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Strategy
As a first step in studying classical mechanics, we describe the motion of an object In drag racing, a driver wants as
while ignoring the interactions with external agents that might be affecting or modifying large an acceleration as possible.

that motion. This portion of classical mechanics is called kinematics. (The word kinematics In a distance of one-quarter mile,

has the same root as cinema.) In this chapter, we consider only motion in one dimension, . : .
) ) ) ) ) than 320 mi/h, covering the entire
that is, motion of an object along a straight line. distance in under 5 s. (George Lepp/
From everyday experience, we recognize that motion of an object represents a continu- Stone/Getty Images)
ous change in the object's position. In physics, we can categorize motion into three types:

a vehicle reaches speeds of more

translational, rotational, and vibrational. A car traveling on a highway is an example of
translational motion, the Earth's spin on its axis is an example of rotational motion, and the
back-and-forth movement of a pendulum is an example of vibrational motion. In this and
the next few chapters, we are concerned only with translational motion. (Later in the book
we shall discuss rotational and vibrational motions.)

In our study of translational motion, we use what is called the particle model and describe
the moving object as a particle regardless of its size. Remember our discussion of making
models for physical situations in Section 1.2. In general, a particle is a point-like object,
that is, an object that has mass but is of infinitesimal size. For example, if we wish to
describe the motion of the Earth around the Sun, we can treat the Earth as a particle and
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Chapter 2 Motion in One Dimension

obtain reasonably accurate data about its orbit. This approximation is justified because the
radius of the Earth's orbit is large compared with the dimensions of the Earth and the Sun.
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas
on the walls of a container by treating the gas molecules as particles, without regard for the
internal structure of the molecules.

Position, Velocity, and Speed

A particle’s position x is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The
motion of a particle is completely known if the particle’s position in space is known
at all times.

Consider a car moving back and forth along the x axis as in Figure 2.1a. When
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x = 0. We will use the particle model by identifying some point on the car,
perhaps the front door handle, as a particle representing the entire car.

We start our clock, and once every 10 s we note the car’s position. As you can see
from Table 2.1, the car moves to the right (which we have defined as the positive
direction) during the first 10 s of motion, from position ® to position ®. After ®,
the position values begin to decrease, suggesting the car is backing up from position
through position ®. In fact, at ®, 30 s after we start measuring, the car is at the
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than
50 m to the left of x = 0 when we stop recording information after our sixth data
point. A graphical representation of this information is presented in Figure 2.1b.
Such a plot is called a position—time graph.

Notice the alternative representations of information that we have used for the
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a
graphical representation. Table 2.1 is a tabular representation of the same information.
Using an alternative representation is often an excellent strategy for understanding
the situation in a given problem. The ultimate goal in many problems is a math-

The car moves to
the right between

positions ® and ®.
® x (m)
60 - ®
l 1 1 1 1 1 1 1 l 1 Ax
—60 —50 —40 —30 —20 —10 0 10 20 30 401 ©
e C A
20 |- Al
® ® © ©
ey G 0 ©
| 1 1 1 1 1 l 1 1 1 1 1 I x (m)
—60 =50 —40 =30 —20 —10 0 10 20 30 40 50 60 —9o L
The car moves to —40 ®
the left between ®
positions © and @®. —60 I I I I I £(s)
0 10 20 30 40 50

Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the
car’s translational motion, we can model it as a particle. Several representations of the information
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.

(a) A pictorial representation of the motion of the car. (b) A graphical representation (position—time
graph) of the motion of the car.
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emalical represeniation, which can be analyzed to solve for some requested piece of
information.

Given the data in Table 2.1, we can easily determine the change in position of
the car for various time intervals. The displacement Ax of a particle is defined as
its change in position in some time interval. As the particle moves from an initial
position x; to a final position x;, its displacement is given by

Ax=x— x, 2.1

We use the capital Greek letter delta (A) to denote the change in a quantity. From
this definition, we see that Ax is positive if x,is greater than x; and negative if x;is
less than x,.

