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The Kinetic Theory
of Gases

In Chapter 19, we discussed the properties of an ideal gas by using such macroscopic
variables as pressure, volume, and temperature. Such large-scale properties can be related
to a description on a microscopic scale, where matter is treated as a collection of molecules.
Applying Newton's laws of motion in a statistical manner to a collection of particles pro-
vides a reasonable description of thermodynamic processes. To keep the mathematics
relatively simple, we shall consider primarily the behavior of gases because in gases the
interactions between molecules are much weaker than they are in liquids or solids.

We shall begin by relating pressure and temperature directly to the details of molecular
motion in a sample of gas. Based on these results, we will make predictions of molar specific
heats of gases. Some of these predictions will be correct and some will not. We will extend
our model to explain those values that are not predicted correctly by the simpler model.
Finally, we discuss the distribution of molecular speeds in a gas.
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yAMM Molecular Model of an 1deal Gas

In this chapter, we will investigate a structural model for an ideal gas. A structural
model is a theoretical construct designed to represent a system that cannot be
observed directly because it is too large or too small. For example, we can only
observe the solar system from the inside; we cannot travel outside the solar system
and look back to see how it works. This restricted vantage point has led to different
historical structural models of the solar system: the geocentric model, with the Earth at
the center, and the heliocentric model, with the Sun at the center. Of course, the latter
has been shown to be correct. An example of a system too small to observe directly
is the hydrogen atom. Various structural models of this system have been devel-
oped, including the Bohr model (Section 42.3) and the quantum model (Section 42.4).
Once a structural model is developed, various predictions are made for experimen-
tal observations. For example, the geocentric model of the solar system makes pre-
dictions of how the movement of Mars should appear from the Earth. It turns out
that those predictions do not match the actual observations. When that occurs with
a structural model, the model must be modified or replaced with another model.

The structural model that we will develop for an ideal gas is called kinetic the-
ory. This model treats an ideal gas as a collection of molecules with the following
properties:

1. Physical components:
The gas consists of a number of identical molecules within a cubic con-
tainer of side length d. The number of molecules in the gas is large, and the
average separation between them is large compared with their dimensions.
Therefore, the molecules occupy a negligible volume in the container. This
assumption is consistent with the ideal gas model, in which we imagine the
molecules to be point-like.

2. Behavior of the components:

(@) The molecules obey Newton’s laws of motion, but as a whole their motion
is isotropic: any molecule can move in any direction with any speed.

(b) The molecules interact only by short-range forces during elastic colli-
sions. This assumption is consistent with the ideal gas model, in which
the molecules exert no long-range forces on one another.

(¢) The molecules make elastic collisions with the walls.

Although we often picture an ideal gas as consisting of single atoms, the behavior of
molecular gases approximates that of ideal gases rather well at low pressures. Usu-
ally, molecular rotations or vibrations have no effect on the motions considered here.

For our first application of kinetic theory, let us relate the macroscope variable
of pressure P to microscopic quantities. Consider a collection of N molecules of an
ideal gas in a container of volume V. As indicated above, the container is a cube
with edges of length d (Fig. 21.1). We shall first focus our attention on one of these
molecules of mass m, and assume it is moving so that its component of velocity in
the x direction is v,; as in Figure 21.2. (The subscript i here refers to the ith mol-
ecule in the collection, not to an initial value. We will combine the effects of all the
molecules shortly.) As the molecule collides elastically with any wall (property 2(c)
above), its velocity component perpendicular to the wall is reversed because the
mass of the wall is far greater than the mass of the molecule. The molecule is mod-
eled as a nonisolated system for which the impulse from the wall causes a change in
the molecule’s momentum. Because the momentum component p,; of the molecule
is myv,; before the collision and —m,v,, after the collision, the change in the x com-
ponent of the momentum of the molecule is

Ap,, = —myv,;, — (mgv,,) = —2myv,; (21.1)
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One molecule of the gas
moves with velocity ¥ on
its way toward a collision
with the wall.
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Figure 21.1 A cubical box with
sides of length d containing an
ideal gas.
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Figure 21.2 A molecule makes
an elastic collision with the wall
of the container. In this construc-
tion, we assume the molecule
moves in the xy plane.



628

Chapter 21

The Kinetic Theory of Gases

From the nonisolated system model for momentum, we can apply the impulse-
momentum theorem (Egs. 9.11 and 9.13) to the molecule to give
F,

i,on molecule

Atcollision = Apxt = _2"20'% (21-2)

where F ion molecule 1S the x component of the average force! the wall exerts on the
molecule during the collision and Af_ g0, 18 the duration of the collision. For the
molecule to make another collision with the same wall after this first collision, it
must travel a distance of 2d in the x direction (across the cube and back). There-
fore, the time interval between two collisions with the same wall is

_ 2
_U

Al (21.3)

X1

The force that causes the change in momentum of the molecule in the collision
with the wall occurs only during the collision. We can, however, find the long-term
average force for many back-and-forth trips across the cube by averaging the force
in Equation 21.2 over the time interval for the molecule to move across the cube
and back once, Equation 21.3. The average change in momentum per trip for the
time interval for many trips is the same as that for the short duration of the colli-
sion. Therefore, we can rewrite Equation 21.2 as

F At = —2myv,, (21.4)

where F, is the average force component over the time interval for the molecule to
move across the cube and back. Because exactly one collision occurs for each such
time interval, this result is also the long-term average force on the molecule over
long time intervals containing any number of multiples of Az.

Equation 21.3 and 21.4 enable us to express the x component of the long-term
average force exerted by the wall on the molecule as

2 2
_ Qmovxz Qm()vxz MUy

F = = - = - V 21.5
! At 2d d (21.5)
Now, by Newton’s third law, the x component of the long-term average force exerted

by the molecule on the wall is equal in magnitude and opposite in direction:

2 2
- MUy MUy
a=—F=—(- = 21.6
,on wall i ( d ) d ( )

e

The total average force F¥ exerted by the gas on the wall is found by adding the
average forces exerted by the individual molecules. Adding terms such as those in
Equation 21.6 for all molecules gives

2 N
MUy, _ m
i=1 d

2
P i=1UXi (21.7)
where we have factored out the length of the box and the mass m, because property
1 tells us that all the molecules are the same. We now impose an additional fea-
ture from property 1, that the number of molecules is large. For a small number of
molecules, the actual force on the wall would vary with time. It would be nonzero
during the short interval of a collision of a molecule with the wall and zero when
no molecule happens to be hitting the wall. For a very large number of molecules
such as Avogadro’s number, however, these variations in force are smoothed out so
that the average force given above is the same over any time interval. Therefore, the
constant force I'on the wall due to the molecular collisions is
m

N
F=—>Yvuv/2 21.8
4 & (21.8)

IFor this discussion, we use a bar over a variable to represent the average value of the variable, such as F for the aver-
age force, rather than the subscript “avg” that we have used before. This notation is to save confusion because we
already have a number of subscripts on variables.
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To proceed further, let’s consider how to express the average value of the square
of the x component of the velocity for N molecules. The traditional average of a set
of values is the sum of the values over the number of values:

N

2wty _

vl=""— 5 Y= Ny} (21.9)
N i=1

Using Equation 21.9 to substitute for the sum in Equation 21.8 gives

m —
F= 70 No2 (21.10)
Now let’s focus again on one molecule with velocity components v,;, v,;, and v,;.
The Pythagorean theorem relates the square of the speed of the molecule to the
squares of the velocity components:

v =0+ v+ 0} (21.11)

Hence, the average value of v? for all the molecules in the container is related to

the average values of v,2, va, and v.? according to the expression
vi=vl+ v+ vl (21.12)

Because the motion is isotropic (property 2(a) above), the average values v,2, vT‘Z,

and v.? are equal to one another. Using this fact and Equation 21.12, we find that

22 =3y? (21.13)
Therefore, from Equation 21.10, the total force exerted on the wall is
L mgo?
F= §NT (21.14)
Using this expression, we can find the total pressure exerted on the wall:
F F mov® N\ —
P= X = ? = %N PE = :1%<V)mﬂvz
o N :
P= §<V>(§m0v2) (21.15)

where we have recognized the volume Vof the cube as d°.

Equation 21.15 indicates that the pressure of a gas is proportional to (1) the
number of molecules per unit volume and (2) the average translational kinetic
energy of the molecules, $m,o°. In analyzing this structural model of an ideal gas,
we obtain an important result that relates the macroscopic quantity of pressure
to a microscopic quantity, the average value of the square of the molecular speed.
Therefore, a key link between the molecular world and the large-scale world has
been established.

Notice that Equation 21.15 verifies some features of pressure with which you
are probably familiar. One way to increase the pressure inside a container is to
increase the number of molecules per unit volume N/Vin the container. That is
what you do when you add air to a tire. The pressure in the tire can also be raised
by increasing the average translational kinetic energy of the air molecules in the
tire. That can be accomplished by increasing the temperature of that air, which
is why the pressure inside a tire increases as the tire warms up during long road
trips. The continuous flexing of the tire as it moves along the road surface results
in work done on the rubber as parts of the tire distort, causing an increase in inter-
nal energy of the rubber. The increased temperature of the rubber results in the
transfer of energy by heat into the air inside the tire. This transfer increases the
air’s temperature, and this increase in temperature in turn produces an increase
in pressure.

< Relationship between
pressure and molecular
kinetic energy

629
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Molecular Interpretation of Temperature

Let’s now consider another macroscopic variable, the temperature 7 of the gas.
We can gain some insight into the meaning of temperature by first writing Equa-
tion 21.15 in the form

PV = 2N(mv?) (21.16)

Let’s now compare this expression with the equation of state for an ideal gas
(Eq. 19.10):

PV = Nk,T (21.17)
Equating the right sides of Equations 21.16 and 21.17 and solving for 7"gives

2 —
T = ——(3myv®) (21.18)
3ky
This result tells us that temperature is a direct measure of average molecular kinetic
energy. By rearranging Equation 21.18, we can relate the translational molecular
kinetic energy to the temperature:

smov? = 3k, T (21.19)

That is, the average translational kinetic energy per molecule is 2k T. Because
v.? = §? (Eq. 21.13), it follows that

Imgv2 = Sk T (21.20)

In a similar manner, for the yand z directions,

L, 9 _ 1 1 p 1
gmovy2 = 5kgT and ymyv,” = 5kT

Therefore, each translational degree of freedom contributes an equal amount of
energy, sk T, to the gas. (In general, a “degree of freedom” refers to an indepen-
dent means by which a molecule can possess energy.) A generalization of this result,
known as the theorem of equipartition of energy, is as follows:

Each degree of freedom contributes 5k; 7 to the energy of a system, where
possible degrees of freedom are those associated with translation, rotation,
and vibration of molecules.

The total translational kinetic energy of Nmolecules of gas is simply Ntimes the
average energy per molecule, which is given by Equation 21.19:

Ktottrans = N(%moﬁ) = gNkBT: gnRT (21-21)

where we have used ky = R/N, for Boltzmann’s constant and n = N/N, for the num-
ber of moles of gas. If the gas molecules possess only translational kinetic energy,
Equation 21.21 represents the internal energy of the gas. This result implies that
the internal energy of an ideal gas depends only on the temperature. We will follow
up on this point in Section 21.2.

