
In a tabletop plasma ball, the colorful 
lines emanating from the sphere 
give evidence of strong electric 
fields. Using Gauss’s law, we show 
in this chapter that the electric field 
surrounding a uniformly charged 
sphere is identical to that of a point 
charge. (Steve Cole/Getty Images)
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In Chapter 23, we showed how to calculate the electric field due to a given charge 
distribution by integrating over the distribution. In this chapter, we describe Gauss’s law and 
an alternative procedure for calculating electric fields. Gauss’s law is based on the inverse-
square behavior of the electric force between point charges. Although Gauss’s law is a 
direct consequence of Coulomb’s law, it is more convenient for calculating the electric fields 
of highly symmetric charge distributions and makes it possible to deal with complicated 
problems using qualitative reasoning. As we show in this chapter, Gauss’s law is important in 
understanding and verifying the properties of conductors in electrostatic equilibrium.

4.1 Electric Flux
The concept of electric field lines was described qualitatively in Chapter 23. We 
now treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction as 
shown in Figure 24.1. The field lines penetrate a rectangular surface of area 
whose plane is oriented perpendicular to the field. Recall from Section 23.6 that 
the number of lines per unit area (in other words, the line density) is proportional to 
the magnitude of the electric field. Therefore, the total number of lines penetrat
ing the surface is proportional to the product EA. This product of the magnitude 
of the electric field  and surface area  perpendicular to the field is called the 
electric flux  (uppercase Greek letter phi):

(24.1)

Figure 24.1 Field lines repre-
senting a uniform electric field 
penetrating a plane of area  per-
pendicular to the field. 
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From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
	 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A�, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w� 5 w cos u. The area A� is given by A� 5 ,w� 5 ,w cos u and we see that the two 
areas are related by A� 5 A cos u. Because the flux through A equals the flux through 
A�, the flux through A is

	 FE 5 EA� 5 EA cos u	 (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
	 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
	 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S

i whose magnitude represents the area of the i th element of the large 
surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S

i  at the location of this element makes an 
angle ui with the vector D A

S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? D A
S

i

where we have used the definition of the scalar product of two vectors  
( A

S
? B

S
; AB cos u ; see Chapter 7). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < a E
S

i ? D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

	 FE ; 3
surface

E
S

? d A
S

	 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
	 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-

Definition of electric flux 

A

w
w›

A›

Normal

u

u

E
S

The number of field lines that 
go through the area A› is the 
same as the number that go 
through area A.

,

Figure 24.2  ​Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.

The electric field makes an angle
ui with the vector �Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

�Ai  
S

Figure 24.3  ​A small element of 
surface area DAi  in an electric field.
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tion 24.3 is part of a closed surface, the direction of the area vector is chosen so 
that the vector points outward from the surface. If the area element is not part of a 
closed surface, the direction of the area vector is chosen so that the angle between 
the area vector and the electric field vector is less than or equal to 90°.
	 Consider the closed surface in Figure 24.4. The vectors D A

S

i point in different 
directions for the various surface elements, but for each element they are normal to 
the surface and point outward. At the element labeled , the field lines are cross-
ing the surface from the inside to the outside and u , 908; hence, the flux FE,1 5
E
S

? D A
S

1 through this element is positive. For element , the field lines graze the 
surface (perpendicular to D A

S

2); therefore, u 5 908 and the flux is zero. For ele-
ments such as , where the field lines are crossing the surface from outside to 
inside, 1808 . u . 908 and the flux is negative because cos u is negative. The net 
flux through the surface is proportional to the net number of lines leaving the sur-
face, where the net number means the number of lines leaving the surface minus the num-
ber of lines entering the surface. If more lines are leaving than entering, the net flux is 
positive. If more lines are entering than leaving, the net flux is negative. Using the 
symbol r to represent an integral over a closed surface, we can write the net flux FE 
through a closed surface as

	 FE 5 C E
S

? d A
S

5 C En dA	 (24.4)

where En represents the component of the electric field normal to the surface.

Q	 uick Quiz 24.1 ​ Suppose a point charge is located at the center of a spheri-
cal surface. The electric field at the surface of the sphere and the total flux 
through the sphere are determined. Now the radius of the sphere is halved. 

En

En

u
u

E
SE

SE
S

�A3
S

�A2
S

�A1
S

The electric
flux through
this area
element is
negative.  

The electric
flux through
this area
element is
zero. 

The electric
flux through
this area
element is
positive.  













Figure 24.4  A closed surface in 
an electric field. The area vectors 
are, by convention, normal to the 
surface and point outward. 
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24.2	 Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.
	 Consider a positive point charge q located at the center of a sphere of radius r as 
shown in Figure 24.6. From Equation 23.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E 5 keq/r 2. The field lines are 
directed radially outward and hence are perpendicular to the surface at every point 
on the surface. That is, at each surface point, E

S
 is parallel to the vector D A

S

i repre-
senting a local element of area DAi surrounding the surface point. Therefore,

	 E
S

? D A
S

i 5 E DAi 	

and, from Equation 24.4, we find that the net flux through the gaussian surface is

	 FE 5 C E
S

? d A
S

5 C E dA 5 E C dA 	

What happens to the flux through the sphere and the magnitude of the elec-
tric field at the surface of the sphere? (a) The flux and field both increase. 
(b) The flux and field both decrease. (c) The flux increases, and the field 
decreases. (d) The flux decreases, and the field increases. (e) The flux remains 
the same, and the field increases. (f) The flux decreases, and the field remains 
the same.

Write the integrals for the net flux through faces   
and :

FE 5 3
1
  E
S

? d A
S

1 3
2
  E
S

? d A
S

For face , E
S

 is constant and directed inward but d A
S

1 
is directed outward (u 5 1808). Find the flux through 
this face:

3
1
  E
S

? d A
S

5 3
1
 E 1cos 1808 2  dA 5 2E 3

1
 dA 5 2EA 5 2E,2

For face , E
S

 is constant and outward and in the same 
direction as d A

S

2 (u 5 08). Find the flux through this face:
3

2
  E
S

? d A
S

5 3
2
 E 1cos 08 2  dA 5 E 3

2
 dA 5 1EA 5 E,2

Find the net flux by adding the flux over all six faces: FE 5 2E,2 1 E,2 1 0 1 0 1 0 1 0 5 0

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

�A i
S

r

q
�

Figure 24.6  ​A spherical gauss-
ian surface of radius r surround-
ing a positive point charge q. 

	

Example 24.1	     Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in empty 
space. A cube of edge length , is placed in the field, oriented as shown in 
Figure 24.5. Find the net electric flux through the surface of the cube.

Conceptualize  ​Examine Figure 24.5 carefully. Notice that the electric 
field lines pass through two faces perpendicularly and are parallel to 
four other faces of the cube.

Categorize  ​We evaluate the flux from its definition, so we categorize 
this example as a substitution problem.
	 The flux through four of the faces (, , and the unnumbered 
faces) is zero because E

S
 is parallel to the four faces and therefore per-

pendicular to d A
S

 on these faces.

S o l u t i o n

y
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







Figure 24.5  ​(Example 24.1) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side  is the bottom of 
the cube, and side  is opposite side .
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where we have moved E outside of the integral because, by symmetry, E is constant 
over the surface. The value of E is given by E 5 keq/r 2. Furthermore, because the 
surface is spherical, rdA 5 A 5 4pr 2. Hence, the net flux through the gaussian 
surface is

	 FE 5 ke

q

r 2
14pr 2 2 5 4pkeq 	

Recalling from Equation 23.3 that ke 5 1/4pP0, we can write this equation in the form

	 FE 5
q
P0

	 (24.5)

	 Equation 24.5 shows that the net flux through the spherical surface is propor-
tional to the charge inside the surface. The flux is independent of the radius r 
because the area of the spherical surface is proportional to r 2, whereas the electric 
field is proportional to 1/r 2. Therefore, in the product of area and electric field, 
the dependence on r cancels.
	 Now consider several closed surfaces surrounding a charge q as shown in Figure 
24.7. Surface S 1 is spherical, but surfaces S2 and S3 are not. From Equation 24.5, the 
flux that passes through S 1 has the value q/P0. As discussed in the preceding section, 
flux is proportional to the number of electric field lines passing through a surface. 
The construction shown in Figure 24.7 shows that the number of lines through S 1 is 
equal to the number of lines through the nonspherical surfaces S 2 and S 3. Therefore,

the net flux through any closed surface surrounding a point charge q is given 
by q/P0 and is independent of the shape of that surface.