It is very important to recognize the difference between displacement and dis-
tance traveled. Distance is the length of a path followed by a particle. Consider, for
example, the basketball players in Figure 2.2. If a player runs from his own team’s
basket down the court to the other team’s basket and then returns to his own bas-
ket, the displacement of the player during this time interval is zero because he ended
up at the same point as he started: x, = x;, so Ax = 0. During this time interval,
however, he moved through a distance of twice the length of the basketball court.
Distance is always represented as a positive number, whereas displacement can be
either positive or negative.

Displacement is an example of a vector quantity. Many other physical quantities,
including position, velocity, and acceleration, also are vectors. In general, a vector
quantity requires the specification of both direction and magnitude. By contrast, a
scalar quantity has a numerical value and no direction. In this chapter, we use posi-
tive (+) and negative (—) signs to indicate vector direction. For example, for hori-
zontal motion let us arbitrarily specify to the right as being the positive direction.
It follows that any object always moving to the right undergoes a positive displace-
ment Ax > 0, and any object moving to the left undergoes a negative displacement
so that Ax < 0. We shall treat vector quantities in greater detail in Chapter 3.

One very important point has not yet been mentioned. Notice that the data in
Table 2.1 result only in the six data points in the graph in Figure 2.1b. Therefore,
the motion of the particle is not completely known because we don’t know its posi-
tion at all times. The smooth curve drawn through the six points in the graph is
only a possibility of the actual motion of the car. We only have information about six
instants of time; we have no ideawhat happened between the data points. The smooth
curve is a guess as to what happened, but keep in mind that it is only a guess. If
the smooth curve does represent the actual motion of the car, the graph contains
complete information about the entire 50-s interval during which we watch the car
move.

It is much easier to see changes in position from the graph than from a verbal
description or even a table of numbers. For example, it is clear that the car covers
more ground during the middle of the 50-s interval than at the end. Between posi-
tions © and ©, the car travels almost 40 m, but during the last 10 s, between posi-
tions ® and ®, it moves less than half that far. A common way of comparing these
different motions is to divide the displacement Ax that occurs between two clock
readings by the value of that particular time interval Az. The result turns out to be
a very useful ratio, one that we shall use many times. This ratio has been given a
special name: the average velocity. The average velocity v, , ., of a particle is defined
as the particle’s displacement Ax divided by the time interval A¢ during which that
displacement occurs:

_ Ax

vx,avg = A—t (2 . 2)

where the subscript x indicates motion along the x axis. From this definition we see
that average velocity has dimensions of length divided by time (L/T), or meters per
second in SI units.

Brian Drake/Time Life Pictures/Getty Images

< Displacement

Figure 2.2 On this basketball
court, players run back and forth
for the entire game. The distance
that the players run over the
duration of the game is nonzero.
The displacement of the players
over the duration of the game is
approximately zero because they
keep returning to the same point
over and over again.

< Average velocity
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Average speed P>

Pitfall Prevention 2.1

Average Speed and Average
Velocity The magnitude of the
average velocity is not the aver-
age speed. For example, consider
the marathon runner discussed
before Equation 2.3. The mag-
nitude of her average velocity

is zero, but her average speed is
clearly not zero.

The average velocity of a particle moving in one dimension can be positive or
negative, depending on the sign of the displacement. (The time interval A/is always
positive.) If the coordinate of the particle increases in time (that is, if L x;), Ax
is positive and v,,,, = Ax/Atis positive. This case corresponds to a particle mov-
ing in the positive x direction, that is, toward larger values of x. If the coordinate
decreases in time (that is, if x, < x;), Ax is negative and hence v, is negative. This
case corresponds to a particle moving in the negative x direction.