The square root of v* is called the root-mean-square (rms) speed of the mol-
ecules. From Equation 21.19, we find that the rms speed is

— [3k,T [3RT
Voms = V0% = = Vo (21.22)
0

where Mis the molar mass in kilograms per mole and is equal to m,N,. This expres-
sion shows that, at a given temperature, lighter molecules move faster, on the aver-
age, than do heavier molecules. For example, at a given temperature, hydrogen
molecules, whose molar mass is 2.02 X 107 kg/mol, have an average speed approxi-
mately four times that of oxygen molecules, whose molar mass is 32.0 X 10~% kg/mol.
Table 21.1 lists the rms speeds for various molecules at 20°C.
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IELIGPAREY  Some Root-Mean-Square (rms) Speeds

Molar Mass Vissais Molar Mass Uz
Gas (g/mol) at 20°C (m/s) Gas (g/mol) at 20°C (m/s)
H, 2.02 1902 NO 30.0 494
He 4.00 1352 O, 32.0 478
H,O 18.0 637 CO, 44.0 408 . .
N 90.9 602 SO, 6.1 338 Pitfall Prevention 21.1
N, or CO 98.0 511 The Square Root of the Square?
Taking the square root of v* does
not “undo” the square because
_ we have taken an average between
uick Quiz 21.1 Two containers hold an ideal gas at the same temperature and squaring and taking the square
. pressure. Both containers hold the same type of gas, but container B has twice root. Although the square root of

: : : ; 0 T
the volume of container A. (i) What is the average translational kinetic energy .( V) 180 =ty bECause the squar
ing is done after the averaging,

per molecule in container B? (a) twice that of container A (b) the same as that the square root of o2 is noL v
of container A (c) half that of container A (d) impossible to determine (ii) From but rather v
the same choices, describe the internal energy of the gas in container B.

A Tank of Helium

A tank used for filling helium balloons has a volume of 0.300 m® and contains 2.00 mol of helium gas at 20.0°C.
Assume the helium behaves like an ideal gas.

avg’

rms*

(A) What is the total translational kinetic energy of the gas molecules?

SOLUTION

Conceptualize Imagine a microscopic model of a gas in which you can watch the molecules move about the container
more rapidly as the temperature increases. Because the gas is monatomic, the total translational kinetic energy of the
molecules is the internal energy of the gas.

Categorize We evaluate parameters with equations developed in the preceding discussion, so this example is a substi-
tution problem.

Use Equation 21.21 with » = 2.00 mol and T = 293 K: Ei = 3nRT = 3(2.00 mol)(8.31 J/mol - K)(293 K)
7.30 X 103 ]

(B) Whatis the average kinetic energy per molecule?

SOLUTION

Use Equation 21.19: Ymgo? = $ky T = 3(1.38 X 107 J/K)(293 K)
= 6.07 X 1072

What if the temperature is raised from 20.0°C to 40.0°C? Because 40.0 is twice as large as 20.0, is the total
translational energy of the molecules of the gas twice as large at the higher temperature?

Answer The expression for the total translational energy depends on the temperature, and the value for the tempera-
ture must be expressed in kelvins, not in degrees Celsius. Therefore, the ratio of 40.0 to 20.0 is not the appropriate
ratio. Converting the Celsius temperatures to kelvins, 20.0°C is 293 K and 40.0°C is 313 K. Therefore, the total transla-
tional energy increases by a factor of only 313 K/293 K = 1.07.

Molar Specific Heat of an ldeal Gas

Consider an ideal gas undergoing several processes such that the change in tem-
perature is AT = T, — T for all processes. The temperature change can be achieved
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Isotherms

Figure 21.3 An ideal gas is taken
from one isotherm at temperature
Tto another at temperature 7 +
ATalong three different paths.

Internal energy of an ideal p>
monatomic gas

The Kinetic Theory of Gases

by taking a variety of paths from one isotherm to another as shown in Figure 21.3.
Because AT is the same for all paths, the change in internal energy AL, is the
same for all paths. The work Wdone on the gas (the negative of the area under
the curves), however, is different for each path. Therefore, from the first law of
thermodynamics, we can argue that the heat Q = AE;  — Wassociated with a given
change in temperature does nof have a unique value as discussed in Section 20.4.

We can address this difficulty by defining specific heats for two special processes
that we have studied: isovolumetric and isobaric. Because the number of moles »
is a convenient measure of the amount of gas, we define the molar specific heats
associated with these processes as follows:

Q= nC,AT (constant volume) (21.23)
Q= nC,AT (constant pressure) (21.24)

where C,, is the molar specific heat at constant volume and C, is the molar spe-
cific heat at constant pressure. When energy is added to a gas by heat at constant
pressure, not only does the internal energy of the gas increase, but (negative) work
is done on the gas because of the change in volume required to keep the pres-
sure constant. Therefore, the heat Q in Equation 21.24 must account for both the
increase in internal energy and the transfer of energy out of the system by work.
For this reason, Q) is greater in Equation 21.24 than in Equation 21.23 for given val-
ues of nand AT. Therefore, C,is greater than C,,.

In the previous section, we found that the temperature of a gas is a measure of
the average translational kinetic energy of the gas molecules. This kinetic energy
is associated with the motion of the center of mass of each molecule. It does not
include the energy associated with the internal motion of the molecule, namely,
vibrations and rotations about the center of mass. That should not be surprising
because the simple kinetic theory model assumes a structureless molecule.

So, let’s first consider the simplest case of an ideal monatomic gas, that is, a gas
containing one atom per molecule such as helium, neon, or argon. When energy
is added to a monatomic gas in a container of fixed volume, all the added energy
goes into increasing the translational kinetic energy of the atoms. There is no other
way to store the energy in a monatomic gas. Therefore, from Equation 21.21, we see

that the internal energy I;,, of Nmolecules (or » mol) of an ideal monatomic gas is

Eui = Kioiwans = sNkyT = 3nRT (21.25)

int
For a monatomic ideal gas, E; . is a function of T only and the functional relation-
ship is given by Equation 21.25. In general, the internal energy of any ideal gas is a
function of T only and the exact relationship depends on the type of gas.

If energy is transferred by heat to a system at constant volume, no work is done
on the system. Thatis, W= —[ P dV = 0 for a constant-volume process. Hence, from
the first law of thermodynamics,

Q= AL,

mt

(21.26)

In other words, all the energy transferred by heat goes into increasing the inter-
nal energy of the system. A constant-volume process from i to ffor an ideal gas is
described in Figure 21.4, where AT is the temperature difference between the two
isotherms. Substituting the expression for Q given by Equation 21.23 into Equation
21.26, we obtain

AE,

mt

= nCy AT (21.27)

This equation applies to all ideal gases, those gases having more than one atom per
molecule as well as monatomic ideal gases.
In the limit of infinitesimal changes, we can use Equation 21.27 to express the
molar specific heat at constant volume as
1 dE

Cp=— —nt
V" m 4T

int

(21.28)
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Let’s now apply the results of this discussion to a monatomic gas. Substituting the
internal energy from Equation 21.25 into Equation 21.28 gives

Cy=3R=125]/mol -K (21.29)

This expression predicts a value of C;, = 3R for all monatomic gases. This predic-
tion is in excellent agreement with measured values of molar specific heats for such
gases as helium, neon, argon, and xenon over a wide range of temperatures (Table
21.2). Small variations in Table 21.2 from the predicted values are because real
gases are not ideal gases. In real gases, weak intermolecular interactions occur,
which are not addressed in our ideal gas model.

Now suppose the gas is taken along the constant-pressure path i — f’ shown in
Figure 21.4. Along this path, the temperature again increases by AT. The energy
that must be transferred by heat to the gas in this process is Q = nC, AT. Because
the volume changes in this process, the work done on the gas is W= —P AV, where
P is the constant pressure at which the process occurs. Applying the first law of
thermodynamics to this process, we have

AE,, = Q+ W= nC,AT + (—PAV) (21.30)

int

In this case, the energy added to the gas by heat is channeled as follows. Part of it
leaves the system by work (that is, the gas moves a piston through a displacement),
and the remainder appears as an increase in the internal energy of the gas. The
change in internal energy for the process i— f’, however, is equal to that for the pro-
cess i — fbecause E;  depends only on temperature for an ideal gas and AT is the
same for both processes. In addition, because PV = nRT, note that for a constant-
pressure process, P AV = nR AT. Substituting this value for P AV into Equation

21.30 with AE, = nC, AT (Eq. 21.27) gives
nCy AT = nCp AT — nRAT
Cp— Cy=R (21.31)

This expression applies to anyideal gas. It predicts that the molar specific heat of an
ideal gas at constant pressure is greater than the molar specific heat at constant vol-
ume by an amount R, the universal gas constant (which has the value 8.31 J/mol - K).
This expression is applicable to real gases as the data in Table 21.2 show.

IELGVARVAEY  Molar Specific Heats of Various Gases
Molar Specific Heat (J/mol - K)*

Gas C, c, C,—C, y = Cp/Cy
Monatomic gases

He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69
Diatomic gases

H, 28.8 204 8.33 141
N, 29.1 20.8 8.33 1.40
0O, 294 21.1 8.33 1.40
(6(0) 29.3 21.0 8.33 1.40
Cl, 34.7 25.7 8.96 1.35
Polyatomic gases

CO, 37.0 28.5 8.50 1.30
SO, 40.4 314 9.00 1.29
H,O 35.4 27.0 8.37 1.30
CH, 35.5 27.1 8.41 1.31

2 All values except that for water were obtained at 300 K.

For the constant-volume
path, all the energy input
goes into increasing the
internal energy of the gas
because no work is done.

Isotherms

T+ AT
T

1%

Along the constant-pressure
path, part of the energy
transferred in by heat is
transferred out by work.

Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in
two ways.
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Because Gy, = 3R for a monatomic ideal gas, Equation 21.31 predicts a value
Cp= 3R =20.8]/mol - K for the molar specific heat of a monatomic gas at con-
stant pressure. The ratio of these molar specific heats is a dimensionless quantity y
(Greek letter gamma):

Cp BR/2 5

=—L= == =167 21.32
C, 3R/2 3 (21.32)

Ratio of molar specific heats P> b%
for a monatomic ideal gas
Theoretical values of Cy, C,, and y are in excellent agreement with experimental
values obtained for monatomic gases, but they are in serious disagreement with the
values for the more complex gases (see Table 21.2). That is not surprising; the value
Cy = 3R was derived for a monatomic ideal gas, and we expect some additional
contribution to the molar specific heat from the internal structure of the more
complex molecules. In Section 21.3, we describe the effect of molecular structure
on the molar specific heat of a gas. The internal energy—and hence the molar
specific heat—of a complex gas must include contributions from the rotational and
the vibrational motions of the molecule.
In the case of solids and liquids heated at constant pressure, very little work is
done during such a process because the thermal expansion is small. Consequently,
Cpand Cyare approximately equal for solids and liquids.

uick Quiz 21.2 (i) How does the internal energy of an ideal gas change as it fol-
: lows path i — fin Figure 21.4? (a) E,, increases. (b) E, , decreases. (c) E,, stays

mt mt mt

. the same. (d) There is not enough information to determine how E; , changes.