	 Now consider a point charge located outside a closed surface of arbitrary shape as 
shown in Figure 24.8. As can be seen from this construction, any electric field line 
entering the surface leaves the surface at another point. The number of electric 
field lines entering the surface equals the number leaving the surface. Therefore, 
the net electric flux through a closed surface that surrounds no charge is zero. 
Applying this result to Example 24.1, we see that the net flux through the cube is 
zero because there is no charge inside the cube.
	 Let’s extend these arguments to two generalized cases: (1) that of many point 
charges and (2) that of a continuous distribution of charge. We once again use the 
superposition principle, which states that the electric field due to many charges is 

The net electric flux is the 
same through all surfaces.  

�

S 3

S 2

S 1

Figure 24.7  ​Closed surfaces of 
various shapes surrounding a posi-
tive charge.

The number of field lines 
entering the surface equals the 
number leaving the surface.  

q
�

Figure 24.8  ​A point charge 
located outside a closed surface. 

Karl Friedrich Gauss
German mathematician and astrono- 
mer (1777–1855)
Gauss received a doctoral degree in 
mathematics from the University of 
Helmstedt in 1799. In addition to his 
work in electromagnetism, he made 
contributions to mathematics and 
science in number theory, statistics, 
non-Euclidean geometry, and cometary 
orbital mechanics. He was a founder 
of the German Magnetic Union, which 
studies the Earth’s magnetic field on a 
continual basis.
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the vector sum of the electric fields produced by the individual charges. Therefore, 
the flux through any closed surface can be expressed as

	 C E
S

? d A
S

5 C 1 E
S

1 1 E
S

2 1 c2 ? d A
S

	  

where E
S

 is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges. Con-
sider the system of charges shown in Figure 24.9. The surface S surrounds only 
one charge, q1; hence, the net flux through S is q 1/P0. The flux through S due 
to charges q2, q3, and q4 outside it is zero because each electric field line from  
these charges that enters S at one point leaves it at another. The surface S 9 sur-
rounds charges q2 and q3; hence, the net flux through it is (q2 1 q3)/P0. Finally, the 
net flux through surface S0 is zero because there is no charge inside this surface. 
That is, all the electric field lines that enter S0 at one point leave at another. Charge 
q4 does not contribute to the net flux through any of the surfaces.
	 The mathematical form of Gauss’s law is a generalization of what we have just 
described and states that the net flux through any closed surface is

	 FE 5 C E
S

? d A
S

5
qin

P0
	 (24.6)

where E
S

 represents the electric field at any point on the surface and qin represents 
the net charge inside the surface.
	 When using Equation 24.6, you should note that although the charge qin is the 
net charge inside the gaussian surface, E

S
 represents the total electric field, which 

includes contributions from charges both inside and outside the surface.
	 In principle, Gauss’s law can be solved for E

S
 to determine the electric field due 

to a system of charges or a continuous distribution of charge. In practice, however, 
this type of solution is applicable only in a limited number of highly symmetric 
situations. In the next section, we use Gauss’s law to evaluate the electric field for 
charge distributions that have spherical, cylindrical, or planar symmetry. If one 
chooses the gaussian surface surrounding the charge distribution carefully, the 
integral in Equation 24.6 can be simplified and the electric field determined.

Q	 uick Quiz 24.2 ​ If the net flux through a gaussian surface is zero, the following 
four statements could be true. Which of the statements must be true? (a) There are 
no charges inside the surface. (b) The net charge inside the surface is zero.  
(c) The electric field is zero everywhere on the surface. (d) The number of elec-
tric field lines entering the surface equals the number leaving the surface.

Charge q4 does not contribute to 
the flux through any surface 
because it is outside all surfaces.  

S

S �

S�

q1

� q4

� q2

q3

�

�

Figure 24.9  The net electric 
flux through any closed surface 
depends only on the charge inside 
that surface. The net flux through 
surface S is q 1/P0, the net flux 
through surface S 9 is (q 2 1 q 3)/P0, 
and the net flux through surface 
S 0 is zero. 

Pitfall Prevention 24.1
Zero Flux Is Not Zero Field   
In two situations, there is 
zero flux through a closed 
surface: either (1) there are 
no charged particles enclosed 
by the surface or (2) there are 
charged particles enclosed, 
but the net charge inside the 
surface is zero. For either situ-
ation, it is incorrect to conclude 
that the electric field on the 
surface is zero. Gauss’s law 
states that the electric flux is 
proportional to the enclosed 
charge, not the electric field.

Conceptual Example 24.2	     Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the surface 
if (A) the charge is tripled, (B) the radius of the sphere is doubled, (C) the surface is changed to a cube, and (D) the 
charge is moved to another location inside the surface.

(A)  The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(B)  The flux does not change because all electric field lines from the charge pass through the sphere, regardless of 
its radius.

(C)  The flux does not change when the shape of the gaussian surface changes because all electric field lines from 
the charge pass through the surface, regardless of its shape.

(D)  The flux does not change when the charge is moved to another location inside that surface because Gauss’s law 
refers to the total charge enclosed, regardless of where the charge is located inside the surface.

S o l u t i o n
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Example 24.3	     A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform 
volume charge density r and carries a total positive 
charge Q (Fig. 24.10).

(A)  ​Calculate the magnitude of the electric field at a 
point outside the sphere.

Conceptualize  ​Notice how this problem differs from 
our previous discussion of Gauss’s law. The electric 
field due to point charges was discussed in Section 
24.2. Now we are considering the electric field due 
to a distribution of charge. We found the field for 
various distributions of charge in Chapter 23 by inte-
grating over the distribution. This example demon-
strates a difference from our discussions in Chapter 
23. In this chapter, we find the electric field using 
Gauss’s law.

Categorize  ​Because the charge is distributed uni-
formly throughout the sphere, the charge distribution 
has spherical symmetry and we can apply Gauss’s law to find the electric field.

Analyze  To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the 
sphere, as shown in Figure 24.10a. For this choice, condition (2) is satisfied everywhere on the surface and E

S
? d A

S
5 E dA.

S o l u t i o n

24.3	 �Application of Gauss’s Law to Various  
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the 
charge distribution is highly symmetric. The following examples demonstrate ways 
of choosing the gaussian surface over which the surface integral given by Equation 
24.6 can be simplified and the electric field determined. In choosing the surface, 
always take advantage of the symmetry of the charge distribution so that E can be 
removed from the integral. The goal in this type of calculation is to determine a 
surface for which each portion of the surface satisfies one or more of the following 
conditions:

	 1.	 The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

	 2.	 The dot product in Equation 24.6 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

	 3.	 The dot product in Equation 24.6 is zero because E
S

 and d A
S

 are 
perpendicular.

	 4.	 The electric field is zero over the portion of the surface.

	 Different portions of the gaussian surface can satisfy different conditions as 
long as every portion satisfies at least one condition. All four conditions are used in 
examples throughout the remainder of this chapter and will be identified by num-
ber. If the charge distribution does not have sufficient symmetry such that a gauss-
ian surface that satisfies these conditions can be found, Gauss’s law is still true, but 
is not useful for determining the electric field for that charge distribution.

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 24.10  ​(Example 24.3) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

Pitfall Prevention 24.2
Gaussian Surfaces Are Not Real   
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.

continued
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Replace E
S

? d A
S

 in Gauss’s law with E dA: FE 5 C E
S

? d A
S

5 C E dA 5
Q
P0

By symmetry, E has the same value everywhere on the 
surface, which satisfies condition (1), so we can remove  
E from the integral:

C E dA 5 E C dA 5 E 14pr 2 2 5
Q
P0

Solve for E : (1)   E 5
Q

4pP0r
2 5 ke 

Q

r 2    1 for r .  a 2

Finalize  ​This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged 
sphere in the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B)  ​Find the magnitude of the electric field at a point inside the sphere.

Analyze  ​In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating 
sphere (Fig. 24.10b). Let V 9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that 
the charge q in within the gaussian surface of volume V 9 is less than Q.