We can interpret average velocity geometrically by drawing a straight line
between any two points on the position—time graph in Figure 2.1b. This line
forms the hypotenuse of a right triangle of height Ax and base At The slope of
this line is the ratio Ax/A¢, which is what we have defined as average velocity in
Equation 2.2. For example, the line between positions ® and ® in Figure 2.1b
has a slope equal to the average velocity of the car between those two times,
(52m —30m)/(10s — 0) = 2.2 m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a mara-
thon runner who runs a distance d of more than 40 km and yet ends up at her
starting point. Her total displacement is zero, so her average velocity is zero! None-
theless, we need to be able to quantify how fast she was running. A slightly differ-
ent ratio accomplishes that for us. The average speed v, of a particle, a scalar
quantity, is defined as the total distance d traveled divided by the total time interval
required to travel that distance:

(2.3)

_d
Yavg = 7y
The SI unit of average speed is the same as the unit of average velocity: meters
per second. Unlike average velocity, however, average speed has no direction and
is always expressed as a positive number. Notice the clear distinction between the
definitions of average velocity and average speed: average velocity (Eq. 2.2) is the
displacement divided by the time interval, whereas average speed (Eq. 2.3) is the dis-
tance divided by the time interval.

Knowledge of the average velocity or average speed of a particle does not provide
information about the details of the trip. For example, suppose it takes you 45.0 s
to travel 100 m down a long, straight hallway toward your departure gate at an
airport. At the 100-m mark, you realize you missed the restroom, and you return
back 25.0 m along the same hallway, taking 10.0 s to make the return trip. The
magnitude of your average velocity is +75.0 m/55.0 s = +1.36 m/s. The average speed
for your trip is 125 m/55.0 s = 2.27 m/s. You may have traveled at various speeds
during the walk and, of course, you changed direction. Neither average velocity nor
average speed provides information about these details.

uick Quiz 2.1 Under which of the following conditions is the magnitude of the
average velocity of a particle moving in one dimension smaller than the average
speed over some time interval? (a) A particle moves in the +x direction without
reversing. (b) A particle moves in the —x direction without reversing. (c) A par-
ticle moves in the +x direction and then reverses the direction of its motion.

& (d) There are no conditions for which this is true.

Calculating the Average Velocity and Speed

Find the displacement, average velocity, and average speed of the car in Figure 2.1a between positions ® and ®.
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b 2.1

SOLUTION

Consult Figure 2.1 to form a mental image of the car and its motion. We model the car as a particle. From the position—
time graph given in Figure 2.1b, notice that xg = 30 m at /(g = 0 s and that xg = =53 m at /(g = 50s.

Use Equation 2.1 to find the displacement of the car: Ax=xg — Xp=-53m —30m = —83m
This result means that the car ends up 83 m in the negative direction (to the left, in this case) from where it started.

This number has the correct units and is of the same order of magnitude as the supplied data. A quick look at Fig-
ure 2.1a indicates that it is the correct answer.

Use Equation 2.2 to find the car’s average velocity: Vyrry = Yo ~ Ya
T e T le
_59 B 9() _89
_ 753 m—30m _ Jm=—1.7m/s
50s — 0s 50 s

We cannot unambiguously find the average speed of the car from the data in Table 2.1 because we do not have infor-
mation about the positions of the car between the data points. If we adopt the assumption that the details of the car’s
position are described by the curve in Figure 2.1b, the distance traveled is 22 m (from ® to ®) plus 105 m (from ® to
®), for a total of 127 m.

127 m

Use Equation 2.3 to find the car’s average speed: Vg T Tmos 25 m/s
! s

Notice that the average speed is positive, as it must be. Suppose the red-brown curve in Figure 2.1b were different so
that between 0 s and 10 s it went from ® up to 100 m and then came back down to ®. The average speed of the car
would change because the distance is different, but the average velocity would not change.

Instantaneous Velocity and Speed

Often we need to know the velocity of a particle at a particular instant in time ¢
rather than the average velocity over a finite time interval Az In other words, you
would like to be able to specify your velocity just as precisely as you can specify your
position by noting what is happening at a specific clock reading, that is, at some
specific instant. What does it mean to talk about how quickly something is mov-
ing if we “freeze time” and talk only about an individual instant? In the late 1600s,
with the invention of calculus, scientists began to understand how to describe an
object’s motion at any moment in time.