(ii) From the same choices, how does the internal energy of an ideal gas change
& as it follows path f— /" along the isotherm labeled T + ATin Figure 21.4?

Example 21.2 Heating a Cylinder of Helium

A cylinder contains 3.00 mol of helium gas at a temperature of 300 K.

(A) If the gas is heated at constant volume, how much energy must be transferred by heat to the gas for its tempera-
ture to increase to 500 K?

SOLUTION

Conceptualize Run the process in your mind with the help of the piston—cylinder arrangement in Figure 19.12. Imag-
ine that the piston is clamped in position to maintain the constant volume of the gas.

Categorize We evaluate parameters with equations developed in the preceding discussion, so this example is a substi-
tution problem.

Use Equation 21.23 to find the energy transfer: 0, =nC, AT
Substitute the given values: Q, = (3.00mol)(12.5J/mol - K)(500 K — 300 K)
= 750 X 10%]

(B) How much energy must be transferred by heat to the gas at constant pressure to raise the temperature to 500 K?

SOLUTION

Use Equation 21.24 to find the energy transfer: 0, =nC, AT
Substitute the given values: Q, = (3.00 mol)(20.8 J/mol - K)(500 K — 300 K)
= 12.5 X 10%]

This value is larger than (), because of the transfer of energy out of the gas by work to raise the piston in the constant
pressure process.
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The Equipartition of Energy

Predictions based on our model for molar specific heat agree quite well with the
behavior of monatomic gases, but not with the behavior of complex gases (see Table
21.2). The value predicted by the model for the quantity C, — C, = R, however, is
the same for all gases. This similarity is not surprising because this difference is the
result of the work done on the gas, which is independent of its molecular structure.

To clarify the variations in Cyand C, in gases more complex than monatomic
gases, let’s explore further the origin of molar specific heat. So far, we have
assumed the sole contribution to the internal energy of a gas is the translational
kinetic energy of the molecules. The internal energy of a gas, however, includes
contributions from the translational, vibrational, and rotational motion of the mol-
ecules. The rotational and vibrational motions of molecules can be activated by
collisions and therefore are “coupled” to the translational motion of the molecules.
The branch of physics known as statistical mechanics has shown that, for a large num-
ber of particles obeying the laws of Newtonian mechanics, the available energy is,
on average, shared equally by each independent degree of freedom. Recall from
Section 21.1 that the equipartition theorem states that, at equilibrium, each degree
of freedom contributes § kT of energy per molecule.

Let’s consider a diatomic gas whose molecules have the shape of a dumbbell (Fig.
21.5). In this model, the center of mass of the molecule can translate in the x, y, and
z directions (Fig. 21.5a). In addition, the molecule can rotate about three mutually
perpendicular axes (Fig. 21.5b). The rotation about the y axis can be neglected
because the molecule’s moment of inertia /; and its rotational energy %Iya)2 about
this axis are negligible compared with those associated with the x and z axes. (If
the two atoms are modeled as particles, then I) is identically zero.) Therefore, there
are five degrees of freedom for translation and rotation: three associated with the
translational motion and two associated with the rotational motion. Because each
degree of freedom contributes, on average, 3k, T of energy per molecule, the inter-
nal energy for a system of Nmolecules, ignoring vibration for now, is

Ei = 3NGksT) + 2N(5ksT) = 3Nk T = 5nRT
We can use this result and Equation 21.28 to find the molar specific heat at con-
stant volume:

_ l dEim 1 d 5

V= ar = qpERT) = iR =208 ]/mol - K (21.33)

From Equations 21.31 and 21.32, we find that
Cp= Cy+ R=%R =29.1]/mol - K
_Cp 3R 7

= = =140
Cy IR 5

Y

These results agree quite well with most of the data for diatomic molecules given
in Table 21.2. That is rather surprising because we have not yet accounted for the
possible vibrations of the molecule.

In the model for vibration, the two atoms are joined by an imaginary spring (see
Fig. 21.5¢). The vibrational motion adds two more degrees of freedom, which cor-
respond to the kinetic energy and the potential energy associated with vibrations
along the length of the molecule. Hence, a model that includes all three types of
motion predicts a total internal energy of

Eqpe = 3NGksT) + NGk T) + ONGhsT) = INkyT = nRT
and a molar specific heat at constant volume of

o=t M 1 d 5 pry — TR — 991 1/mol - K (21.34)
Voo 0lT_ndT272 t =290 mo .

Translational motion of
the center of mass

Qo /
e

V

Rotational motion about
the various axes

™

Vibrational motion along
the molecular axis

Figure 21.5 Possible motions of
a diatomic molecule.
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Figure 21.6 The molar specific
heat of hydrogen as a function of
temperature.
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The horizontal scale is logarithmic.

T T T TTTTIT T T T TTTTT7 T T T T 11717
30 TR
2
95 |- Hydrogen liquefies Vibration i
o at 20 K. 5
9 e~ kT -5k
5 42
E Rotation
— 15| ]
- 3r
I I 2
10 ]
Translation
5F ]
0 Lot L1 L1l

10 20 50 100 200 500 1000 2000 5000 10000

Temperature (K)

This value is inconsistent with experimental data for molecules such as H, and N,
(see Table 21.2) and suggests a breakdown of our model based on classical physics.
It might seem that our model is a failure for predicting molar specific heats for
diatomic gases. We can claim some success for our model, however, if measure-
ments of molar specific heat are made over a wide temperature range rather than at
the single temperature that gives us the values in Table 21.2. Figure 21.6 shows the
molar specific heat of hydrogen as a function of temperature. The remarkable fea-
ture about the three plateaus in the graph’s curve is that they are at the values of the
molar specific heat predicted by Equations 21.29, 21.33, and 21.34! For low tempera-
tures, the diatomic hydrogen gas behaves like a monatomic gas. As the temperature
rises to room temperature, its molar specific heat rises to a value for a diatomic gas,
consistent with the inclusion of rotation but not vibration. For high temperatures,
the molar specific heat is consistent with a model including all types of motion.
Before addressing the reason for this mysterious behavior, let’s make some brief
remarks about polyatomic gases. For molecules with more than two atoms, three
axes of rotation are available. The vibrations are more complex than for diatomic
molecules. Therefore, the number of degrees of freedom is even larger. The result is
an even higher predicted molar specific heat, which is in qualitative agreement with
experiment. The molar specific heats for the polyatomic gases in Table 21.2 are higher
than those for diatomic gases. The more degrees of freedom available to a molecule,
the more “ways” there are to store energy, resulting in a higher molar specific heat.

A Hint of Energy Quantization

Our model for molar specific heats has been based so far on purely classical notions.
It predicts a value of the specific heat for a diatomic gas that, according to Figure
21.6, only agrees with experimental measurements made at high temperatures. To
explain why this value is only true at high temperatures and why the plateaus in
Figure 21.6 exist, we must go beyond classical physics and introduce some quantum
physics into the model. In Chapter 18, we discussed quantization of frequency for
vibrating strings and air columns; only certain frequencies of standing waves can
exist. That is a natural result whenever waves are subject to boundary conditions.

Quantum physics (Chapters 40 through 43) shows that atoms and molecules
can be described by the waves under boundary conditions analysis model. Conse-
quently, these waves have quantized frequencies. Furthermore, in quantum physics,
the energy of a system is proportional to the frequency of the wave representing the
system. Hence, the energies of atoms and molecules are quantized.

For a molecule, quantum physics tells us that the rotational and vibrational ener-
gies are quantized. Figure 21.7 shows an energy-level diagram for the rotational
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and vibrational quantum states of a diatomic molecule. The lowest allowed state
is called the ground state. The black lines show the energies allowed for the mol-
ecule. Notice that allowed vibrational states are separated by larger energy gaps
than are rotational states.

At low temperatures, the energy a molecule gains in collisions with its neighbors
is generally not large enough to raise it to the first excited state of either rotation or
vibration. Therefore, even though rotation and vibration are allowed according to
classical physics, they do not occur in reality at low temperatures. All molecules are
in the ground state for rotation and vibration. The only contribution to the mol-
ecules’ average energy is from translation, and the specific heat is that predicted by
Equation 21.29.

As the temperature is raised, the average energy of the molecules increases. In
some collisions, a molecule may have enough energy transferred to it from another
molecule to excite the first rotational state. As the temperature is raised further,
more molecules can be excited to this state. The result is that rotation begins to
contribute to the internal energy, and the molar specific heat rises. At about room
temperature in Figure 21.6, the second plateau has been reached and rotation con-
tributes fully to the molar specific heat. The molar specific heat is now equal to the
value predicted by Equation 21.33.

There is no contribution at room temperature from vibration because the mole-
cules are still in the ground vibrational state. The temperature must be raised even
further to excite the first vibrational state, which happens in Figure 21.6 between
1 000 K and 10 000 K. At 10 000 K on the right side of the figure, vibration is con-
tributing fully to the internal energy and the molar specific heat has the value pre-
dicted by Equation 21.34.

The predictions of this model are supportive of the theorem of equipartition of
energy. In addition, the inclusion in the model of energy quantization from quan-
tum physics allows a full understanding of Figure 21.6.

uick Quiz 21.3 The molar specific heat of a diatomic gas is measured at constant
volume and found to be 29.1 J/mol - K. What are the types of energy that are con-
tributing to the molar specific heat? (a) translation only (b) translation and rota-

tion only (c) translation and vibration only (d) translation, rotation, and vibration

uick Quiz 21.4 The molar specific heat of a gas is measured at constant volume
- and found to be 11R/2. Is the gas most likely to be (a) monatomic, (b) diatomic,
e or (c) polyatomic?

AWM Adiabatic Processes for an ldeal Gas

As noted in Section 20.6, an adiabatic process is one in which no energy is trans-
ferred by heat between a system and its surroundings. For example, if a gas is com-
pressed (or expanded) rapidly, very little energy is transferred out of (or into) the
system by heat, so the process is nearly adiabatic. Such processes occur in the cycle
of a gasoline engine, which is discussed in detail in Chapter 22. Another example
of an adiabatic process is the slow expansion of a gas that is thermally insulated
from its surroundings. All three variables in the ideal gas law—P, V, and T—change
during an adiabatic process.

Let’s imagine an adiabatic gas process involving an infinitesimal change in
volume dV and an accompanying infinitesimal change in temperature d7. The
work done on the gas is —P dV. Because the internal energy of an ideal gas depends
only on temperature, the change in the internal energy in an adiabatic process
is the same as that for an isovolumetric process between the same temperatures,
dE,, = nC, dT (Eq. 21.27). Hence, the first law of thermodynamics, AE,,, = Q + W,
with Q = 0, becomes the infinitesimal form

di,,, = nC,dT = —PdV (21.35)

int

637

The rotational states lie closer

together in energy than do the
vibrational states.

Vibrational 2
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Figure 21.7 An energy-level dia-
gram for vibrational and rotational
states of a diatomic molecule.
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The temperature of a
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Taking the total differential of the equation of state of an ideal gas, PV = nRT, gives
PdV+ VdP= nRdT (21.36)

P adiabatic expansion.