S o l u t i o n

Notice that conditions (1) and (2) are satisfied every-
where on the gaussian surface in Figure 24.10b. Apply 
Gauss’s law in the region r , a :

C E dA 5 E C dA 5 E 14pr 2 2 5
q in

P0

Calculate q in by using q in5 rV 9: q in 5 rV r 5 r 1 4
3pr 3 2

Solve for E and substitute for q in: E 5
q in

4pP0r
2 5

r 1 4
3pr 3 2

4pP0r
2 5

r

3P0
 r

Substitute r 5 Q /4
3pa3 and P0 5 1/4pke : (2)   E 5

Q /4
3 pa 3

3 11/4pke 2
 r 5 ke 

Q

a 3 r 1 for r ,  a 2  

Finalize  ​This result for E differs from the one obtained in part (A). It shows that 
E  S 0 as r S 0. Therefore, the result eliminates the problem that would exist at  
r 5 0 if E varied as 1/r 2 inside the sphere as it does outside the sphere. That is, if  
E ~ 1/r 2 for r , a, the field would be infinite at r 5 0, which is physically impossible.

Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from 
both directions?

Answer  ​Equation (1) shows that the electric field approaches a value from the out-
side given by

E 5 lim
r S a

ake 
Q

r 2 b 5 ke 
Q

a 2

From the inside, Equation (2) gives

E 5 lim
r S a

ake 
Q

a 3 rb 5 ke 
Q

a 3 a 5 ke 
Q

a 2

Therefore, the value of the field is the same as the surface is approached from 
both directions. A plot of E versus r is shown in Figure 24.11. Notice that the mag-
nitude of the field is continuous.

What If ?

a

E

a r

E 
keQ
r2

E �

�

keQ
a3 r

Figure 24.11  ​(Example 24.3)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere  
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

▸ 24.3 c o n t i n u e d
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Example 24.4	     A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of posi-
tive charge of infinite length and constant charge per 
unit length l (Fig. 24.12a).

Conceptualize  ​The line of charge is infinitely long. 
Therefore, the field is the same at all points equidis-
tant from the line, regardless of the vertical position 
of the point in Figure 24.12a. We expect the field to 
become weaker as we move farther away from the line 
of charge.

Categorize  ​Because the charge is distributed uni-
formly along the line, the charge distribution has cylin-
drical symmetry and we can apply Gauss’s law to find 
the electric field.

Analyze  ​The symmetry of the charge distribution 
requires that E

S
 be perpendicular to the line charge and  

directed outward as shown in Figure 24.12b. To reflect the symmetry of the charge distribution, let’s choose a cylindri-
cal gaussian surface of radius r and length , that is coaxial with the line charge. For the curved part of this surface, E

S
 is 

constant in magnitude and perpendicular to the surface at each point, satisfying conditions (1) and (2). Furthermore, 
the flux through the ends of the gaussian cylinder is zero because E

S
 is parallel to these surfaces. That is the first appli-

cation we have seen of condition (3).
	 We must take the surface integral in Gauss’s law over the entire gaussian surface. Because E

S
? d A

S
 is zero for the flat 

ends of the cylinder, however, we restrict our attention to only the curved surface of the cylinder.

S o l u t i o n
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Figure 24.12  ​(Example 24.4) (a) An infinite line of charge sur-
rounded by a cylindrical gaussian surface concentric with the line. 
(b) An end view shows that the electric field at the cylindrical sur-
face is constant in magnitude and perpendicular to the surface.

Apply Gauss’s law and conditions (1) and (2) for the 
curved surface, noting that the total charge inside our 
gaussian surface is l,:

FE 5 C E
S

? d A
S

5 E C dA 5 EA 5
q in

P0
5

l,

P0

Substitute the area A 5 2pr , of the curved surface: E 12pr , 2 5
l,

P0

Solve for the magnitude of the electric field: E 5
l

2pP0r
5  2ke 

l

r
	 (24.7)

What if the line segment in this example were not infinitely long?

Answer  ​If the line charge in this example were of finite length, the electric field would not be given by Equation 
24.7. A finite line charge does not possess sufficient symmetry to make use of Gauss’s law because the magnitude of 
the electric field is no longer constant over the surface of the gaussian cylinder: the field near the ends of the line 
would be different from that far from the ends. Therefore, condition (1) would not be satisfied in this situation. 
Furthermore, E

S
 is not perpendicular to the cylindrical surface at all points: the field vectors near the ends would 

have a component parallel to the line. Therefore, condition (2) would not be satisfied. For points close to a finite line 
charge and far from the ends, Equation 24.7 gives a good approximation of the value of the field.
	 It is left for you to show (see Problem 33) that the electric field inside a uniformly charged rod of finite radius and 
infinite length is proportional to r.

What If ?

Finalize  ​This result shows that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, 
whereas the field external to a spherically symmetric charge distribution varies as 1/r 2. Equation 24.7 can also be 
derived by direct integration over the charge distribution. (See Problem 44 in Chapter 23.)
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Example 24.5	     A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform 
surface charge density s.

Conceptualize  ​Notice that the plane of charge is infinitely large. Therefore, the 
electric field should be the same at all points equidistant from the plane. How 
would you expect the electric field to depend on the distance from the plane?

Categorize  ​Because the charge is distributed uniformly on the plane, the charge 
distribution is symmetric; hence, we can use Gauss’s law to find the electric field.

Analyze  ​By symmetry, E
S

 must be perpendicular to the plane at all points. The 
direction of E

S
 is away from positive charges, indicating that the direction of E

S
 

on one side of the plane must be opposite its direction on the other side as shown 
in Figure 24.13. A gaussian surface that reflects the symmetry is a small cylinder 
whose axis is perpendicular to the plane and whose ends each have an area A 
and are equidistant from the plane. Because E

S
 is parallel to the curved surface of 

the cylinder—and therefore perpendicular to d A
S

 at all points on this surface—
condition (3) is satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the 
cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the total flux 
through the entire gaussian surface is just that through the ends, FE 5 2EA.

S o l u t i o n A
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Figure 24.13  ​(Example 24.5) A 
cylindrical gaussian surface pen-
etrating an infinite plane of charge. 
The flux is EA through each end 
of the gaussian surface and zero 
through its curved surface.

Write Gauss’s law for this surface, noting that the 
enclosed charge is q in 5 sA:

FE 5 2EA 5
q in

P0
5

sA
P0

Solve for E : E 5 
s

2P0
	 (24.8)

Finalize  ​Because the distance from each flat end of 
the cylinder to the plane does not appear in Equation 
24.8, we conclude that E 5 s/2P0 at any distance from 
the plane. That is, the field is uniform everywhere. Fig-
ure 24.14 shows this uniform field due to an infinite 
plane of charge, seen edge-on.

Suppose two infinite planes of charge are 
parallel to each other, one positively charged and the 
other negatively charged. The surface charge densities 
of both planes are of the same magnitude. What does 
the electric field look like in this situation?

Answer  ​We first addressed this configuration in the 
What If? section of Example 23.9. The electric fields 
due to the two planes add in the region between the 
planes, resulting in a uniform field of magnitude s/P0, 
and cancel elsewhere to give a field of zero. Figure 24.15 
shows the field lines for such a configuration. This 
method is a practical way to achieve uniform electric 
fields with finite-sized planes placed close to each other.

What If ?
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Figure 24.14  ​(Example 24.5) 
The electric field lines due to an 
infinite plane of positive charge.
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Figure 24.15  (Example 24.5) 
The electric field lines between 
two infinite planes of charge, 
one positive and one negative. 
In practice, the field lines near 
the edges of finite-sized sheets 
of charge will curve outward.

	

Conceptual Example 24.6	     Don’t Use Gauss’s Law Here! 

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a tri-
angle with a point charge at each corner.
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24.4	 Conductors in Electrostatic Equilibrium
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within 
the material. When there is no net motion of charge within a conductor, the 
conductor is in electrostatic equilibrium. A conductor in electrostatic equilibrium 
has the following properties:

	 1.	 The electric field is zero everywhere inside the conductor, whether the con-
ductor is solid or hollow.

	 2.	 If the conductor is isolated and carries a charge, the charge resides on its 
surface.

	 3.	 The electric field at a point just outside a charged conductor is perpendicu-
lar to the surface of the conductor and has a magnitude s/P0, where s is 
the surface charge density at that point.

	 4.	 On an irregularly shaped conductor, the surface charge density is greatest 
at locations where the radius of curvature of the surface is smallest.