To see how that is done, consider Figure 2.3a (page 26), which is a reproduction
of the graph in Figure 2.1b. What is the particle’s velocity at ¢ = 0? We have already
discussed the average velocity for the interval during which the car moved from
position ® to position ® (given by the slope of the blue line) and for the interval
during which it moved from ® to ® (represented by the slope of the longer blue
line and calculated in Example 2.1). The car starts out by moving to the right, which
we defined to be the positive direction. Therefore, being positive, the value of the
average velocity during the interval from ® to ® is more representative of the ini-
tial velocity than is the value of the average velocity during the interval from ® to
®, which we determined to be negative in Example 2.1. Now let us focus on the
short blue line and slide point ® to the left along the curve, toward point @, as in
Figure 2.3b. The line between the points becomes steeper and steeper, and as the
two points become extremely close together, the line becomes a tangent line to the
curve, indicated by the green line in Figure 2.3b. The slope of this tangent line
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Pitfall Prevention 2.2

Slopes of Graphs In any graph of
physical data, the slope represents
the ratio of the change in the
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal
axis. Remember that a slope has
units (unless both axes have the
same units). The units of slope in
Figures 2.1b and 2.3 are meters
per second, the units of velocity.

Instantaneous velocity P

Pitfall Prevention 2.3

Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the
magnitude of the average velocity
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous
speed. In an infinitesimal time
interval, the magnitude of the dis-
placement is equal to the distance
traveled by the particle.

Conceptual Example 2.2

x (m)

.| The blue line between
{ positions @ and

approaches the green

tangent line as point B) is

moved closer to point @

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the
upper-left-hand corner of the graph.

represents the velocity of the car at point ®. What we have done is determine the
instantaneous velocity at that moment. In other words, the instantaneous velocity v,
equals the limiting value of the ratio Ax/Atas Aiapproaches zero:!

v, = lim — (2.4)

In calculus notation, this limit is called the derivative of x with respect to ¢, written

dx/di:
. Ax  dx
v, =lim — = —

= 2.5
A0 At di 25)

The instantaneous velocity can be positive, negative, or zero. When the slope of the
position—time graph is positive, such as at any time during the first 10 s in Figure 2.3,
v, is positive and the car is moving toward larger values of x. After point ®, v, is nega-
tive because the slope is negative and the car is moving toward smaller values of x.
At point ®, the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.

From here on, we use the word velocity to designate instantaneous velocity. When
we are interested in average velocity, we shall always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of +25 m/s
along a given line and another particle has an instantaneous velocity of —25 m/s
along the same line, both have a speed? of 25 m/s.

uick Quiz 2.2 Are members of the highway patrol more interested in (a) your
o average speed or (b) your instantaneous speed as you drive?

The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

!Notice that the displacement Ax also approaches zero as At approaches zero, so the ratio looks like 0/0. While this
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Ax and At become smaller and
smaller, the ratio Ax/A¢approaches a value equal to the slope of the line tangent to the x-versus-/ curve.

2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”
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b 2.2

SOLUTION

(A) The average velocity for the thrown ball is zero because the ball returns to the starting point; therefore, its displace-
ment is zero. There is one point at which the instantaneous velocity is zero: at the top of the motion.

(B) The car’s average velocity cannot be evaluated unambiguously with the information given, but it must have some
value between 0 and 100 m/s. Because the car will have every instantaneous velocity between 0 and 100 m/s at some
time during the interval, there must be some instant at which the instantaneous velocity is equal to the average veloc-
ity over the entire motion.

(C) Because the spacecraft’s instantaneous velocity is constant, its instantaneous velocity at any time and its average
velocity over any time interval are the same.