Eliminating dT from Equations 21.35 and 21.36, we find that
Isotherms R
P PdV+ VdP= ——PdV
A CV
Substituting R = Cp — Cyand dividing by PV gives
dv — dpP Cp— Cy\ dV av
AT _<PV>=(1 _7)7
L ; 1% P Cy 1% \%4
/ I /1 I v AP AV
Vi Vi —+y—=0
) P Vv
Figure 21.8 The PVdiagram I e hi o h
for an adiabatic expansion of an ntegrating this expression, we have
ideal gas. In P+ yIn V= constant
which is equivalent to
Relationship between P and V - PV? = constant (21.37)

for an adiabatic process

involving an ideal gas The PV diagram for an adiabatic expansion is shown in Figure 21.8. Because
v > 1, the PV curve is steeper than it would be for an isothermal expansion, for
which PV = constant. By the definition of an adiabatic process, no energy is trans-
ferred by heat into or out of the system. Hence, from the first law, we see that AEF;
is negative (work is done by the gas, so its internal energy decreases) and so AT also
is negative. Therefore, the temperature of the gas decreases (7, < T)) during an adi-
abatic expansion.? Conversely, the temperature increases if the gas is compressed

adiabatically. Applying Equation 21.37 to the initial and final states, we see that
PVY =DV (21.38)

Using the ideal gas law, we can express Equation 21.37 as

Relationship between Tand V p> TV?~! = constant (21.39)
for an adiabatic process

involving an ideal gas

Example 21.3 A Diesel Engine Cylinder

Air at 20.0°C in the cylinder of a diesel engine is compressed from an initial pressure of 1.00 atm and volume of
800.0 cm? to a volume of 60.0 cm®. Assume air behaves as an ideal gas with y = 1.40 and the compression is adiabatic.
Find the final pressure and temperature of the air.

SOLUTION

Conceptualize Imagine what happens if a gas is compressed into a smaller volume. Our discussion above and Figure
21.8 tell us that the pressure and temperature both increase.

Categorize We categorize this example as a problem involving an adiabatic process.

] AN ) 3\ 1.40
Analyze Use Equation 21.38 to find the final pressure: P = E(—') = (1.00 atm)(M)
4 60.0 cm®

= 37.6 atm

%In the adiabatic free expansion discussed in Section 20.6, the temperature remains constant. In this unique pro-
cess, no work is done because the gas expands into a vacuum. In general, the temperature decreases in an adiabatic
expansion in which work is done.
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b 21.3
. , , rv. _EY
Use the ideal gas law to find the final temperature: T -
PV, 37.6 atm )(60.0 cm®
7= g (37.6 atm)( Cm3(293K)
PV, (1.00 atm ) (800.0 cm?®)
=826 K= 553°C

Finalize The temperature of the gas increases by a factor of 826 K/293 K = 2.82. The high compression in a diesel
engine raises the temperature of the gas enough to cause the combustion of fuel without the use of spark plugs.

Distribution of Molecular Speeds

Thus far, we have considered only average values of the energies of all the molecules
in a gas and have not addressed the distribution of energies among individual mol-
ecules. The motion of the molecules is extremely chaotic. Any individual molecule
collides with others at an enormous rate, typically a billion times per second. Each
collision results in a change in the speed and direction of motion of each of the
participant molecules. Equation 21.22 shows that rms molecular speeds increase
with increasing temperature. At a given time, what is the relative number of mol-
ecules that possess some characteristic such as energy within a certain range?

We shall address this question by considering the number density 7 (E). This
quantity, called a distribution function, is defined so that ny(E) dE is the number of
molecules per unit volume with energy between E and E + dE. (The ratio of the
number of molecules that have the desired characteristic to the total number of
molecules is the probability that a particular molecule has that characteristic.) In
general, the number density is found from statistical mechanics to be

ny(E) = nge /b7 (21.40)

where n, is defined such that n, dEis the number of molecules per unit volume hav-
ing energy between £ = 0 and E = dF. This equation, known as the Boltzmann dis-
tribution law, is important in describing the statistical mechanics of a large number
of molecules. It states that the probability of finding the molecules in a particular
energy state varies exponentially as the negative of the energy divided by kg7T. All
the molecules would fall into the lowest energy level if the thermal agitation at a
temperature 7'did not excite the molecules to higher energy levels.

Example 21.4 Thermal Excitation of Atomic Energy Levels

Pitfall Prevention 21.2

The Distribution Function

The distribution function 7 (k)
is defined in terms of the number
of molecules with energy in the
range Eto E + dErather than in
terms of the number of molecules
with energy I. Because the num-
ber of molecules is finite and the
number of possible values of the
energy is infinite, the number of
molecules with an exact energy £
may be zero.

< Boltzmann distribution law

As discussed in Section 21.4, atoms can occupy only certain discrete energy levels. Con- Ey —
sider a gas at a temperature of 2 500 K whose atoms can occupy only two energy levels
separated by 1.50 eV, where 1 €V (electron volt) is an energy unit equal to 1.60 X 1071 J
(Fig. 21.9). Determine the ratio of the number of atoms in the higher energy level to the

number in the lower energy level.

SOLUTION

Conceptualize In your mental representation of this example, remember that only two
possible states are allowed for the system of the atom. Figure 21.9 helps you visualize the
two states on an energy-level diagram. In this case, the atom has two possible energies, F;

and E,, where £, < E,.

1.50 eV

ENERGY

E;

Figure 21.9 (Example
21.4) Energy-level diagram
for a gas whose atoms can
occupy two energy states.

conlinued
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b 21.4

Categorize We categorize this example as one in which we focus on particles in a two-state quantized system. We will
apply the Boltzmann distribution law to this system.

Analyze Set up the ratio of the number of (1) — = = ¢ BT E)/kT

atoms in the higher energy level to the num-

ber in the lower energy level and use Equa-
tion 21.40 to express each number:

Evaluate kzTin the exponent:

Substitute this value into Equation (1):

1eV
ks T = (1.38 X 107 ]/K)(2 500 K (7> =0.216 eV
o7 = 17K 160 % 1077 ¢
ny(Ey) — ,7150eV/0216eV _ =696 — g 5o % ()4
nV(El)

Finalize This result indicates thatat 7= 2 500 K, only a small fraction of the atoms are in the higher energy level. In
fact, for every atom in the higher energy level, there are about 1 000 atoms in the lower level. The number of atoms in
the higher level increases at even higher temperatures, but the distribution law specifies that at equilibrium there are
always more atoms in the lower level than in the higher level.

WLEZNEIES  What if the energy levels in Figure 21.9 were closer together in energy? Would that increase or decrease
the fraction of the atoms in the upper energy level?

Answer If the excited level is lower in energy than that in Figure 21.9, it would be easier for thermal agitation to excite
atoms to this level and the fraction of atoms in this energy level would be larger, which we can see mathematically by

expressing Equation (1) as

ry = ¢~ (B E/kT

where 7, is the ratio of atoms having energy I, to those with energy F;. Differentiating with respect to E,, we find

dry d 1
2 _ [eE—BVRT] = — —

dE, dE, kT

—(E2 _E])/kBT < O

Because the derivative has a negative value, as IV, decreases, r, increases.

© INTERFOTO/Alamy

Ludwig Boltzmann

Austrian physicist (1844-1906)
Boltzmann made many important
contributions to the development of
the kinetic theory of gases, electro-
magnetism, and thermodynamics. His
pioneering work in the field of kinetic
theory led to the branch of physics
known as statistical mechanics.

Now that we have discussed the distribution of energies among molecules in a
gas, let’s think about the distribution of molecular speeds. In 1860, James Clerk
Maxwell (1831-1879) derived an expression that describes the distribution of
molecular speeds in a very definite manner. His work and subsequent developments
by other scientists were highly controversial because direct detection of molecules
could not be achieved experimentally at that time. About 60 years later, however,
experiments were devised that confirmed Maxwell’s predictions.

Let’s consider a container of gas whose molecules have some distribution of
speeds. Suppose we want to determine how many gas molecules have a speed in the
range from, for example, 400 to 401 m/s. Intuitively, we expect the speed distribu-
tion to depend on temperature. Furthermore, we expect the distribution to peak
in the vicinity of v, . That is, few molecules are expected to have speeds much less
than or much greater than v, because these extreme speeds result only from an
unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is
shown in Figure 21.10. The quantity N,, called the Maxwell-Boltzmann speed dis-
tribution function, is defined as follows. If Nis the total number of molecules, the
number of molecules with speeds between vand v + dvis dN = N, dv. This number
is also equal to the area of the shaded rectangle in Figure 21.10. Furthermore, the
fraction of molecules with speeds between vand v + dvis (N, dv)/N. This fraction
is also equal to the probability that a molecule has a speed in the range vto v + dv.

rms
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The fundamental expression that describes the distribution of speeds of N gas

molecules is
3/2
m() 9 _, 2/
N, = 47TN( ) v2e v/ 2kl

ok T (21.41)
B

where m, is the mass of a gas molecule, kj is Boltzmann’s constant, and 7T is the
absolute temperature.® Observe the appearance of the Boltzmann factor ¢ /%7
with E = §mgv’.

As indicated in Figure 21.10, the average speed is somewhat lower than the
rms speed. The most probable speed v, is the speed at which the distribution curve
reaches a peak. Using Equation 21.41, we find that

—  [8kyT ke T
Vs = V02 = ([ 25 = 173, [ 2= (21.42)
m mg
8kyT ke T
Vnyg = B = 1.60,/ —— (21.43)
Tm, my
OkyT ke T
Uy =/ T = 1ALy (21.44)
m m

Equation 21.42 has previously appeared as Equation 21.22. The details of the deri-
vations of these equations from Equation 21.41 are left for the end-of-chapter prob-
lems (see Problems 42 and 69). From these equations, we see that

vl‘l‘l’lS > van > vmp

Figure 21.11 represents speed distribution curves for nitrogen, N,. The curves
were obtained by using Equation 21.41 to evaluate the distribution function at vari-
ous speeds and at two temperatures. Notice that the peak in each curve shifts to
the right as T'increases, indicating that the average speed increases with increasing
temperature, as expected. Because the lowest speed possible is zero and the upper
classical limit of the speed is infinity, the curves are asymmetrical. (In Chapter 39,
we show that the actual upper limit is the speed of light.)

Equation 21.41 shows that the distribution of molecular speeds in a gas depends
both on mass and on temperature. At a given temperature, the fraction of mol-
ecules with speeds exceeding a fixed value increases as the mass decreases. Hence,

The total area under either curve is
equal to N, the total number of
molecules. In this case, N = 10°.

Note that v > Uavg > Vmp-

200
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v
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% For the derivation of this expression, see an advanced textbook on thermodynamics.
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The number of molecules

having speeds ranging from v

to v + dv equals the area of
N the tan rectangle, N, dv.

v

|

dv

Figure 21.10 The speed distri-
bution of gas molecules at some
temperature. The function N,
approaches zero as v approaches
infinity.