	 We verify the first three properties in the discussion that follows. The fourth 
property is presented here (but not verified until we have studied the appropriate 
material in Chapter 25) to provide a complete list of properties for conductors in 
electrostatic equilibrium.
	 We can understand the first property by considering a conducting slab placed 
in an external field E

S
 (Fig. 24.16). The electric field inside the conductor must be 

zero, assuming electrostatic equilibrium exists. If the field were not zero, free elec-
trons in the conductor would experience an electric force ( F

S
5 q E

S
) and would 

accelerate due to this force. This motion of electrons, however, would mean that 
the conductor is not in electrostatic equilibrium. Therefore, the existence of elec-
trostatic equilibrium is consistent only with a zero field in the conductor.
	 Let’s investigate how this zero field is accomplished. Before the external field is 
applied, free electrons are uniformly distributed throughout the conductor. When 
the external field is applied, the free electrons accelerate to the left in Figure 
24.16, causing a plane of negative charge to accumulate on the left surface. The 
movement of electrons to the left results in a plane of positive charge on the right 
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge 
densities on the left and right surfaces increase until the magnitude of the inter-
nal field equals that of the external field, resulting in a net field of zero inside 
the conductor. The time it takes a good conductor to reach equilibrium is on the 
order of 10216 s, which for most purposes can be considered instantaneous.
	 If the conductor is hollow, the electric field inside the conductor is also zero, 
whether we consider points in the conductor or in the cavity within the conductor. 
The zero value of the electric field in the cavity is easiest to argue with the concept 
of electric potential, so we will address this issue in Section 25.6.
	 Gauss’s law can be used to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian  

WW �Properties of a conductor in 
electrostatic equilibrium

Gaussian
surface

Figure 24.17  ​A conductor of 
arbitrary shape. The broken line 
represents a gaussian surface  
that can be just inside the conduc-
tor’s surface.

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law 
practical. We cannot find a closed surface surrounding any of these distributions for which all portions of the surface 
satisfy one or more of conditions (1) through (4) listed at the beginning of this section.

S o l u t i o n

	

▸ 24.6 c o n t i n u e d
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Figure 24.16  ​A conducting 
slab in an external electric field 
E
S

. The charges induced on the 
two surfaces of the slab produce 
an electric field that opposes the 
external field, giving a resultant 
field of zero inside the slab.
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Example 24.7	     A Sphere Inside a Spherical Shell

A solid insulating sphere of radius a carries a net positive charge Q uniformly distributed throughout its volume. A con-
ducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge 
22Q . Using Gauss’s law, find the electric field in the regions labeled y, x, , and  in Figure 24.19 and the charge 
distribution on the shell when the entire system is in electrostatic equilibrium.

surface is drawn inside the conductor and can be very close to the conductor’s 
surface. As we have just shown, the electric field everywhere inside the conduc-
tor is zero when it is in electrostatic equilibrium. Therefore, the electric field 
must be zero at every point on the gaussian surface, in accordance with condition  
(4) in Section 24.3, and the net flux through this gaussian surface is zero. From this 
result and Gauss’s law, we conclude that the net charge inside the gaussian surface 
is zero. Because there can be no net charge inside the gaussian surface (which is 
arbitrarily close to the conductor’s surface), any net charge on the conductor must 
reside on its surface. Gauss’s law does not indicate how this excess charge is distrib-
uted on the conductor’s surface, only that it resides exclusively on the surface.
	 To verify the third property, let’s begin with the perpendicularity of the field to 
the surface. If the field vector E

S
 had a component parallel to the conductor’s sur-

face, free electrons would experience an electric force and move along the surface; 
in such a case, the conductor would not be in equilibrium. Therefore, the field vec-
tor must be perpendicular to the surface.
	 To determine the magnitude of the electric field, we use Gauss’s law and draw 
a gaussian surface in the shape of a small cylinder whose end faces are parallel 
to the conductor’s surface (Fig. 24.18). Part of the cylinder is just outside the con-
ductor, and part is inside. The field is perpendicular to the conductor’s surface 
from the condition of electrostatic equilibrium. Therefore, condition (3) in Section 
24.3 is satisfied for the curved part of the cylindrical gaussian surface: there is no  
flux through this part of the gaussian surface because E

S
 is parallel to the surface. 

There is no flux through the flat face of the cylinder inside the conductor because 
here E

S
5 0 , which satisfies condition (4). Hence, the net flux through the gaussian 

surface is equal to that through only the flat face outside the conductor, where the 
field is perpendicular to the gaussian surface. Using conditions (1) and (2) for this 
face, the flux is EA, where E is the electric field just outside the conductor and A is 
the area of the cylinder’s face. Applying Gauss’s law to this surface gives

	 FE 5 C E dA 5 EA 5
q in

P0
5

sA
P0

	

where we have used q in 5 sA. Solving for E gives for the electric field immediately 
outside a charged conductor:

	 E 5
s

P0
	 (24.9)

Q	 uick Quiz 24.3 ​ Your younger brother likes to rub his feet on the carpet and then 
touch you to give you a shock. While you are trying to escape the shock treat-
ment, you discover a hollow metal cylinder in your basement, large enough to 
climb inside. In which of the following cases will you not be shocked? (a) You climb 
inside the cylinder, making contact with the inner surface, and your charged 
brother touches the outer metal surface. (b) Your charged brother is inside touch-
ing the inner metal surface and you are outside, touching the outer metal surface. 
(c) Both of you are outside the cylinder, touching its outer metal surface but not 
touching each other directly.

The flux through the
gaussian surface is EA.  
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Figure 24.18  ​A gaussian surface 
in the shape of a small cylinder is 
used to calculate the electric field 
immediately outside a charged 
conductor. 
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The charge on the conducting shell creates zero electric 
field in the region r , b, so the shell has no effect on the 
field in region  due to the sphere. Therefore, write an 
expression for the field in region  as that due to the 
sphere from part (A) of Example 24.3:

E 2 5 ke 
Q

r 2 1 for a , r , b 2

Because the conducting shell creates zero field inside itself, 
it also has no effect on the field inside the sphere. There-
fore, write an expression for the field in region  as that 
due to the sphere from part (B) of Example 24.3:

E 1 5 ke 
Q

a 3  r    1 for r , a 2

In region , where r . c, construct a spherical gaussian 
surface; this surface surrounds a total charge q in 5 Q 1 
(22Q ) 5 2Q . Therefore, model the charge distribution as 
a sphere with charge 2Q and write an expression for the 
field in region  from part (A) of Example 24.3:

E 4 5 2ke 
Q

r 2    1 for r . c 2

In region , the electric field must be zero because the 
spherical shell is a conductor in equilibrium:

E 3 5 0    1 for b , r , c 2

Construct a gaussian surface of radius r in region ,  
where b , r , c, and note that q in must be zero because  
E3 5 0. Find the amount of charge q inner on the inner  
surface of the shell:

qin 5 qsphere 1 q inner

q inner 5 q in 2 qsphere 5 0 2 Q 5 2Q

Finalize  ​The charge on the inner surface of the spherical shell must be 2Q to cancel the charge 1Q on the solid 
sphere and give zero electric field in the material of the shell. Because the net charge on the shell is 22Q , its outer 
surface must carry a charge 2Q .

How would the results of this problem differ if the sphere were conducting instead of insulating?

Answer  ​The only change would be in region , where r , a. Because there can be no charge inside a conductor in 
electrostatic equilibrium, q in 5 0 for a gaussian surface of radius r , a; therefore, on the basis of Gauss’s law and sym-
metry, E1 5 0. In regions , , and , there would be no way to determine from observations of the electric field 
whether the sphere is conducting or insulating.

What If ?

	

▸ 24.7 c o n t i n u e d

Conceptualize  ​Notice how this problem differs from Example 24.3. The charged 
sphere in Figure 24.10 appears in Figure 24.19, but it is now surrounded by a shell car-
rying a charge 22Q . Think about how the presence of the shell will affect the electric 
field of the sphere.

Categorize  ​The charge is distributed uniformly throughout the sphere, and we know 
that the charge on the conducting shell distributes itself uniformly on the surfaces. 
Therefore, the system has spherical symmetry and we can apply Gauss’s law to find the 
electric field in the various regions.

Analyze  ​In region —between the surface of the solid sphere and the inner surface 
of the shell—we construct a spherical gaussian surface of radius r, where a , r , b, not-
ing that the charge inside this surface is 1Q (the charge on the solid sphere). Because 
of the spherical symmetry, the electric field lines must be directed radially outward 
and be constant in magnitude on the gaussian surface.