Example 2.3 Average and Instantaneous Velocity
A particle moves along the x axis. Its position varies with time according to x (m)
the expression x = —4¢ + 2¢2, where xis in meters and ¢ is in seconds.® The 10
position—-time graph for this motion is shown in Figure 2.4a. Because the 8|
position of the particle is given by a mathematical function, the motion of oL Slope = +4m/s
the particle is completely known, unlike that of the car in Figure 2.1. Notice Slope = =2 m/s ©
that the particle moves in the negative x direction for the first second of 4
motion, is momentarily at rest at the moment / = 1's, and moves in the posi- 2
tive x direction at times (> 1s. 0 ®/ | | 4 (s)
(A) Determine the displacement of the particle in the time intervals ¢ = 0 —2F
tot=1sandt=1stot=3s. —4L
0 1 2 3 4
a

SOLUTION

From the graph in Figure 2.4a, form a mental representation of the par- —o ° o x

ticle’s motion. Keep in mind that the particle does not move in a curved -4 -2 0 2 4 6 8

path in space such as that shown by the red-brown curve in the graphical b

representation. The particle moves only along the x axis in one dimension as Figure 2.4 (Example 2.3) () Position-

shown in Figure 2.4b. At ¢t = 0, is it moving to the right or to the left? time graph for a particle having an x coor-
During the first time interval, the slope is negative and hence the aver- dinate that varies in time according to the

age velocity is negative. Therefore, we know that the displacement between expression x = —41+ 2% (b) The particle

. : . . ' imension along (1 is.
® and ® must be a negative number having units of meters. Similarly, we moves in one dimension along the xaxis

expect the displacement between ® and © to be positive.

In the first time interval, set ; = g = 0 and [, = lg = 15 Axg @ = X~ ;= Xg — X@

and use Equation 2.1 to find the displacement: — [=4(1) + 2(1)%] — [=4(0) + 2(0)2] = -2 m

For the second time interval (t=1sto = 3s),set {, = Axg o = X~ ;= X — Xg

lo=1sand}=lp=3s = [—4(3) + 2(3)2] — [<4(1) + 2(1)’] = +8m

These displacements can also be read directly from the position—time graph.

(B) Calculate the average velocity during these two time intervals.

continued

3Simply to make it easier to read, we write the expression as x = —4¢ + 2¢ rather than as x = (—4.00 m/s) + (2.00 m/s?)12%°. When an equation summarizes mea-

surements, consider its coefficients and exponents to have as many significant figures as other data quoted in a problem. Consider its coefficients to have the units
required for dimensional consistency. When we start our clocks at # = 0, we usually do not mean to limit the precision to a single digit. Consider any zero value in
this book to have as many significant figures as you need.
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b 2.3

SOLUTION

In the first time interval, use Equation 2.2 with Az =

= 1= lg — g =1s:

In the second time interval, Al = 2 s:

Ao~ _ —2m 2m/s
Ve @) = ———— = —— = —
xavg (B - ®) At 1s
Axg.e 8m
(@@= = ——= +4 g
Uyavg (® - ®) At 95 m/s

These values are the same as the slopes of the blue lines joining these points in Figure 2.4a.

(C) Find the instantaneous velocity of the particle at t = 2.5 s.

SOLUTION

Measure the slope of the green line at 1 = 2.5 s (point U,

©) in Figure 2.4a:

_ 10m — (—4 m)

= +6m/s
38s—15s

Notice that this instantaneous velocity is on the same order of magnitude as our previous results, that is, a few meters
per second. Is that what you would have expected?

Analysis model »>

Analysis Model: Particle Under Constant Velocity

In Section 1.2 we discussed the importance of making models. A particularly
important model used in the solution to physics problems is an analysis model. An
analysis model is a common situation that occurs time and again when solving
physics problems. Because it represents a common situation, it also represents a
common type of problem that we have solved before. When you identify an analy-
sis model in a new problem, the solution to the new problem can be modeled
after that of the previously-solved problem. Analysis models help us to recognize
those common situations and guide us toward a solution to the problem. The form
that an analysis model takes is a description of either (1) the behavior of some
physical entity or (2) the interaction between that entity and the environment.
When you encounter a new problem, you should identify the fundamental details
of the problem and attempt to recognize which of the situations you have already
seen that might be used as a model for the new problem. For example, suppose an
automobile is moving along a straight freeway at a constant speed. Is it important
that it is an automobile? Is it important that it is a freeway? If the answers to both
questions are no, but the car moves in a straight line at constant speed, we model
the automobile as a particle under constant velocity, which we will discuss in this sec-
tion. Once the problem has been modeled, it is no longer about an automobile.
It is about a particle undergoing a certain type of motion, a motion that we have
studied before.