Figure 21.11 The speed distri-
bution function for 10° nitrogen
molecules at 300 Kand 900 K.
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lighter molecules such as H, and He escape into space more readily from the
Earth’s atmosphere than do heavier molecules such as N, and O,. (See the discus-
sion of escape speed in Chapter 13. Gas molecules escape even more readily from
the Moon’s surface than from the Earth’s because the escape speed on the Moon is
lower than that on the Earth.)

The speed distribution curves for molecules in a liquid are similar to those
shown in Figure 21.11. We can understand the phenomenon of evaporation of a
liquid from this distribution in speeds, given that some molecules in the liquid
are more energetic than others. Some of the faster-moving molecules in the liq-
uid penetrate the surface and even leave the liquid at temperatures well below the
boiling point. The molecules that escape the liquid by evaporation are those that
have sufficient energy to overcome the attractive forces of the molecules in the
liquid phase. Consequently, the molecules left behind in the liquid phase have a
lower average kinetic energy; as a result, the temperature of the liquid decreases.
Hence, evaporation is a cooling process. For example, an alcohol-soaked cloth can
be placed on a feverish head to cool and comfort a patient.

A System of Nine Particles

Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0, 14.0, 17.0, and 20.0 m/s.
(A) Find the particles’ average speed.

SOLUTION

Conceptualize Imagine a small number of particles moving in random directions with the few speeds listed. This situ-
ation is not representative of the large number of molecules in a gas, so we should not expect the results to be consis-
tent with those from statistical mechanics.

Categorize Because we are dealing with a small number of particles, we can calculate the average speed directly.

. (5.00 + 8.00 + 12.0 + 12.0 + 12.0 + 14.0 + 14.0 + 17.0 + 20.0) m/s
Analyze Find the average Upe =

speed of the particles by divid- i 9
ing the sum of the speeds by = 12.7m/s
the total number of particles:

(B) What is the rms speed of the particles?

Find the average speed = _ (5.00* + 8.00% + 12.0° + 12.0* + 12.0° + 14.0* + 14.0° + 17.0* + 20.0%) m*/s*
squared of the particles 9
by dividing the sum of the = 178 m?/s?
speeds squared by the total
number of particles:

Find the rms speed of the par- Vs = V02 = V178 m?/s* = 13.3 m/s

ticles by taking the square root:

(C) What is the most probable speed of the particles?

SOLUTION

Three of the particles have a speed of 12.0 m/s, two have a speed of 14.0 m/s, and the remaining four have different
speeds. Hence, the most probable speed v,,, is 12.0 m/s.

Finalize Compare this example, in which the number of particles is small and we know the individual particle speeds,
with the next example.
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Molecular Speeds in a Hydrogen Gas

A 0.500-mol sample of hydrogen gas is at 300 K.

(A) Find the average speed, the rms speed, and the most probable speed of the hydrogen molecules.

SOLUTION

Conceptualize Imagine a huge number of particles in a real gas, all moving in random directions with different speeds.

Categorize We cannot calculate the averages as was done in Example 21.5 because the individual speeds of the par-
ticles are not known. We are dealing with a very large number of particles, however, so we can use the Maxwell-
Boltzmann speed distribution function.

(1.38 X 107 J/K)(300 K)
2(1.67 X 107" kg)

Analyze Use Equation 21.43 to find the average speed:

Q
w
.f:‘
1
v
(@))
o
=
ﬁ
<0
1

1.78 X 103 m/s

ke T 1.38 X 1072 J/K)(300 K
173/ ——=1.73 ( J/_‘z( )
My 2(1.67 X 107" kg)

Use Equation 21.42 to find the rms speed: Ups

1.93 X 10° m/s

| kyT 1.38 X 107 J/K)(300 K
Use Equation 21.44 to find the most probable speed: Upp = 1.41 = =14 \/( 1/ )( )
mg 2(1.67 X 107%" kg)

1.57 X 10° m/s

(B) Find the number of molecules with speeds between 400 m/s and 401 m/s.

SOLUTION

Use Equation 21.41 to evaluate the number of molecules (1) N,dv= 47TN<
in a narrow speed range between vand v + duv:

my
21k T

3/2 ,
vze—mov'/ZkBT dv

my \¥2 my \¥2
Evaluate th tant i 47N =47nN,| ——
valuate , € constant 1n (27TkBT> A(Q?TkBT>
front of v=:

2(1.67 X 107" kg) 3/2
27(1.38 X 1072 J/K) (300 K)

= 47(0.500 mol)(6.02 X 10% mol_l)[
=1.74 X 101 §3/m?

) ] myv’ 2(1.67 X 10727 kg) (400 m/s)?
Evaluate the exponent of ¢ that appears in Equation (1): - = — o5 = —0.064 5
2ky T 2(1.38 X 107**J/K)(300 K)

Evaluate N, dv using these values in Equation (1): N, dv = (1.74 X 10" s*/m?®)(400 m /5)%¢***%(1 m/s)

= 2.61 X 10'° molecules

Finalize In this evaluation, we could calculate the result without integration because dv = 1 m/s is much smaller than
v = 400 m/s. Had we sought the number of particles between, say, 400 m/s and 500 m/s, we would need to integrate
Equation (1) between these speed limits.
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Concepts and Principles

The pressure of Nmolecules of an ideal gas contained in
a volume Vis

P=3

N\, 3
1 () mad)
The average translational kinetic energy per molecule

of a gas, ym,v?, is related to the temperature T of the gas
through the expression

(21.15)

(21.19)

where kg is Boltzmann’s constant. Each translational degree
of freedom (x, y, or z) has 3k T of energy associated with it.

%mo'UQ = ngT

The molar specific heat of an ideal monatomic gas
at constant volume is Cy, = 3R; the molar specific heat
at constant pressure is Cp = 5 R. The ratio of specific
heats is given by y = Cp/Cy,

—5
3.

The Boltzmann distribution law describes the distri-
bution of particles among available energy states. The
relative number of particles having energy between £
and E + dEis ny(E) dE, where

—E/kyT

ny(E) = nge (21.40)

The Maxwell-Boltzmann speed distribution function
describes the distribution of speeds of molecules in a

gas:
3/2
'U2€_ mgv’/ 2ky T

27TkBT

N, = 477N( (21.41)

Objective Questions denotes answer available in Student

1. Cylinder A contains oxygen (O,) gas, and cylinder B
contains nitrogen (N,) gas. If the molecules in the two
cylinders have the same rms speeds, which of the fol-
lowing statements is false? (a) The two gases have dif-
ferent temperatures. (b) The temperature of cylinder
B is less than the temperature of cylinder A. (c) The
temperature of cylinder Bis greater than the tempera-
ture of cylinder A. (d) The average kinetic energy of
the nitrogen molecules is less than the average kinetic
energy of the oxygen molecules.

. An ideal gas is maintained at constant pressure. If
the temperature of the gas is increased from 200 K
to 600 K, what happens to the rms speed of the mol-
ecules? (a) It increases by a factor of 3. (b) It remains
the same. (c) It is one-third the original speed. (d) Itis

The internal energy of Nmolecules (or n mol)
of an ideal monatomic gas is

3

Ey = 3NkyT = 3nRT (21.25)

int

The change in internal energy for » mol of any
ideal gas that undergoes a change in temperature
ATis

AE;

e = nCy AT (21.27)

where C is the molar specific heat at constant
volume.

If an ideal gas undergoes an adiabatic expansion or
compression, the first law of thermodynamics, together
with the equation of state, shows that

PV?” = constant (21.37)

Equation 21.41 enables us to calculate the root-
mean-square speed, the average speed, and the most
probable speed of molecules in a gas:

— Shy T kT
Ume = Vo2 =1/ T2 = 173, 2= (21.42)
m mg
8kyT kT
Vpg = B = 16042~ (21.43)
T mg m
Ok T kT
Vop = BT = 141,22~ (21.44)
m my

Solutions Manual/Study Guide

V3 times the original speed. (e) It increases by a factor
of 6.

. Two samples of the same ideal gas have the same pres-
sure and density. Sample B has twice the volume of
sample A. What is the rms speed of the molecules in
sample B? (a) twice that in sample A (b) equal to that
in sample A (c) half that in sample A (d) impossible to
determine

A helium-filled latex balloon initially at room tem-

perature is placed in a freezer. The latex remains

flexible. (i) Does the balloon’s volume (a) increase,

(b) decrease, or (c) remain the same? (ii) Does the

pressure of the helium gas (a) increase significantly,

(b) decrease significantly, or (c) remain approximately

the same?



5. A gasis at 200 K. If we wish to double the rms speed of
the molecules of the gas, to what value must we raise its
temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K
(e) 1130 K

6. Rank the following from largest to smallest, noting any
cases of equality. (a) the average speed of molecules in
a particular sample of ideal gas (b) the most probable
speed (c) the root-mean-square speed (d) the average
vector velocity of the molecules

7. A sample of gas with a thermometer immersed in the
gas is held over a hot plate. A student is asked to give
a step-by-step account of what makes our observation
of the temperature of the gas increase. His response
includes the following steps. (a) The molecules speed
up. (b) Then the molecules collide with one another
more often. (c) Internal friction makes the colli-
sions inelastic. (d) Heat is produced in the collisions.
(e) The molecules of the gas transfer more energy to
the thermometer when they strike it, so we observe
that the temperature has gone up. (f) The same pro-
cess can take place without the use of a hot plate if
you quickly push in the piston in an insulated cylinder
containing the gas. (i) Which of the parts (a) through
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(f) of this account are correct statements necessary
for a clear and complete explanation? (ii) Which are
correct statements that are not necessary to account
for the higher thermometer reading? (iii) Which are
incorrect statements?

8. An ideal gas is contained in a vessel at 300 K. The tem-
perature of the gas is then increased to 900 K. (i) By
what factor does the average kinetic energy of the mol-
ecules change, (a) a factor of 9, (b) a factor of 3, (c) a
factor of V/3, (d) a factor of 1, or (e) a factor of 3? Using
the same choices as in part (i), by what factor does each
of the following change: (ii) the rms molecular speed
of the molecules, (iii) the average momentum change
that one molecule undergoes in a collision with one
particular wall, (iv) the rate of collisions of molecules
with walls, and (v) the pressure of the gas.

9. Which of the assumptions below is not made in the
kinetic theory of gases? (a) The number of molecules
is very large. (b) The molecules obey Newton’s laws
of motion. (c) The forces between molecules are long
range. (d) The gas is a pure substance. (e) The aver-
age separation between molecules is large compared
to their dimensions.

Conceptual Questions denotes answer available in Student Solutions Manual/Study Guide

1. Hot air rises, so why does it generally become cooler
as you climb a mountain? Nofe: Air has low thermal
conductivity.

2. Why does a diatomic gas have a greater energy con-
tent per mole than a monatomic gas at the same
temperature?

When alcohol is rubbed on your body, it lowers your
skin temperature. Explain this effect.

What happens to a helium-filled latex balloon released
into the air? Does it expand or contract? Does it stop
rising at some height?