S o l u t i o n

r
a

b

c

Q

�2Q





 

Figure 24.19  (Example 
24.7) An insulating sphere of 
radius a and carrying a charge 
Q surrounded by a conduct-
ing spherical shell carrying a 
charge 22Q.
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Summary

  Electric flux is proportional to the number of electric field lines that penetrate a surface. If the electric field is 
uniform and makes an angle u with the normal to a surface of area A, the electric flux through the surface is

	 FE 5 EA cos u 	 (24.2)

In general, the electric flux through a surface is

	 FE ; 3
surface

 E
S

? d A
S

	 (24.3)

Definition

Concepts and Principles

  Gauss’s law says that the net 
electric flux FE through any closed 
gaussian surface is equal to the net 
charge qin inside the surface divided 
by P0:

	 FE 5 C E
S

? d A
S

5
q in

P0
	 (24.6)

Using Gauss’s law, you can calculate 
the electric field due to various sym-
metric charge distributions.

  A conductor in electrostatic equilibrium has the following properties:

	 1. � The electric field is zero everywhere inside the conductor, whether 
the conductor is solid or hollow.

	 2. � If the conductor is isolated and carries a charge, the charge 
resides on its surface.

	 3. � The electric field at a point just outside a charged conductor is 
perpendicular to the surface of the conductor and has a magni-
tude s/P0, where s is the surface charge density at that point.

	 4. � On an irregularly shaped conductor, the surface charge density is 
greatest at locations where the radius of curvature of the surface  
is smallest.

	 4.	 A particle with charge q is located inside a cubical 
gaussian surface. No other charges are nearby. (i) If 
the particle is at the center of the cube, what is the 
flux through each one of the faces of the cube? (a) 0 
(b) q/2P0 (c) q/6P0 (d) q/8P0 (e) depends on the size of 
the cube (ii) If the particle can be moved to any point 
within the cube, what maximum value can the flux 
through one face approach? Choose from the same 
possibilities as in part (i).

	 5.	 Charges of 3.00 nC, 22.00 nC, 27.00 nC, and 1.00 nC 
are contained inside a rectangular box with length 
1.00 m, width 2.00 m, and height 2.50 m. Outside the 
box are charges of 1.00 nC and 4.00 nC. What is the 
electric flux through the surface of the box? (a) 0  
(b) 25.64  3 102  N ? m2/C (c)  21.47 3 103 N ? m2/C  
(d) 1.47 3 103 N ? m2/C (e) 5.64 3 102 N ? m2/C

	 6.	 A large, metallic, spherical shell has no net charge. It 
is supported on an insulating stand and has a small 
hole at the top. A small tack with charge Q is lowered 
on a silk thread through the hole into the interior of 
the shell. (i) What is the charge on the inner surface 
of the shell, (a) Q (b) Q/2 (c) 0 (d) 2Q/2 or (e) 2Q?  
Choose your answers to the following questions from 

	 1.	 A cubical gaussian surface surrounds a long, straight, 
charged filament that passes perpendicularly through 
two opposite faces. No other charges are nearby.  
(i) Over how many of the cube’s faces is the electric 
field zero? (a) 0 (b) 2 (c) 4 (d) 6 (ii) Through how many 
of the cube’s faces is  the electric flux zero? Choose 
from the same possibilities as in part (i).

	 2.	 A coaxial cable consists of a long, straight filament 
surrounded by a long, coaxial, cylindrical conducting 
shell. Assume charge Q is on the filament, zero net 
charge is on the shell, and the electric field is E1 î at 
a particular point P midway between the filament and 
the inner surface of the shell. Next, you place the cable 
into a uniform external field 2E î. What is the x com-
ponent of the electric field at P then? (a) 0 (b) between 
0 and E1 (c) E1 (d) between 0 and 2E1 (e) 2E1

	 3.	 In which of the following contexts can Gauss’s law not 
be readily applied to find the electric field? (a) near a 
long, uniformly charged wire (b) above a large, uni-
formly charged plane (c) inside a uniformly charged 
ball (d) outside a uniformly charged sphere (e) Gauss’s 
law can be readily applied to find the electric field in 
all these contexts.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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the magnitude of the elec-
tric field at points A (at radius 
4  cm), B (radius 8  cm), C 
(radius 12 cm), and D (radius 
16 cm) from largest to smallest. 
Display any cases of equality 
in your ranking. (b) Similarly 
rank the electric flux through 
concentric spherical surfaces 
through points A, B, C, and D.

	10.	A cubical gaussian surface is bisected by a large sheet 
of charge, parallel to its top and bottom faces. No other 
charges are nearby. (i) Over how many of the cube’s 
faces is the electric field zero? (a) 0 (b) 2 (c) 4 (d) 6  
(ii) Through how many of the cube’s faces is the elec-
tric flux zero? Choose from the same possibilities as in 
part (i).

	11.	 Rank the electric fluxes through each gaussian surface 
shown in Figure OQ24.11 from largest to smallest. Dis-
play any cases of equality in your ranking.

the same possibilities. (ii) What is the charge on the 
outer surface of the shell? (iii) The tack is now allowed 
to touch the interior surface of the shell. After this 
contact, what is the charge on the tack? (iv) What  
is the charge on the inner surface of the shell now? 
(v)  What is the charge on the outer surface of the 
shell now?

	 7.	 Two solid spheres, both of radius 5 cm, carry identical 
total charges of 2 mC. Sphere A is a good conductor. 
Sphere B is an insulator, and its charge is distributed 
uniformly throughout its volume. (i) How do the mag-
nitudes of the electric fields they separately create at 
a radial distance of 6 cm compare? (a) EA . EB 5 0  
(b) EA . EB . 0 (c) EA 5 EB . 0 (d) 0 , EA , EB (e) 0 5  
EA , EB (ii) How do the magnitudes of the electric 
fields they separately create at radius 4 cm compare? 
Choose from the same possibilities as in part (i).

	 8.	 A uniform electric field of 1.00 N/C is set up by a uni-
form distribution of charge in the xy plane. What is 
the electric field inside a metal ball placed 0.500 m 
above the xy plane? (a) 1.00 N/C (b) 21.00 N/C (c) 0  
(d) 0.250 N/C (e) varies depending on the position 
inside the ball

	 9.	 A solid insulating sphere of radius 5 cm carries electric 
charge uniformly distributed throughout its volume. 
Concentric with the sphere is a conducting spherical 
shell with no net charge as shown in Figure OQ24.9. 
The inner radius of the shell is 10 cm, and the outer 
radius is 15 cm. No other charges are nearby. (a) Rank 

Q

b

3Q 4Q
Q

a b c d

Figure OQ24.11

A B C D

Figure OQ24.9

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Consider an electric field that is uniform in direction 
throughout a certain volume. Can it be uniform in 
magnitude? Must it be uniform in magnitude? Answer 
these questions (a) assuming the volume is filled with 
an insulating material carrying charge described by a 
volume charge density and (b) assuming the volume is 
empty space. State reasoning to prove your answers.

	 2.	 A cubical surface surrounds a point charge q. 
Describe what happens to the total flux through the 
surface if (a)  the charge is doubled, (b) the volume 
of the cube is doubled, (c) the surface is changed to 
a sphere, (d) the charge is moved to another location 
inside the surface, and (e) the charge is moved out-
side the surface.

	 3.	 A uniform electric field exists in a region of space con-
taining no charges. What can you conclude about the 
net electric flux through a gaussian surface placed in 
this region of space?

	 4.	 If the total charge inside a closed surface is known but 
the distribution of the charge is unspecified, can you 
use Gauss’s law to find the electric field? Explain.

	 5.	 Explain why the electric flux through a closed surface 
with a given enclosed charge is independent of the size 
or shape of the surface.

	 6.	 If more electric field lines leave a gaussian surface than 
enter it, what can you conclude about the net charge 
enclosed by that surface?

	 7.	 A person is placed in a large, hollow, metallic sphere 
that is insulated from ground. (a) If a large charge 
is placed on the sphere, will the person be harmed 
upon touching the inside of the sphere? (b) Explain 
what will happen if the person also has an initial 
charge whose sign is opposite that of the charge on 
the sphere.