This method is somewhat similar to the common practice in the legal profession
of finding “legal precedents.” If a previously resolved case can be found that is very
similar legally to the current one, it is used as a model and an argument is made in
court to link them logically. The finding in the previous case can then be used to
sway the finding in the current case. We will do something similar in physics. For
a given problem, we search for a “physics precedent,” a model with which we are
already familiar and that can be applied to the current problem.

All of the analysis models that we will develop are based on four fundamental
simplification models. The first of the four is the particle model discussed in the
introduction to this chapter. We will look at a particle under various behaviors
and environmental interactions. Further analysis models are introduced in later
chapters based on simplification models of a system, a rigid object, and a wave. Once
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we have introduced these analysis models, we shall see that they appear again and
again in different problem situations.

When solving a problem, you should avoid browsing through the chapter looking
for an equation that contains the unknown variable that is requested in the problem.
In many cases, the equation you find may have nothing to do with the problem you
are attempting to solve. It is much better to take this first step: Identify the analysis
model that is appropriate for the problem. To do so, think carefully about what is
going on in the problem and match it to a situation you have seen before. Once the
analysis model is identified, there are a small number of equations from which to
choose thatare appropriate for that model, sometimes only one equation. Therefore,
the model tells you which equation(s) to use for the mathematical representation.

Let us use Equation 2.2 to build our first analysis model for solving problems.
We imagine a particle moving with a constant velocity. The model of a particle
under constant velocity can be applied in any situation in which an entity that can
be modeled as a particle is moving with constant velocity. This situation occurs fre-
quently, so this model is important.

If the velocity of a particle is constant, its instantaneous velocity at any instant
during a time interval is the same as the average velocity over the interval. That
I8, Uy = Uy, Therefore, Equation 2.2 gives us an equation to be used in the math-
ematical representation of this situation:

_ Ax
Ae
Remembering that Ax = x, — x;, we see that v, = (x, — x;)/A¢, or

(2.6)

v

X = x; + v At

This equation tells us that the position of the particle is given by the sum of its origi-
nal position x; at time ¢ = 0 plus the displacement v, A¢ that occurs during the time
interval Az. In practice, we usually choose the time at the beginning of the interval to
be ¢, = 0 and the time at the end of the interval to be {,= 1, s0 our equation becomes

x= x;+ vt (for constant v,) (2.7)

Equations 2.6 and 2.7 are the primary equations used in the model of a particle under
constant velocity. Whenever you have identified the analysis model in a problem to
be the particle under constant velocity, you can immediately turn to these equations.

Figure 2.5 is a graphical representation of the particle under constant velocity.
On this position—time graph, the slope of the line representing the motion is con-
stant and equal to the magnitude of the velocity. Equation 2.7, which is the equation
of a straight line, is the mathematical representation of the particle under constant
velocity model. The slope of the straight line is v, and the y intercept is x, in both
representations.

Example 2.4 below shows an application of the particle under constant velocity
model. Notice the analysis model icon M, which will be used to identify examples
in which analysis models are employed in the solution. Because of the widespread
benefits of using the analysis model approach, you will notice that a large number
of the examples in the book will carry such an icon.

Example 2.4 Modeling a Runner as a Particle

Figure 2.5 Position—time graph
for a particle under constant
velocity. The value of the constant
velocity is the slope of the line.

4 Position as a function of
time for the particle under
constant velocity model

A kinesiologist is studying the biomechanics of the human body. (Kinesiology is the study of the movement of the human
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs

along a straight line at a constant rate. The kinesiologist starts the stopwatch at the moment the runner passes a given point
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s.

(A) What is the runner’s velocity?

conlinued
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b 2.4

SOLUTION

We model the moving runner as a particle because the size of the runner and the movement of arms and legs are
unnecessary details. Because the problem states that the subject runs at a constant rate, we can model him as a particle
under constant velocity.