'ﬁm\;;.VebAss' The problems found in this
fon chapter may be assigned

online in Enhanced WebAssign [Ed Guided Problem

1. straightforward; 2. intermediate;
3. challenging

full solution available in the Student
Solutions Manual/Study Guide

WebAssign

Section 21.1 Molecular Model of an Ideal Gas

Problem 30 in Chapter 19 can be assigned with this
section.

El(a) How many atoms of helium gas fill a spherical
[Tl balloon of diameter 30.0 cm at 20.0°C and 1.00 atm?
(b) What is the average kinetic energy of the helium

5. Which is denser, dry air or air saturated with water
vapor? Explain.

6. One container is filled with helium gas and another
with argon gas. Both containers are at the same tem-
perature. Which molecules have the higher rms speed?
Explain.

7. Dalton’s law of partial pressures states that the total
pressure of a mixture of gases is equal to the sum of
the pressures that each gas in the mixture would exert
if it were alone in the container. Give a convincing
argument for this law based on the kinetic theory of
gases.

Analysis Model tutorial available in
Enhanced WebAssign

VB Master It tutorial available in Enhanced

Watch It video solution available in
Enhanced WebAssign

atoms? (c¢) What is the rms speed of the helium
atoms?

A cylinder contains a mixture of helium and argon gas

[} in equilibrium at 150°C. (a) What is the average kinetic
energy for each type of gas molecule? (b) What is the
rms speed of each type of molecule?



646 Chapter 21 The Kinetic Theory of Gases

3. In a 30.0-s interval, 500 hailstones strike a glass win-

I dow of area 0.600 m? at an angle of 45.0° to the win-
dow surface. Each hailstone has a mass of 5.00 g and a
speed of 8.00 m/s. Assuming the collisions are elastic,
find (a) the average force and (b) the average pressure
on the window during this interval.

In an ultrahigh vacuum system (with typical pressures
lower than 1077 pascal), the pressure is measured to
be 1.00 X 107! torr (where 1 torr = 133 Pa). Assum-
ing the temperature is 300 K, find the number of mol-
ecules in a volume of 1.00 m3.

A spherical balloon of volume 4.00 X 10° cm? contains

[ helium at a pressure of 1.20 X 10° Pa. How many moles
of helium are in the balloon if the average kinetic
energy of the helium atoms is 3.60 X 10722 J?

6. A spherical balloon of volume V contains helium at a
pressure P. How many moles of helium are in the bal-
loon if the average kinetic energy of the helium atoms
is K?

7. A 2.00-mol sample of oxygen gas is confined to a 5.00-L

[ vessel at a pressure of 8.00 atm. Find the average trans-
lational kinetic energy of the oxygen molecules under
these conditions.

8. Oxygen, modeled as an ideal gas, is in a container and
has a temperature of 77.0°C. What is the rms-average
magnitude of the momentum of the gas molecules in
the container?

Calculate the mass of an atom of (a) helium, (b) iron,
and (c) lead. Give your answers in kilograms. The
atomic masses of these atoms are 4.00 u, 55.9 u, and
207 u, respectively.

10. The rms speed of an oxygen molecule (O,) in a con-
tainer of oxygen gas is 625 m/s. What is the tempera-
ture of the gas?

11. A 5.00-L vessel contains nitrogen gas at 27.0°C and
3.00 atm. Find (a) the total translational kinetic energy
of the gas molecules and (b) the average kinetic energy
per molecule.

12. A 7.00-L vessel contains 3.50 moles of gas at a pres-
sure of 1.60 X 10° Pa. Find (a) the temperature of the
gas and (b) the average kinetic energy of the gas mol-
ecules in the vessel. (c¢) What additional information
would you need if you were asked to find the average
speed of the gas molecules?

13. In a period of 1.00 s, 5.00 X 10% nitrogen molecules

7] strike a wall with an area of 8.00 cm?. Assume the mol-

M ecules move with a speed of 300 m/s and strike the
wall head-on in elastic collisions. What is the pressure
exerted on the wall? Note: The mass of one N, molecule
is 4.65 X 10726 kg.

Section 21.2 Molar Specific Heat of an Ideal Gas

Note: You may use data in Table 21.2 about particular
gases. Here we define a “monatomic ideal gas” to have
molar specific heats C, = 3R and C, = 3R, and a
“diatomic ideal gas” to have C, = 3R and C, = %R.

14. In a constant-volume process, 209 J of energy is trans-

M ferred by heat to 1.00 mol of an ideal monatomic gas
initially at 300 K. Find (a) the work done on the gas,
(b) the increase in internal energy of the gas, and
(c) its final temperature.

15. A sample of a diatomic ideal gas has pressure P and
volume V. When the gas is warmed, its pressure triples
and its volume doubles. This warming process includes
two steps, the first at constant pressure and the second
at constant volume. Determine the amount of energy
transferred to the gas by heat.

16. Review. A house has well-insulated walls. It contains
a volume of 100 m?® of air at 300 K. (a) Calculate
the energy required to increase the temperature of
this diatomic ideal gas by 1.00°C. (b) What If? If all
this energy could be used to lift an object of mass m
through a height of 2.00 m, what is the value of m?

A 1.00-mol sample of hydrogen gas is heated at con-
¥l stant pressure from 300 K to 420 K. Calculate (a) the
energy transferred to the gas by heat, (b) the increase
in its internal energy, and (c) the work done on the gas.

18. A vertical cylinder with a heavy piston contains air
at 300 K. The initial pressure is 2.00 X 10° Pa, and
the initial volume is 0.350 m®. Take the molar mass
of air as 28.9 g/mol and assume C;= 3R. (a) Find
the specific heat of air at constant volume in units of
J/kg - °C. (b) Calculate the mass of the air in the cyl-
inder. (c) Suppose the piston is held fixed. Find the
energy input required to raise the temperature of the
air to 700 K. (d) What If? Assume again the conditions
of the initial state and assume the heavy piston is free
to move. Find the energy input required to raise the
temperature to 700 K.

19. Calculate the change in internal energy of 3.00 mol of
helium gas when its temperature is increased by 2.00 K.

20. A 1.00-L insulated bottle is full of tea at 90.0°C. You pour
out one cup of tea and immediately screw the stopper
back on the bottle. Make an order-of-magnitude esti-
mate of the change in temperature of the tea remaining
in the bottle that results from the admission of air at
room temperature. State the quantities you take as data
and the values you measure or estimate for them.

Review. This problem is a continuation of Problem 39
in Chapter 19. A hot-air balloon consists of an enve-
lope of constant volume 400 m®. Not including the air
inside, the balloon and cargo have mass 200 kg. The
air outside and originally inside is a diatomic ideal
gas at 10.0°C and 101 kPa, with density 1.25 kg/m?.
A propane burner at the center of the spherical enve-
lope injects energy into the air inside. The air inside
stays at constant pressure. Hot air, at just the tempera-
ture required to make the balloon lift off, starts to fill
the envelope at its closed top, rapidly enough so that
negligible energy flows by heat to the cool air below
it or out through the wall of the balloon. Air at 10°C
leaves through an opening at the bottom of the enve-
lope until the whole balloon is filled with hot air at
uniform temperature. Then the burner is shut off and



the balloon rises from the ground. (a) Evaluate the
quantity of energy the burner must transfer to the air
in the balloon. (b) The “heat value” of propane—the
internal energy released by burning each kilogram—is
50.3 MJ/kg. What mass of propane must be burned?

Section 21.3 The Equipartition of Energy

22. A certain molecule has f degrees of freedom. Show

that an ideal gas consisting of such molecules has the
following properties: (a) its total internal energy is
JnRT/2, (b) its molar specific heat at constant volume
is fR/2, (c) its molar specific heat at constant pres-
sure is ( [+ 2)R/2, and (d) its specific heat ratio is y =
Co/Cy= (f+ 2)/f

23. In a crude model (Fig. P21.23) of a rotating diatomic

chlorine molecule (Cly), the two CI atoms are 2.00 X
107! m apart and rotate about their center of mass
with angular speed w = 2.00 X 10'2 rad/s. What is the
rotational kinetic energy of one molecule of Cl,, which
has a molar mass of 70.0 g/mol?

Figure P21.23

24. Why is the following situation impossible? A team of

researchers discovers a new gas, which has a value of
v = Cp/Cyof 1.75.

The relationship between the heat capacity of a sam-
"l ple and the specific heat of the sample material is dis-

cussed in Section 20.2. Consider a sample containing
2.00 mol of an ideal diatomic gas. Assuming the mol-
ecules rotate but do not vibrate, find (a) the total heat
capacity of the sample at constant volume and (b) the
total heat capacity at constant pressure. (c) What If?
Repeat parts (a) and (b), assuming the molecules both
rotate and vibrate.
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How much work is required to produce the same com-
pression in an adiabatic process? (c) What is the final
pressure in part (a)? (d) What is the final pressure in
part (b)?

Air in a thundercloud expands as it rises. If its initial
¥l temperature is 300 K and no energy is lost by ther-

30.

31.

mal conduction on expansion, what is its temperature
when the initial volume has doubled?

Why is the following situation impossible? A new die-
sel engine that increases fuel economy over previ-
ous models is designed. Automobiles fitted with this
design become incredible best sellers. Two design fea-
tures are responsible for the increased fuel economy:
(1) the engine is made entirely of aluminum to reduce
the weight of the automobile, and (2) the exhaust of
the engine is used to prewarm the air to 50°C before
it enters the cylinder to increase the final temperature
of the compressed gas. The engine has a compression
ratio—that is, the ratio of the initial volume of the air
to its final volume after compression—of 14.5. The
compression process is adiabatic, and the air behaves
as a diatomic ideal gas with y = 1.40.

During the power stroke in a four-stroke automo-
bile engine, the piston is forced down as the mixture
of combustion products and air undergoes an adia-
batic expansion. Assume (1) the engine is running at
2 500 cycles/min; (2) the gauge pressure immediately
before the expansion is 20.0 atm; (3) the volumes of the
mixture immediately before and after the expansion
are 50.0 cm?® and 400 cm?®, respectively (Fig. P21.31);
(4) the time interval for the expansion is one-fourth
that of the total cycle; and (5) the mixture behaves like
an ideal gas with specific heat ratio 1.40. Find the aver-
age power generated during the power stroke.

Section 21.4 Adiabatic Processes for an Ideal Gas

A 2.00-mol sample of a diatomic ideal gas expands

" slowly and adiabatically from a pressure of 5.00 atm
and a volume of 12.0 L to a final volume of 30.0 L.
(@) What is the final pressure of the gas? (b) What are
the initial and final temperatures? Find (c) Q, (d) AE
and (e) W for the gas during this process.

int

Figure P21.31

27. During the compression stroke of a certain gasoline

engine, the pressureincreasesfrom 1.00 atm to 20.0 atm.
If the process is adiabatic and the air—fuel mixture
behaves as a diatomic ideal gas, (a) by what factor does
the volume change and (b) by what factor does the
temperature change? Assuming the compression starts
with 0.016 0 mol of gas at 27.0°C, find the values of (c) Q,
(d) AE,,,, and (e) W that characterize the process.

28. How much work is required to compress 5.00 mol of
M air at 20.0°C and 1.00 atm to one-tenth of the origi-
nal volume (a) by an isothermal process? (b) What If?