	 8.	 Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is 
given a large net positive charge, and the other is given 
a small net positive charge. It is found that the force 
between the spheres is attractive even though they 
both have net charges of the same sign. Explain how 
this attraction is possible.

	 9.	 A common demonstration involves charging a rubber 
balloon, which is an insulator, by rubbing it on your 
hair and then touching the balloon to a ceiling or wall, 
which is also an insulator. Because of the electrical 
attraction between the charged balloon and the neutral 
wall, the balloon sticks to the wall. Imagine now that 
we have two infinitely large, flat sheets of insulating  
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material. One is charged, and the other is neutral. If 
these sheets are brought into contact, does an attrac-
tive force exist between them as there was for the bal-
loon and the wall?

	10.	On the basis of the repulsive nature of the force 
between like charges and the freedom of motion of 

charge within a conductor, explain why excess charge 
on an isolated conductor must reside on its surface.

	11.	 The Sun is lower in the sky during the winter than it is 
during the summer. (a) How does this change affect the 
flux of sunlight hitting a given area on the surface of 
the Earth? (b) How does this change affect the weather?

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

Section 24.1 ​ Electric Flux

	 1.	 A flat surface of area 3.20 m2 is rotated in a uniform 
electric field of magnitude E 5 6.20 3 105 N/C. Deter-
mine the electric flux through this area (a) when 
the electric field is perpendicular to the surface and  
(b) when the electric field is parallel to the surface.

	 2.	 A vertical electric field of magnitude 2.00 3 104 N/C 
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of 
6.00 m by 3.00 m is traveling along a dry gravel road-
way sloping downward at 10.08. Determine the electric 
flux through the bottom of the car.

	 3.	 A 40.0-cm-diameter circular loop is rotated in a uni-
form electric field until the position of maximum elec-
tric flux is found. The flux in this position is measured 
to be 5.20 3 105 N ? m2/C. What is the magnitude of 
the electric field?

	 4.	 Consider a closed triangular box resting within a hori-
zontal electric field of magnitude E 5 7.80 3 104 N/C 
as shown in Figure P24.4. Calculate the electric flux 
through (a) the vertical rectangular surface, (b) the 
slanted surface, and (c) the entire surface of the box.

30.0 cm

60.0�10.0 cm

E
S

 

Figure P24.4

	 5.	 An electric field of magnitude 3.50 kN/C is applied 
along the x axis. Calculate the electric flux through 
a rectangular plane 0.350 m wide and 0.700 m long  
(a) if the plane is parallel to the yz plane, (b) if the 
plane is parallel to the xy plane, and (c) if the plane 
contains the y axis and its normal makes an angle of 
40.08 with the x axis.
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	 6.	 A nonuniform electric field is given by the expression

E
S

5 ay î 1 bz ĵ 1 cx k̂

		  where a, b, and c are constants. Determine the electric 
flux through a rectangular surface in the xy plane, 
extending from x 5 0 to x 5 w and from y 5 0 to  
y 5 h.

Section 24.2 ​ Gauss’s Law

	 7.	 An uncharged, nonconducting, hollow sphere of 
radius 10.0 cm surrounds a 10.0-mC charge located 
at the origin of a Cartesian coordinate system. A drill 
with a radius of 1.00 mm is aligned along the z axis, 
and a hole is drilled in the sphere. Calculate the elec-
tric flux through the hole.

	 8.	 Find the net electric flux through the spherical closed 
surface shown in Figure P24.8. The two charges on the 
right are inside the spherical surface.

�2.00 nC
�1.00 nC

�3.00 nC

Figure P24.8

	 9.	 The following charges are located inside a submarine: 
5.00  mC, 29.00 mC, 27.0 mC, and 284.0 mC. (a) Cal-
culate the net electric flux through the hull of the  
submarine. (b)  Is the number of electric field lines 
leaving the submarine greater than, equal to, or less 
than the number entering it?

	10.	The electric field everywhere on the surface of a 
thin, spherical shell of radius 0.750 m is of magnitude  
890 N/C and points radially toward the center of the 
sphere. (a) What is the net charge within the sphere’s 
surface? (b)  What is the distribution of the charge 
inside the spherical shell?
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tered at O resulting from this line charge. Consider 
both cases, where (a) R , d and (b) R . d.

	18.	 Find the net electric flux through (a) the closed spheri-
cal surface in a uniform electric field shown in Figure 
P24.18a and (b) the closed cylindrical surface shown in 
Figure P24.18b. (c) What can you conclude about the 
charges, if any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P24.18

	19.	 A particle with charge 
Q 5 5.00 mC is located 
at the center of a cube 
of edge L 5 0.100 m. In 
addition, six other iden-
tical charged particles 
having q 5 21.00  mC 
are positioned sym-
metrically around Q as 
shown in Figure P24.19. 
Determine the electric 
flux through one face 
of the cube.

	20.	A particle with charge 
Q is located at the center of a cube of edge L. In addi-
tion, six other identical charged particles q are posi-
tioned symmetrically around Q as shown in Figure 
P24.19. For each of these particles, q is a negative num-
ber. Determine the electric flux through one face of 
the cube.

	21.	 A particle with charge 
Q is located a small dis-
tance d immediately 
above the center of 
the flat face of a hemi-
sphere of radius R as 
shown in Figure P24.21. 
What is the electric flux 
(a) through the curved 
surface and (b) through 
the flat face as d S 0?

	22.	Figure P24.22 (page 742) represents the top view of a 
cubic gaussian surface in a uniform electric field E

S
 ori-

ented parallel to the top and bottom faces of the cube. 
The field makes an angle u with side , and the area of 
each face is A. In symbolic form, find the electric flux 
through (a) face , (b) face , (c) face , (d) face , 
and (e) the top and bottom faces of the cube. (f) What 
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Figure P24.19   
Problems 19 and 20.

S

Q

R

d
�

Figure P24.21

S

S

	11.	 Four closed surfaces, S1 
through S4, together with 
the charges 22Q , Q , and 
2Q are sketched in Figure 
P24.11. (The colored lines 
are the intersections of the 
surfaces with the page.) 
Find the electric flux 
through each surface.

	12.	A charge of 170 mC is at the 
center of a cube of edge 
80.0 cm. No other charges 
are nearby. (a) Find the 
flux through each face of the cube. (b) Find the flux 
through the whole surface of the cube. (c) What If? 
Would your answers to either part (a) or part (b) change 
if the charge were not at the center? Explain.

	13.	In the air over a particular region at an altitude of 
500 m above the ground, the electric field is 120 N/C 
directed downward. At 600 m above the ground, the 
electric field is 100 N/C downward. What is the average 
volume charge density in the layer of air between these 
two elevations? Is it positive or negative?

	14.	A particle with charge of 12.0 mC is placed at the cen-
ter of a spherical shell of radius 22.0 cm. What is the 
total electric flux through (a) the surface of the shell 
and (b) any hemispherical surface of the shell? (c) Do 
the results depend on the radius? Explain.

	15.	(a) Find the net electric 
flux through the cube 
shown in Figure P24.15. 
(b)  Can you use Gauss’s 
law to find the electric 
field on the surface of 
this cube? Explain.

	16.	(a) A particle with charge 
q is located a distance 
d from an infinite plane. Determine the electric flux 
through the plane due to the charged particle. (b) What 
If? A particle with charge q is located a very small dis-
tance from the center of a very large square on the line 
perpendicular to the square and going through its cen-
ter. Determine the approximate electric flux through 
the square due to the charged particle. (c) How do the 
answers to parts (a) and (b) compare? Explain.

	17.	 An infinitely long line charge having a uniform charge 
per unit length l lies a distance d from point O as 
shown in Figure P24.17. Determine the total electric 
flux through the surface of a sphere of radius R cen-
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Figure P24.15
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with the dimensions of the wall? (b) Does your result 
change as the distance from the wall varies? Explain.

	31.	 A uniformly charged, straight filament 7.00 m in 
length has a total positive charge of 2.00 mC. An 
uncharged cardboard cylinder 2.00 cm in length and 
10.0 cm in radius surrounds the filament at its center, 
with the filament as the axis of the cylinder. Using rea-
sonable approximations, find (a) the electric field at 
the surface of the cylinder and (b) the total electric 
flux through the cylinder.

