magnetic field at either pole is approxi-
mately 7.00 3 1025 T. Suppose the field fades away to 
zero before its next reversal. Several scientists propose 
plans for artificially generating a replacement mag-
netic field to assist with devices that depend on the 
presence of the field. The plan that is selected is to lay 
a copper wire around the equator and supply it with a 
current that would generate a magnetic field of magni-
tude 7.00 3 1025 T at the poles. (Ignore magnetization 
of any materials inside the Earth.) The plan is imple-
mented and is highly successful.

 55. A nonconducting ring of radius 10.0 cm is uniformly 
charged with a total positive charge 10.0 mC. The ring 
rotates at a constant angular speed 20.0 rad/s about an 
axis through its center, perpendicular to the plane of 
the ring. What is the magnitude of the magnetic field 
on the axis of the ring 5.00 cm from its center?

 56. A nonconducting ring of radius R is uniformly charged 
with a total positive charge q. The ring rotates at a con-
stant angular speed v about an axis through its cen-
ter, perpendicular to the plane of the ring. What is the 
magnitude of the magnetic field on the axis of the ring 
a distance 12R from its center?

 57. A very long, thin strip of metal of width w carries a 
current I along its length as shown in Figure P30.57. 
The current is distributed uniformly across the width 
of the strip. Find the magnetic field at point P in the 
diagram. Point P is in the plane of the strip at distance 
b away from its edge.

P
y

I

z

b

x

w

Figure P30.57

 58. A circular coil of five turns and a diameter of 30.0 cm 
is oriented in a vertical plane with its axis perpendicu-
lar to the horizontal component of the Earth’s mag-
netic field. A horizontal compass placed at the coil’s 
center is made to deflect 45.08 from magnetic north 
by a current of 0.600  A in the coil. (a) What is the 
horizontal component of the Earth’s magnetic field?  
(b) The current in the coil is switched off. A “dip 
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ates a magnetic field (Section 30.1). (a) To understand 
how a moving charge can also create a magnetic field, 
consider a particle with charge q moving with velocity 
vS. Define the position vector rS 5 r r̂ leading from the 
particle to some location. Show that the magnetic field 
at that location is

B
S

5
m0

4p
  

q vS 3 r̂

r 2

  (b) Find the magnitude of the magnetic field 1.00 mm  
to the side of a proton moving at 2.00 3 107 m/s.  
(c) Find the magnetic force on a second proton at this 
point, moving with the same speed in the opposite direc-
tion. (d) Find the electric force on the second proton.

 66. Review. Rail guns have been suggested for launch-
ing projectiles into space without chemical rockets. 
A tabletop model rail gun (Fig. P30.66) consists of 
two long, parallel, horizontal rails , 5 3.50 cm apart, 
bridged by a bar of mass m 5 3.00 g that is free to slide 
without friction. The rails and bar have low electric 
resistance, and the current is limited to a constant  
I 5 24.0 A by a power supply that is far to the left of 
the figure, so it has no magnetic effect on the bar. Fig-
ure P30.66 shows the bar at rest at the midpoint of the 
rails at the moment the current is established. We wish 
to find the speed with which the bar leaves the rails 
after being released from the midpoint of the rails.  
(a) Find the magnitude of the magnetic field at a dis-
tance of 1.75 cm from a single long wire carrying a  
current of 2.40 A. (b) For purposes of evaluating the 
magnetic field, model the rails as infinitely long. Using 
the result of part (a), find the magnitude and direc-
tion of the magnetic field at the midpoint of the bar.  
(c) Argue that this value of the field will be the same 
at all positions of the bar to the right of the midpoint 
of the rails. At other points along the bar, the field is 
in the same direction as at the midpoint, but is larger 
in magnitude. Assume the average effective magnetic 
field along the bar is five times larger than the field 
at the midpoint. With this assumption, find (d) the 
magnitude and (e) the direction of the force on the 
bar. (f) Is the bar properly modeled as a particle under 
constant acceleration? (g) Find the velocity of the bar 
after it has traveled a distance d 5 130 cm to the end 
of the rails.

vi � 0SI
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Figure P30.66

 67. Fifty turns of insulated wire 0.100 cm in diameter are 
tightly wound to form a flat spiral. The spiral fills a 
disk surrounding a circle of radius 5.00 cm and extend-
ing to a radius 10.00 cm at the outer edge. Assume the 
wire carries a current I at the center of its cross section. 
Approximate each turn of wire as a circle. Then a loop 
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How would you argue for or against this idea? (c) The 
upper loop has a mass of 0.021 0 kg. Calculate its accel-
eration, assuming the only forces acting on it are the 
force in part (a) and the gravitational force.

I

I

Figure P30.62

 63. Two long, straight wires cross each other perpendicu-
larly as shown in Figure P30.63. The wires are thin so 
that they are effectively in the same plane but do not 
touch. Find the magnetic field at a point 30.0 cm above 
the point of intersection of the wires along the z axis; 
that is, 30.0 cm out of the page, toward you.

3.00 A

y

x
5.00 A

Figure P30.63

 64. Two coplanar and concentric circular loops of wire 
carry currents of I1 5 5.00 A and I 2 5 3.00 A in oppo-
site directions as in Figure P30.64. If r1 5 12.0 cm and 
r2 5 9.00 cm, what are (a) the magnitude and (b) the 
direction of the net magnetic field at the center of the 
two loops? (c) Let r1 remain fixed at 12.0 cm and let r2 
be a variable. Determine the value of r2 such that the 
net field at the center of the loops is zero.

r1

r2
I1I2

Figure P30.64

 65. As seen in previous chapters, any object with electric 
charge, stationary or moving, other than the charged 
object that created the field, experiences a force in 
an electric field. Also, any object with electric charge, 
stationary or moving, can create an electric field 
(Chapter 23). Similarly, an electric current or a mov-
ing electric charge, other than the current or charge 
that created the field, experiences a force in a mag-
netic field (Chapter 29), and an electric current cre-
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of current exists at radius 5.05 cm, another at 5.15 cm, 
and so on. Numerically calculate the magnetic field at 
the center of the coil.