Ay %7 X% 20m -0

= — = = 5.0
AL At 4.0s m/s

Having identified the model, we can use Equation 2.6 to v
find the constant velocity of the runner:

(B) If the runner continues his motion after the stopwatch is stopped, what is his position after 10 s have passed?

SOLUTION

Use Equation 2.7 and the velocity found in part (A) to x=x+v:=0+ (5.0m/s)(10s) = 50 m
find the position of the particle at time ¢ = 10 s:

Is the result for part (A) a reasonable speed for a human? How does it compare to world-record speeds in 100-m and
200-m sprints? Notice the value in part (B) is more than twice that of the 20-m position at which the stopwatch was
stopped. Is this value consistent with the time of 10 s being more than twice the time of 4.0 s?

The mathematical manipulations for the particle under constant velocity stem
from Equation 2.6 and its descendent, Equation 2.7. These equations can be used
to solve for any variable in the equations that happens to be unknown if the other
variables are known. For example, in part (B) of Example 2.4, we find the position
when the velocity and the time are known. Similarly, if we know the velocity and the
final position, we could use Equation 2.7 to find the time at which the runner is at
this position.

A particle under constant velocity moves with a constant speed along a straight
line. Now consider a particle moving with a constant speed through a distance d
along a curved path. This situation can be represented with the model of a particle
under constant speed. The primary equation for this model is Equation 2.3, with
the average speed v,,, replaced by the constant speed v:

_d
At
As an example, imagine a particle moving at a constant speed in a circular path. If

the speed is 5.00 m/s and the radius of the path is 10.0 m, we can calculate the time
interval required to complete one trip around the circle:
d _ 2mr _ 27(10.0 m)

d At — =126
v = — = — = = = .0Ss
Al v v 5.00m/s

avg

v (2.8)

AGEIVSIRVGGIGE  Particle Under Constant Velocity

Imagine a moving object that can be modeled as a particle. Examples:
If it moves at a constant speed through a displacement Axin a

. L L . . * a meteoroid traveling through gravity-free
straight line in a time interval Ay, its constant velocity is

space
Ax ® a car traveling at a constant speed on a straight
v, = — (2.6) ]
At highway
The position of the particle as a function of time is given by ® arunner traveling at constant speed on a per-
fectly straight path
x,=x,+ vt (2.7) . . . ‘
y— 8t e ® an object moving at terminal speed through a
Q @ 9 @ Q viscous medium (Chapter 6)

Y — — — — —
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RUEWSTRYOL(SE  Particle Under Constant Speed

Imagine a moving object that can be modeled as a par- Examples:
ticle. If it moves at a constant speed through a distance d
along a straight line or a curved path in a time interval
At, its constant speed is

e a planet traveling around a perfectly circular orbit
® a car traveling at a constant speed on a curved

racetrack
_4d (2.8) ® arunner traveling at constant speed on a curved path
YA ) ® a charged particle moving through a uniform mag-
— netic field (Chapter 29)
vf/ )

W Acceleration

In Example 2.3, we worked with a common situation in which the velocity of a par-
ticle changes while the particle is moving. When the velocity of a particle changes
with time, the particle is said to be accelerating. For example, the magnitude of a
car’s velocity increases when you step on the gas and decreases when you apply the
brakes. Let us see how to quantify acceleration.

Suppose an object that can be modeled as a particle moving along the x axis has
an initial velocity v,; at time /; at position ® and a final velocity v sat time f,at position
as in Figure 2.6a. The red-brown curve in Figure 2.6b shows how the velocity var-
ies with time. The average acceleration q,,,, of the particle is defined as the change
in velocity Av, divided by the time interval Az during which that change occurs:

Av, V= Uy

Ayavg = == (2.9) < Average acceleration
e At 4=t

i

As with velocity, when the motion being analyzed is one dimensional, we can use
positive and negative signs to indicate the direction of the acceleration. Because
the dimensions of velocity are L/T and the dimension of time is T, acceleration
has dimensions of length divided by time squared, or L/T2. The SI unit of accel-
eration is meters per second squared (m/s?). It might be easier to interpret these
units if you think of them as meters per second per second. For example, suppose
an object has an acceleration of +2 m/s?. You can interpret this value by forming
a mental image of the object having a velocity that is along a straight line and is
increasing by 2 m/s during every time interval of 1 s. If the object starts from rest,

The slope of the green line is
the instantaneous acceleration

of the car at point (Eq. 2.10).