	32.	Assume the magnitude of the electric field on each 
face of the cube of edge L 5 1.00 m in Figure P24.32 
is uniform and the directions of the fields on each face 
are as indicated. Find (a) the net electric flux through 
the cube and (b) the net charge inside the cube.  
(c) Could the net charge be a single point charge?

L

20.0 N/C

20.0 N/C

25.0 N/C

20.0 N/C 35.0 N/C

15.0 N/C

Figure P24.32

	33.	Consider a long, cylindrical charge distribution of 
radius R with a uniform charge density r. Find the 
electric field at distance r from the axis, where r , R.

	34.	A cylindrical shell of radius 7.00 cm and length 2.40 m  
has its charge uniformly distributed on its curved sur-
face. The magnitude of the electric field at a point  
19.0 cm radially outward from its axis (measured from 
the midpoint of the shell) is 36.0 kN/C. Find (a) the 
net charge on the shell and (b) the electric field at a 
point 4.00 cm from the axis, measured radially out-
ward from the midpoint of the shell.

	35.	A solid sphere of radius 40.0 cm has a total positive 
charge of 26.0 mC uniformly distributed throughout its 
volume. Calculate the magnitude of the electric field 
(a) 0 cm, (b)  10.0 cm, (c) 40.0 cm, and (d) 60.0 cm 
from the center of the sphere.

	36.	Review. A particle with a charge of 260.0 nC is placed 
at the center of a nonconducting spherical shell of 
inner radius 20.0 cm and outer radius 25.0 cm. The 
spherical shell carries charge with a uniform density 
of 21.33 mC/m3. A proton moves in a circular orbit 
just outside the spherical shell. Calculate the speed of 
the proton.

Section 24.4 ​ Conductors in Electrostatic Equilibrium

	37.	 A long, straight metal rod has a radius of 5.00 cm and a 
charge per unit length of 30.0 nC/m. Find the electric 
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the 
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is the net electric flux through the cube? (g) How 
much charge is enclosed within the gaussian surface?

u E
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







Figure P24.22

Section 24.3 ​ Application of Gauss’s Law  
to Various Charge Distributions
	23.	In nuclear fission, a nucleus of uranium-238, which 

contains 92 protons, can divide into two smaller 
spheres, each having 46 protons and a radius of 5.90 3 
10215 m. What is the magnitude of the repulsive elec-
tric force pushing the two spheres apart?

	24.	The charge per unit length on a long, straight filament 
is 290.0 mC/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where 
distances are measured perpendicular to the length of 
the filament.

	25.	A 10.0-g piece of Styrofoam carries a net charge of 
20.700 mC and is suspended in equilibrium above the 
center of a large, horizontal sheet of plastic that has 
a uniform charge density on its surface. What is the 
charge per unit area on the plastic sheet?

	26.	Determine the magnitude of the electric field at the 
surface of a lead-208 nucleus, which contains 82 pro-
tons and 126 neutrons. Assume the lead nucleus has 
a volume 208 times that of one proton and consider a 
proton to be a sphere of radius 1.20 3 10215 m.

	27.	A large, flat, horizontal sheet of charge has a charge 
per unit area of 9.00 mC/m2. Find the electric field just 
above the middle of the sheet.

	28.	Suppose you fill two rubber balloons with air, suspend 
both of them from the same point, and let them hang 
down on strings of equal length. You then rub each 
with wool or on your hair so that the balloons hang 
apart with a noticeable separation between them. 
Make order-of-magnitude estimates of (a) the force on 
each, (b) the charge on each, (c)  the field each cre-
ates at the center of the other, and (d) the total flux of 
electric field created by each balloon. In your solution, 
state the quantities you take as data and the values you 
measure or estimate for them.

	29.	Consider a thin, spherical shell of radius 14.0 cm with a 
total charge of 32.0 mC distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm 
from the center of the charge distribution.

	30.	A nonconducting wall carries charge with a uniform 
density of 8.60 mC/cm2. (a) What is the electric field 
7.00 cm in front of the wall if 7.00 cm is small compared 
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on the plate. Find (a) the charge density on each face of 
the plate, (b) the electric field just above the plate, and  
(c)  the electric field just below the plate. You may 
assume the charge density is uniform.

	47.	 A solid conducting sphere of radius 2.00 cm has a 
charge of 8.00 mC. A conducting spherical shell of 
inner radius 4.00 cm and outer radius 5.00 cm is 
concentric with the solid sphere and has a charge of  
24.00 mC. Find the electric field at (a) r 5 1.00 cm,  
(b) r 5 3.00 cm, (c) r 5 4.50 cm, and (d) r 5 7.00 cm 
from the center of this charge configuration.

Additional Problems

	48.	Consider a plane surface in 
a uniform electric field as 
in Figure P24.48, where d 5 
15.0 cm and u 5 70.08. If the 
net flux through the surface is  
6.00 N ? m2/C, find the mag-
nitude of the electric field.

	49.	Find the electric flux through 
the plane surface shown 
in Figure P24.48 if u 5 60.08, E 5 350 N/C, and d 5 
5.00 cm. The electric field is uniform over the entire 
area of the surface.

	50.	A hollow, metallic, spherical shell has exterior radius 
0.750 m, carries no net charge, and is supported on an 
insulating stand. The electric field everywhere just out-
side its surface is 890 N/C radially toward the center  
of the sphere. Explain what you can conclude about  
(a) the amount of charge on the exterior surface of the 
sphere and the distribution of this charge, (b) the 
amount of charge on the interior surface of the sphere 
and its distribution, and (c)  the amount of charge 
inside the shell and its distribution.

	51.	 A sphere of radius R 5 1.00 m  
surrounds a particle with charge 
Q 5 50.0 mC located at its center 
as shown in Figure P24.51. Find 
the electric flux through a cir-
cular cap of half-angle u 5 45.08.

	52.	A sphere of radius R surrounds 
a particle with charge Q located 
at its center as shown in Figure 
P24.51. Find the electric flux 
through a circular cap of half-
angle u.

	53.	A very large conducting plate lying in the xy plane car-
ries a charge per unit area of s. A second such plate 
located above the first plate at z 5 z 0 and oriented par-
allel to the xy plane carries a charge per unit area of 
22s. Find the electric field for (a) z , 0, (b) 0 , z , z 0, 
and (c) z . z 0.

	54.	A solid, insulating sphere of radius a has a uniform 
charge density throughout its volume and a total charge 
Q. Concentric with this sphere is an uncharged, con-
ducting, hollow sphere whose inner and outer radii are 
b and c as shown in Figure P24.54 (page 744). We wish to  
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Figure P24.48   
Problems 48 and 49.
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Problems 51 and 52.
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axis of the rod, where distances are measured perpen-
dicular to the rod’s axis.

	38.	Why is the following 
situation impossible? A 
solid copper sphere 
of radius 15.0 cm is 
in electrostatic equi-
librium and carries 
a charge of 40.0 nC. 
Figure P24.38 shows 
the magnitude of the 
electric field as a func-
tion of radial position 
r measured from the center of the sphere.

	39.	A solid metallic sphere of radius a carries total charge 
Q. No other charges are nearby. The electric field 
just outside its surface is keQ /a2 radially outward. At 
this close point, the uniformly charged surface of the 
sphere looks exactly like a uniform flat sheet of charge. 
Is the electric field here given by s/P0 or by s/2P0?

	40.	A positively charged particle is at a distance R/2 from 
the center of an uncharged thin, conducting, spherical 
shell of radius R. Sketch the electric field lines set up 
by this arrangement both inside and outside the shell.

	41.	A very large, thin, flat plate of aluminum of area A has 
a total charge Q uniformly distributed over its surfaces. 
Assuming the same charge is spread uniformly over 
the upper surface of an otherwise identical glass plate, 
compare the electric fields just above the center of the 
upper surface of each plate.

	42.	In a certain region of space, the electric field is E
S

 5
6.00 3 103 x 2

 î, where E
S

 is in newtons per coulomb and 
x is in meters. Electric charges in this region are at rest 
and remain at rest. (a) Find the volume density of elec-
tric charge at x 5 0.300 m. Suggestion: Apply Gauss’s law 
to a box between x 5 0.300 m and x 5 0.300 m 1 dx. 
(b) Could this region of space be inside a conductor?

	43.	Two identical conducting spheres each having a radius 
of 0.500 cm are connected by a light, 2.00-m-long con-
ducting wire. A charge of 60.0 mC is placed on one of 
the conductors. Assume the surface distribution of 
charge on each sphere is uniform. Determine the ten-
sion in the wire.