32. Air (a diatomic ideal gas) at 27.0°C and atmospheric
(GP) pressure is drawn into a bicycle pump (see the chapter-
opening photo on page 626) that has a cylinder with
an inner diameter of 2.50 ¢cm and length 50.0 cm.
The downstroke adiabatically compresses the air,
which reaches a gauge pressure of 8.00 X 10° Pa before
entering the tire. We wish to investigate the tempera-
ture increase of the pump. (a) What is the initial vol-
ume of the air in the pump? (b) What is the number
of moles of air in the pump? (c) What is the absolute

int
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33.

34.
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pressure of the compressed air? (d) What is the volume
of the compressed air? (¢) What is the temperature of
the compressed air? (f) What is the increase in inter-
nal energy of the gas during the compression? What
If? The pump is made of steel that is 2.00 mm thick.
Assume 4.00 cm of the cylinder’s length is allowed to
come to thermal equilibrium with the air. (g) What is
the volume of steel in this 4.00-cm length? (h) What is
the mass of steel in this 4.00-cm length? (i) Assume the
pump is compressed once. After the adiabatic expan-
sion, conduction results in the energy increase in part
(f) being shared between the gas and the 4.00-cm
length of steel. What will be the increase in tempera-
ture of the steel after one compression?

A 4.00-L sample of a diatomic ideal gas with spe-
cific heat ratio 1.40, confined to a cylinder, is carried
through a closed cycle. The gas is initially at 1.00 atm
and 300 K. First, its pressure is tripled under constant
volume. Then, it expands adiabatically to its original
pressure. Finally, the gas is compressed isobarically to
its original volume. (a) Draw a PVdiagram of this cycle.
(b) Determine the volume of the gas at the end of the
adiabatic expansion. (c¢) Find the temperature of the
gas at the start of the adiabatic expansion. (d) Find
the temperature at the end of the cycle. (e) What was
the net work done on the gas for this cycle?

An ideal gas with specific heat ratio vy confined to a cyl-
inder is put through a closed cycle. Initially, the gas is
at P, V,, and T;. First, its pressure is tripled under con-
stant volume. It then expands adiabatically to its origi-
nal pressure and finally is compressed isobarically to
its original volume. (a) Draw a PV diagram of this cycle.
(b) Determine the volume at the end of the adiabatic
expansion. Find (c) the temperature of the gas at the
start of the adiabatic expansion and (d) the tempera-
ture at the end of the cycle. () What was the net work
done on the gas for this cycle?

Section 21.5 Distribution of Molecular Speeds

35.

Helium gas is in thermal equilibrium with liquid
helium at 4.20 K. Even though it is on the point of con-
densation, model the gas as ideal and determine the
most probable speed of a helium atom (mass = 6.64 X
10?7 kg) in it.

Fifteen identical particles have various speeds: one has
[l a speed of 2.00 m/s, two have speeds of 3.00 m/s, three

37.

have speeds of 5.00 m/s, four have speeds of 7.00 m/s,
three have speeds of 9.00 m/s, and two have speeds of
12.0 m/s. Find (a) the average speed, (b) the rms speed,
and (c) the most probable speed of these particles.

One cubic meter of atomic hydrogen at 0°C at atmo-

M spheric pressure contains approximately 2.70 X 10%°

38.

atoms. The first excited state of the hydrogen atom
has an energy of 10.2 eV above that of the lowest state,
called the ground state. Use the Boltzmann factor
to find the number of atoms in the first excited state
(a) at 0°C and at (b) (1.00 X 10%)°C.

Two gases in a mixture diffuse through a filter at rates
proportional to their rms speeds. (a) Find the ratio of

39.

40.

41

speeds for the two isotopes of chlorine, %Cl and *'Cl,
as they diffuse through the air. (b) Which isotope
moves faster?

Review. At what temperature would the average speed
of helium atoms equal (a) the escape speed from the
Earth, 1.12 X 10* m/s, and (b) the escape speed from
the Moon, 2.37 X 103 m/s? Note: The mass of a helium
atom is 6.64 X 10727 kg.

Consider a container of nitrogen gas molecules at
900 K. Calculate (a) the most probable speed, (b) the
average speed, and (c) the rms speed for the molecules.
(d) State how your results compare with the values dis-
played in Figure 21.11.

. Assume the Earth’s atmosphere has a uniform tem-

perature of 20.0°C and uniform composition, with
an effective molar mass of 28.9 g/mol. (a) Show that
the number density of molecules depends on height y
above sea level according to

nv(y) = nge ™8kl

where 7 is the number density atsea level (where y = 0).
This result is called the law of atmospheres. (b) Commer-
cial jetliners typically cruise at an altitude of 11.0 km.
Find the ratio of the atmospheric density there to the
density at sea level.

From the Maxwell-Boltzmann speed distribution,

43.

show that the most probable speed of a gas molecule
is given by Equation 21.44. Note: The most probable
speed corresponds to the point at which the slope of
the speed distribution curve dN,/dv is zero.

The law of atmospheres states that the number density
of molecules in the atmosphere depends on height y
above sea level according to

ny(y) = nye "8y kT

where n, is the number density at sea level (where y =
0). The average height of a molecule in the Earth’s
atmosphere is given by

J Wv(y) dy J ye—m.‘g}'/kBT dy
0 _Jo

)’ avg = © 0
J ”V( )’) dy J o mgy/ kT dy
0 0

(a) Prove that this average height is equal to ky1/mg
(b) Evaluate the average height, assuming the temper-
ature is 10.0°C and the molecular mass is 28.9 u, both
uniform throughout the atmosphere.

Additional Problems

44.

45.

Eight molecules have speeds of 3.00 km/s, 4.00 km/s,
5.80 km/s, 2.50 km/s, 3.60 km/s, 1.90 km /s, 3.80 km/s,
and 6.60 km/s. Find (a) the average speed of the mol-
ecules and (b) the rms speed of the molecules.

A small oxygen tank at a gauge pressure of 125 atm has
a volume of 6.88 L at 21.0°C. (a) If an athlete breathes
oxygen from this tank at the rate of 8.50 L/min when
measured at atmospheric pressure and the tempera-
ture remains at 21.0°C, how long will the tank last
before it is empty? (b) At a particular moment during



46.

47.

50.

this process, what is the ratio of the rms speed of the
molecules remaining in the tank to the rms speed of
those being released at atmospheric pressure?

The dimensions of a classroom are 4.20 m X 3.00 m X
2.50 m. (a) Find the number of molecules of air in
the classroom at atmospheric pressure and 20.0°C.
(b) Find the mass of this air, assuming the air consists
of diatomic molecules with molar mass 28.9 g/mol.
(c) Find the average kinetic energy of the molecules.
(d) Find the rms molecular speed. (e) What If?
Assume the molar specific heat of the air is inde-
pendent of temperature. Find the change in internal
energy of the air in the room as the temperature is
raised to 25.0°C. (f) Explain how you could convince
a fellow student that your answer to part (e) is correct,
even though it sounds surprising.

The Earth’s atmosphere consists primarily of oxygen
(21%) and nitrogen (78%). The rms speed of oxygen
molecules (O,) in the atmosphere at a certain loca-
tion is 535 m/s. (a) What is the temperature of the
atmosphere at this location? (b) Would the rms speed
of nitrogen molecules (N,) at this location be higher,
equal to, or lower than 535 m/s? Explain. (c¢) Deter-
mine the rms speed of N, at his location.

The mean free path € of a molecule is the average dis-
tance that a molecule travels before colliding with
another molecule. It is given by

P
\Vemrd?Ny
where d is the diameter of the molecule and Ny is the
number of molecules per unit volume. The number of
collisions that a molecule makes with other molecules
per unit time, or collision frequency f, is given by
vavg
4

(a) If the diameter of an oxygen molecule is 2.00 X
1071 m, find the mean free path of the molecules
in a scuba tank that has a volume of 12.0 L and is
filled with oxygen at a gauge pressure of 100 atm at a
temperature of 25.0°C. (b) What is the average time
interval between molecular collisions for a molecule
of this gas?

. An air rifle shoots a lead pellet by allowing high-

pressure air to expand, propelling the pellet down the
rifle barrel. Because this process happens very quickly,
no appreciable thermal conduction occurs and the
expansion is essentially adiabatic. Suppose the rifle
starts with 12.0 cm?® of compressed air, which behaves
as an ideal gas with v = 1.40. The expanding air
pushes a 1.10-g pellet as a piston with cross-sectional
area 0.030 0 cm? along the 50.0-cm-long gun barrel.
What initial pressure is required to eject the pellet
with a muzzle speed of 120 m/s? Ignore the effects
of the air in front of the bullet and friction with the
inside walls of the barrel.

In a sample of a solid metal, each atom is free to
vibrate about some equilibrium position. The atom’s
energy consists of kinetic energy for motion in the x,

51.
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y, and z directions plus elastic potential energy associ-
ated with the Hooke’s law forces exerted by neighbor-
ing atoms on it in the «x, y, and z directions. According
to the theorem of equipartition of energy, assume the
average energy of each atom is 3k, T for each degree of
freedom. (a) Prove that the molar specific heat of the
solid is 3R. The Dulong—Petit law states that this result
generally describes pure solids at sufficiently high tem-
peratures. (You may ignore the difference between the
specific heat at constant pressure and the specific heat
at constant volume.) (b) Evaluate the specific heat ¢ of
iron. Explain how it compares with the value listed in
Table 20.1. (c) Repeat the evaluation and comparison
for gold.

A certain ideal gas has a molar specific heat of Cy = JR.
A 2.00-mol sample of the gas always starts at pressure
1.00 X 10° Pa and temperature 300 K. For each of the
following processes, determine (a) the final pressure,
(b) the final volume, (c) the final temperature, (d) the
change in internal energy of the gas, (e) the energy
added to the gas by heat, and (f) the work done on the
gas. (i) The gas is heated at constant pressure to 400 K.
(ii) The gas is heated at constant volume to 400 K.
(iii) The gas is compressed at constant temperature to
1.20 X 10° Pa. (iv) The gas is compressed adiabatically
to 1.20 X 10° Pa.

The compressibility k of a substance is defined as the

53.

54.

55.

fractional change in volume of that substance for a
given change in pressure:

1 dv

V dpP

(a) Explain why the negative sign in this expression
ensures k is always positive. (b) Show that if an ideal
gas is compressed isothermally, its compressibility is
given by k; = 1/P. (c) What If? Show that if an ideal gas
is compressed adiabatically, its compressibility is given
by ko = 1/(yP). Determine values for (d) «; and (e) k,
for a monatomic ideal gas at a pressure of 2.00 atm.

K =

Review. Oxygen at pressures much greater than 1 atm
is toxic to lung cells. Assume a deep-sea diver breathes
a mixture of oxygen (O,) and helium (Ie). By weight,
what ratio of helium to oxygen must be used if the
diver is at an ocean depth of 50.0 m?

Examine the data for polyatomic gases in Table 21.2
and give a reason why sulfur dioxide has a higher spe-
cific heat at constant volume than the other polyatomic
gases at 300 K.