 68. An infinitely long, straight wire carrying a current I1 
is partially surrounded by a loop as shown in Figure 
P30.68. The loop has a length L and radius R, and  
it carries a current I2. The axis of the loop coincides 
with the wire. Calculate the magnetic force exerted on 
the loop.

R

L

I2

I1

Figure P30.68

Challenge Problems

 69. Consider a solenoid of length , and radius a containing 
N closely spaced turns and carrying a steady current 
I. (a) In terms of these parameters, find the magnetic 
field at a point along the axis as a function of posi-
tion x from the end of the solenoid. (b) Show that as , 
becomes very long, B approaches m0NI/2, at each end 
of the solenoid.

 70. We have seen that a long solenoid produces a uniform 
magnetic field directed along the axis of a cylindrical 
region. To produce a uniform magnetic field directed 
parallel to a diameter of a cylindrical region, however, 
one can use the saddle coils illustrated in Figure P30.70. 
The loops are wrapped over a long, somewhat flat-
tened tube. Figure P30.70a shows one wrapping of wire 
around the tube. This wrapping is continued in this 
manner until the visible side has many long sections 
of wire carrying current to the left in Figure P30.70a 
and the back side has many lengths carrying current to 
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the right. The end view of the tube in Figure P30.70b 
shows these wires and the currents they carry. By wrap-
ping the wires carefully, the distribution of wires can 
take the shape suggested in the end view such that 
the overall current distribution is approximately the 
superposition of two overlapping, circular cylinders of 
radius R (shown by the dashed lines) with uniformly 
distributed current, one toward you and one away from 
you. The current density J is the same for each cylinder. 
The center of one cylinder is described by a position 
vector d

S
 relative to the center of the other cylinder. 

Prove that the magnetic field inside the hollow tube is 
m0 Jd/2 downward. Suggestion: The use of vector meth-
ods simplifies the calculation.

 71. A thin copper bar of length , 5 10.0 cm is supported 
horizontally by two (nonmagnetic) contacts at its ends. 
The bar carries a current of I1 5 100 A in the negative 
x direction as shown in Figure P30.71. At a distance  
h 5 0.500 cm below one end of the bar, a long, straight 
wire carries a current of I2 5 200 A in the positive z 
direction. Determine the magnetic force exerted on 
the bar.

�

h

I1
x

z

y

I2

Figure P30.71

 72. In Figure P30.72, both currents in the infinitely long 
wires are 8.00 A in the negative x direction. The wires 
are separated by the distance 2a 5 6.00 cm. (a) Sketch 
the magnetic field pattern in the yz plane. (b) What 
is the value of the magnetic field at the origin? (c) At 
(y 5 0, z S `)? (d) Find the magnetic field at points 
along the z axis as a function of z. (e) At what distance 
d along the positive z axis is the magnetic field a maxi-
mum? (f) What is this maximum value?

x
y

a

a

I

I

z

Figure P30.72

 73. A wire carrying a current I is bent into the shape of 
an exponential spiral, r 5 e u, from u 5 0 to u 5 2p as 
suggested in Figure P30.73 (page 934). To complete a 
loop, the ends of the spiral are connected by a straight 
wire along the x axis. (a) The angle b between a radial 

S

Wire lengths carrying
current out of the page

Wire lengths carrying
current into the page

I

I

R

R

d
S

a b

Figure P30.70
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line and its tangent line at any point on a curve r 5 f(u) 
is related to the function by

tan b 5
r

dr/du

  Use this fact to show that b 5 p/4. (b) Find the mag-
netic field at the origin.

x

r = e

y

r dr

r̂

I

I

u

u

b
d sS

Figure P30.73

 74. A sphere of radius R has a uniform 
volume charge density r. When the 
sphere rotates as a rigid object with 
angular speed v about an axis through 
its center (Fig. P30.74), determine  
(a) the magnetic field at the center 
of the sphere and (b)  the magnetic 
moment of the sphere.

 75. A long, cylindrical conductor of radius 
a has two cylindrical cavities each of diameter a through 
its entire length as shown in the end view of Figure 
P30.75. A current I is directed out of the page and is uni-
form through a cross section of the conducting material. 
Find the magnitude and direction of the magnetic field 
in terms of m0, I, r, and a at (a) point P1 and (b) point P2.

R

v

Figure P30.74

S

S

 76. A wire is formed into the shape of a square of edge 
length L (Fig. P30.76). Show that when the current in 
the loop is I, the magnetic field at point P a distance x 
from the center of the square along its axis is

B 5
m0IL

2

2p 1x 2 1 L2/4 2"x 2 1 L2/2

x

P

I

L

L

Figure P30.76

 77. The magnitude of the force on a magnetic dipole mS  
aligned with a nonuniform magnetic field in the 
positive x direction is Fx 5 0mS 0 dB/dx. Suppose two flat 
loops of wire each have radius R and carry a current I.  
(a) The loops are parallel to each other and share the 
same axis. They are separated by a variable distance  
x .. R. Show that the magnetic force between them 
varies as 1/x 4. (b) Find the magnitude of this force, 
taking I 5 10.0 A, R 5 0.500 cm, and x 5 5.00 cm.
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P2

r

r

a

a

Figure P30.75