	44.	A square plate of copper with 50.0-cm sides has no net 
charge and is placed in a region of uniform electric 
field of 80.0 kN/C directed perpendicularly to the 
plate. Find (a) the charge density of each face of the 
plate and (b) the total charge on each face.

	45.	A long, straight wire is surrounded by a hollow metal 
cylinder whose axis coincides with that of the wire. 
The wire has a charge per unit length of l, and the 
cylinder has a net charge per unit length of 2l. From 
this information, use Gauss’s law to find (a) the charge 
per unit length on the inner surface of the cylinder,  
(b) the charge per unit length on the outer surface of 
the cylinder, and (c) the electric field outside the cylin-
der a distance r from the axis.

	46.	A thin, square, conducting plate 50.0 cm on a side lies 
in the xy plane. A total charge of 4.00 3 1028 C is placed 
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	59.	A uniformly charged spherical shell with positive sur-
face charge density s contains a circular hole in its sur-
face. The radius r of the hole is small compared with 
the radius R of the sphere. What is the electric field at 
the center of the hole? Suggestion: This problem can be 
solved by using the principle of superposition.

	60.	An infinitely long, cylindrical, insulating shell of 
inner radius a and outer radius b has a uniform vol-
ume charge density r. A line of uniform linear charge 
density l is placed along the axis of the shell. Deter-
mine the electric field for (a) r , a, (b) a , r , b, and 
(c) r . b.

Challenge Problems

	61.	 A slab of insulating material has 
a nonuniform positive charge 
density r  5 Cx 2, where x is mea-
sured from the center of the slab 
as shown in Figure P24.61 and C 
is a constant. The slab is infinite 
in the y and z directions. Derive 
expressions for the electric field 
in (a) the exterior regions (ux u  . 
d/2) and (b) the interior region of 
the slab (2d/2 , x , d/2).

	62.	Review. An early (incorrect) 
model of the hydrogen atom, 
suggested by J. J. Thomson, proposed that a posi-
tive cloud of charge 1e was uniformly distributed 
throughout the volume of a sphere of radius R, with 
the electron (an equal-magnitude negatively charged 
particle 2e) at the center. (a) Using Gauss’s law, show 
that the electron would be in equilibrium at the cen-
ter and, if displaced from the center a distance r , R,  
would experience a restoring force of the form  
F 5 2Kr, where K is a constant. (b) Show that K 5 
kee 2/R3. (c) Find an expression for the frequency f of 
simple harmonic oscillations that an electron of mass 
me would undergo if displaced a small distance (, R) 
from the center and released. (d) Calculate a numeri-
cal value for R that would result in a frequency of  
2.47 3 1015 Hz, the frequency of the light radiated in 
the most intense line in the hydrogen spectrum.

	63.	A closed surface with dimensions a 5 b 5 0.400 m and 
c 5 0.600 m is located as shown in Figure P24.63. The 
left edge of the closed surface is located at position  
x 5 a. The electric field throughout the region is non-
uniform and is given by E

S
5 13.00 1 2.00x 2 2 î N/C,  

where x is in meters. (a) Calculate the net electric flux 
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Figure P24.61   
Problems 61 and 69.

S

AMT

understand completely the charges and electric fields 
at all locations. (a) Find the charge contained within a 
sphere of radius r , a. (b) From this value, find the mag-
nitude of the electric field for r , a. (c) What charge is 
contained within a sphere of radius r when a , r , b?  
(d)  From this value, find the magnitude of the elec-
tric field for r when a , r , b. (e) Now consider r when  
b , r , c. What is the magnitude of the electric field for 
this range of values of r ? (f) From this value, what must 
be the charge on the inner surface of the hollow sphere? 
(g) From part (f), what 
must be the charge on 
the outer surface of the 
hollow sphere? (h) Con-
sider the three spheri-
cal surfaces of radii a, 
b, and c. Which of these 
surfaces has the largest 
magnitude of surface 
charge density?

	55.	A solid insulating sphere of radius a 5 5.00 cm carries 
a net positive charge of Q 5 3.00 mC uniformly distrib-
uted throughout its volume. Concentric with this 
sphere is a conducting spherical shell with inner radius 
b 5 10.0 cm and outer radius c 5 15.0 cm as shown in 
Figure P24.54, having net charge q 5 21.00 mC. Pre-
pare a graph of the magnitude of the electric field due 
to this configuration versus r for 0 , r , 25.0 cm.

	56.	Two infinite, nonconducting sheets 
of charge are parallel to each other 
as shown in Figure P24.56. The 
sheet on the left has a uniform sur-
face charge density s, and the one 
on the right has a uniform charge 
density 2s. Calculate the electric 
field at points (a) to the left of, (b) in  
between, and (c) to the right of the 
two sheets. (d) What If? Find the 
electric fields in all three regions if both sheets have 
positive uniform surface charge densities of value s.

	57.	 For the configuration shown in Figure P24.54, sup-
pose a 5 5.00 cm, b 5 20.0 cm, and c 5 25.0 cm. Fur-
thermore, suppose the electric field at a point 10.0 cm  
from the center is measured to be 3.60 3 103 N/C radi-
ally inward and the electric field at a point 50.0 cm 
from the center is of magnitude 200 N/C and points 
radially outward. From this information, find (a)  the 
charge on the insulating sphere, (b) the net charge on 
the hollow conducting sphere, (c)  the charge on the 
inner surface of the hollow conducting sphere, and 
(d) the charge on the outer surface of the hollow con-
ducting sphere.

	58.	An insulating solid sphere of radius a has a uniform vol-
ume charge density and carries a total positive charge 
Q. A spherical gaussian surface of radius r, which shares 
a common center with the insulating sphere, is inflated 
starting from r 5 0. (a) Find an expression for the elec-
tric flux passing through the surface of the gaussian 
sphere as a function of r for r , a. (b) Find an expression 
for the electric flux for r . a. (c) Plot the flux versus r.
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Problems 54, 55, and 57.
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	67.	 An infinitely long insulating cylinder of radius R has a 
volume charge density that varies with the radius as

r 5 r0aa 2
r
b
b

		  where r0, a, and b are positive constants and r is the 
distance from the axis of the cylinder. Use Gauss’s law 
to determine the magnitude of the electric field at 
radial distances (a) r , R and (b) r . R.

	68.	A particle with charge Q is located 
on the axis of a circle of radius R at 
a distance b from the plane of the 
circle (Fig. P24.68). Show that if 
one-fourth of the electric flux from 
the charge passes through the cir-
cle, then R 5 !3b.

	69.	Review. A slab of insulating mate-
rial (infinite in the y and z direc-
tions) has a thickness d and a uni-
form positive charge density r. An edge view of the 
slab is shown in Figure P24.61. (a) Show that the mag-
nitude of the electric field a distance x from its center 
and inside the slab is E 5 rx/P0. (b) What If? Suppose 
an electron of charge 2e and mass me can move freely 
within the slab. It is released from rest at a distance x 
from the center. Show that the electron exhibits simple 
harmonic motion with a frequency
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leaving the closed surface. (b)  What net charge is 
enclosed by the surface?

	64.	A sphere of radius 2a is made of 
a nonconducting material that 
has a uniform volume charge 
density r. Assume the mate-
rial does not affect the elec-
tric field. A spherical cavity of 
radius a is now removed from 
the sphere as shown in Figure 
P24.64. Show that the electric 
field within the cavity is uni-
form and is given by Ex 5 0 and Ey 5 ra/3P0.

	65.	A spherically symmetric charge distribution has a 
charge density given by r 5 a/r, where a is constant. 
Find the electric field within the charge distribution 
as a function of r. Note: The volume element dV for a 
spherical shell of radius r and thickness dr is equal to 
4pr 2dr.

	66.	A solid insulating sphere of radius R has a nonuni-
form charge density that varies with r according to 
the expression r 5 Ar 2, where A is a constant and  
r , R is measured from the center of the sphere.  
(a) Show that the magnitude of the electric field out-
side (r . R) the sphere is E  5 AR 5/5P0r 2. (b) Show 
that the magnitude of the electric field inside (r , R) 
the sphere is E 5 Ar 3/5P0. Note: The volume element 
dV for a spherical shell of radius r and thickness dr is 
equal to 4pr 2dr.
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