Model air as a diatomic ideal gas with M = 28.9 g/mol.
A cylinder with a piston contains 1.20 kg of air at
25.0°C and 2.00 X 10° Pa. Energy is transferred by
heat into the system as it is permitted to expand, with
the pressure rising to 4.00 X 10° Pa. Throughout the
expansion, the relationship between pressure and vol-
ume is given by

P=cv'2

where Cis a constant. Find (a) the initial volume, (b) the
final volume, (c) the final temperature, (d) the work
done on the air, and (e) the energy transferred by heat.



650

56.

57.

Chapter 21 The Kinetic Theory of Gases

Review. As a sound wave passes through a gas, the
compressions are either so rapid or so far apart that
thermal conduction is prevented by a negligible time
interval or by effective thickness of insulation. The
compressions and rarefactions are adiabatic. (a) Show
that the speed of sound in an ideal gas is

YRT
p=.]—
M

where M is the molar mass. The speed of sound in a
gas is given by Equation 17.8; use that equation and
the definition of the bulk modulus from Section 12.4.
(b) Compute the theoretical speed of sound in air at
20.0°C and state how it compares with the value in
Table 17.1. Take M = 28.9 g/mol. (c) Show that the
speed of sound in an ideal gas is

[k T
N
m

where m, is the mass of one molecule. (d) State how
the result in part (c) compares with the most probable,
average, and rms molecular speeds.

Twenty particles, each of mass m; and confined to a
volume V, have various speeds: two have speed v, three
have speed 2v, five have speed 3v, four have speed
4v, three have speed bv, two have speed 6v, and one
has speed 7v. Find (a) the average speed, (b) the rms
speed, (c) the most probable speed, (d) the average
pressure the particles exert on the walls of the vessel,
and (e) the average kinetic energy per particle.

In a cylinder, a sample of an ideal gas with number of

59.
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moles » undergoes an adiabatic process. (a) Starting
with the expression W = —f P dV and using the condi-
tion PV = constant, show that the work done on the
gas is
_ 1
W= (y - 1><P_fvf— rY)

(b) Starting with the first law of thermodynamics, show
that the work done on the gas is equal to nC\(T, — T).
(c) Are these two results consistent with each other?
Explain.

As a 1.00-mol sample of a monatomic ideal gas expands
adiabatically, the work done on it is —2.50 X 10°J. The
initial temperature and pressure of the gas are 500 K
and 3.60 atm. Calculate (a) the final temperature and
(b) the final pressure.

A sample consists of an amount » in moles of a mona-
tomic ideal gas. The gas expands adiabatically, with
work W done on it. (Work Wis a negative number.)
The initial temperature and pressure of the gas are T,

and P,. Calculate (a) the final temperature and (b) the
final pressure.

When a small particle is suspended in a fluid, bom-
bardment by molecules makes the particle jitter about
at random. Robert Brown discovered this motion in
1827 while studying plant fertilization, and the motion
has become known as Brownian motion. The particle’s
average kinetic energy can be taken as 3k, 7', the same

62.
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as that of a molecule in an ideal gas. Consider a spheri-
cal particle of density 1.00 X 10% kg/m® in water at
20.0°C. (a) For a particle of diameter d, evaluate the
rms speed. (b) The particle’s actual motion is a ran-
dom walk, but imagine that it moves with constant
velocity equal in magnitude to its rms speed. In what
time interval would it move by a distance equal to its
own diameter? (c) Evaluate the rms speed and the time
interval for a particle of diameter 3.00 um. (d) Evalu-
ate the rms speed and the time interval for a sphere of
mass 70.0 kg, modeling your own body.

A vessel contains 1.00 X 10* oxygen molecules at 500 K.
(a) Make an accurate graph of the Maxwell speed distri-
bution function versus speed with points at speed inter-
vals of 100 m/s. (b) Determine the most probable speed
from this graph. (c) Calculate the average and rms
speeds for the molecules and label these points on your
graph. (d) From the graph, estimate the fraction of mol-
ecules with speeds in the range 300 m/s to 600 m/s.

. A pitcher throws a 0.142-kg baseball at 47.2 m/s. As it

travels 16.8 m to home plate, the ball slows down to
42.5 m/s because of air resistance. Find the change
in temperature of the air through which it passes. To
find the greatest possible temperature change, you
may make the following assumptions. Air has a molar
specific heat of €, = 3R and an equivalent molar mass
of 28.9 g/mol. The process is so rapid that the cover
of the baseball acts as thermal insulation and the tem-
perature of the ball itself does not change. A change
in temperature happens initially only for the air in a
cylinder 16.8 m in length and 3.70 cm in radius. This
air is initially at 20.0°C.

The latent heat of vaporization for water at room tem-
perature is 2 430 J/g. Consider one particular molecule
at the surface of a glass of liquid water, moving upward
with sufficiently high speed that it will be the next
molecule to join the vapor. (a) Find its translational
kinetic energy. (b) Find its speed. Now consider a thin
gas made only of molecules like that one. (c) What is
its temperature? (d) Why are you not burned by water
evaporating from a vessel at room temperature?

A sample of a monatomic ideal gas occupies 5.00 L at
atmospheric pressure and 300 K (point A in Fig. P21.65).
It is warmed at constant volume to 3.00 atm (point B).
Then it is allowed to expand isothermally to 1.00 atm
(point C) and at last compressed isobarically to its origi-
nal state. (a) Find the number of moles in the sample.

P (atm)
3 B
921
1 A c
| | |

V(L)

0 5 10 15

Figure P21.65
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Find (b) the temperature at point B, (c) the temperature
at point C, and (d) the volume at point C. (¢) Now con-
sider the processes A — B, B— C, and C— A. Describe
how to carry out each process experimentally. (f) Find
Q, W, and AL, for each of the processes. (g) For the

mt

whole cycle A—» B— C— A, find Q, W, and AL, .

. Consider the particles in a gas centrifuge, a device

used to separate particles of different mass by whirling
them in a circular path of radius r at angular speed .
The force acting on a gas molecule toward the center
of the centrifuge is my?r. (a) Discuss how a gas centri-
fuge can be used to separate particles of different mass.
(b) Suppose the centrifuge contains a gas of particles
of identical mass. Show that the density of the particles
as a function of ris

n( r) — noe7n,,7'2w2/2kBT

For a Maxwellian gas, use a computer or programma-

68.

69.

ble calculator to find the numerical value of the ratio
M,(v)/M,(vmp) for the following values of v: (a) v =
(wmp/50.0), (b) (wmp/l0.0), (c) (vmp/Q.OO), (d) vy
(e) 2.00v,,,, (f) 10.0v,,,, and (g) 50.0v,,,. Give your
results to three significant figures.

A triatomic molecule can have a linear configuration,
as does CO, (Fig. P21.68a), or it can be nonlinear, like
H,O (Fig. P21.68b). Suppose the temperature of a gas
of triatomic molecules is sufficiently low that vibrational
motion is negligible. What is the molar specific heat
at constant volume, expressed as a multiple of the uni-
versal gas constant, (a) if the molecules are linear and
(b) if the molecules are nonlinear? At high tempera-
tures, a triatomic molecule has two modes of vibration,
and each contributes §R to the molar specific heat for its
kinetic energy and another §R for its potential energy.
Identify the high-temperature molar specific heat at
constant volume for a triatomic ideal gas of (c) linear
molecules and (d) nonlinear molecules. (e¢) Explain how
specific heat data can be used to determine whether a
triatomic molecule is linear or nonlinear. Are the data
in Table 21.2 sufficient to make this determination?

o C o)
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Figure P21.68

Using the Maxwell-Boltzmann speed distribution
function, verify Equations 21.42 and 21.43 for (a) the
rms speed and (b) the average speed of the molecules
of a gas at a temperature 7. The average value of v"is

1"
vt == J' v"N, dv
N Jy

Use the table of integrals B.6 in Appendix B.

70.

71.

72.

73.
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Problems

On the PV diagram for an ideal gas, one isothermal
curve and one adiabatic curve pass through each point
as shown in Figure P21.70. Prove that the slope of the
adiabatic curve is steeper than the slope of the iso-
therm at that point by the factor .

P

Adiabatic
process

Isothermal
process

Figure P21.70

In Beijing, a restaurant keeps a pot of chicken broth
simmering continuously. Every morning, it is topped
up to contain 10.0 L of water along with a fresh
chicken, vegetables, and spices. The molar mass of
water is 18.0 g/mol. (a) Find the number of molecules
of water in the pot. (b) During a certain month, 90.0%
of the broth was served each day to people who then
emigrated immediately. Of the water molecules in the
pot on the first day of the month, when was the last
one likely to have been ladled out of the pot? (c) The
broth has been simmering for centuries, through wars,
earthquakes, and stove repairs. Suppose the water that
was in the pot long ago has thoroughly mixed into the
Earth’s hydrosphere, of mass 1.32 X 10?! kg. How many
of the water molecules originally in the pot are likely to
be present in it again today?

Review. (a) If it has enough kinetic energy, a molecule
at the surface of the Earth can “escape the Earth’s grav-
itation” in the sense that it can continue to move away
from the Earth forever as discussed in Section 13.6.
Using the principle of conservation of energy, show
that the minimum kinetic energy needed for “escape”
is mygRy, where m, is the mass of the molecule, g is
the free-fall acceleration at the surface, and R is the
radius of the Earth. (b) Calculate the temperature for
which the minimum escape kinetic energy is ten times
the average kinetic energy of an oxygen molecule.

Using multiple laser beams, physicists have been able
to cool and trap sodium atoms in a small region. In
one experiment, the temperature of the atoms was
reduced to 0.240 mK. (a) Determine the rms speed
of the sodium atoms at this temperature. The atoms
can be trapped for about 1.00 s. The trap has a linear
dimension of roughly 1.00 cm. (b) Over what approxi-
mate time interval would an atom wander out of the
trap region if there were no trapping action?

Challenge Problems

74.

Equations 21.42 and 21.43 show that v,,,; > v, for a
collection of gas particles, which turns out to be true
whenever the particles have a distribution of speeds.
Let us explore this inequality for a two-particle gas.
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Chapter 21 The Kinetic Theory of Gases

Let the speed of one particle be v; = av,,, and the other
particle have speed v, = (2 — a)vavg. (a) Show that the
average of these two speeds is v,,,. (b) Show that

2= V3, (2 —2a+ a®)

Utms avg

(c) Argue that the equation in part (b) proves that, in
general, v,,,; > v,,. (d) Under what special condition
will v, = v,,, for the two-particle gas?

rms

. A cylinder is closed at both ends and has insulating

walls. It is divided into two compartments by an insu-
lating piston that is perpendicular to the axis of the
cylinder as shown in Figure P21.75a. Each compart-
ment contains 1.00 mol of oxygen that behaves as an
ideal gas with y = 1.40. Initially, the two compartments
have equal volumes and their temperatures are 550 K
and 250 K. The piston is then allowed to move slowly

parallel to the axis of the cylinder until it comes to
rest at an equilibrium position (Fig. P21.75b). Find the
final temperatures in the two compartments.

¢ )

T), = 550 K

\

Ty Ty,

Figure P21.75