The car moves with "
different velocities at

PTE ®and ®. The slope of the blue

line connecting @ and Figure 2.6 (a) A car, modeled

®‘ is the average as a particle, moving along the
™ o— x acceleration of the car x axis from @ to ®), has velocity

] 4 during the time jmcw“l v,;at ¢ = {;and velocity v, at ¢ =
V=1, V= vy Ar= ty— 4 (Eq. 2.9). 1. (b) Velocity-time graph (red-

brown) for the particle moving in
a straight line.
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Instantaneous acceleration P>

The acceleration at any time
equals the slope of the line
tangent to the curve of v,
versus ¢ at that time.

| ® O

Figure 2.7 (a) The velocity—time
graph for a particle moving along
the xaxis. (b) The instantaneous
acceleration can be obtained from
the velocity—time graph.

you should be able to picture it moving at a velocity of +2 m/s after 1 s, at +4 m/s
after 2 s, and so on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous accelera-
tion as the limit of the average acceleration as A/ approaches zero. This concept is
analogous to the definition of instantaneous velocity discussed in Section 2.2. If we
imagine that point ® is brought closer and closer to point ® in Figure 2.6a and we
take the limit of Av,/A¢as Al approaches zero, we obtain the instantaneous accel-
eration at point ®:

Av, dv,
At e
That is, the instantaneous acceleration equals the derivative of the velocity with
respect to time, which by definition is the slope of the velocity-time graph. The
slope of the green line in Figure 2.6b is equal to the instantaneous acceleration at
point ®. Notice that Figure 2.6b is a velocity—time graph, not a position—time graph
like Figures 2.1b, 2.3, 2.4, and 2.5. Therefore, we see that just as the velocity of a
moving particle is the slope at a point on the particle’s x—¢ graph, the acceleration
of a particle is the slope at a point on the particle’s v,—¢ graph. One can interpret
the derivative of the velocity with respect to time as the time rate of change of veloc-
ity. If a, is positive, the acceleration is in the positive x direction; if ¢, is negative, the
acceleration is in the negative x direction.

Figure 2.7 illustrates how an acceleration—time graph is related to a velocity—
time graph. The acceleration at any time is the slope of the velocity—time graph at
that time. Positive values of acceleration correspond to those points in Figure 2.7a
where the velocity is increasing in the positive x direction. The acceleration reaches
a maximum at time tg, when the slope of the velocity—time graph is a maximum.
The acceleration then goes to zero at time tg, when the velocity is a maximum (that
is, when the slope of the v,—¢ graph is zero). The acceleration is negative when the
velocity is decreasing in the positive x direction, and it reaches its most negative
value at time 7g,.

(2.10)

a

= lim
x At=0

uick Quiz 2.3 Make a velocity—time graph for the car in Figure 2.1a. Suppose the
speed limit for the road on which the car is driving is 30 km/h. True or False?
o The car exceeds the speed limit at some time within the time interval 0 — 50 s.

For the case of motion in a straight line, the direction of the velocity of an object
and the direction of its acceleration are related as follows. When the object’s veloc-
ity and acceleration are in the same direction, the object is speeding up. On the
other hand, when the object’s velocity and acceleration are in opposite directions,
the object is slowing down.

To help with this discussion of the signs of velocity and acceleration, we can
relate the acceleration of an object to the total force exerted on the object. In Chap-
ter 5, we formally establish that the force on an object is proportional to the accel-
eration of the object:

F.xa (2.11)

X

This proportionality indicates that acceleration is caused by force. Further-
more, force and acceleration are both vectors, and the vectors are in the same
direction. Therefore, let us think about the signs of velocity and acceleration by
imagining a force applied to an object and causing it to accelerate. Let us assume
the velocity and acceleration are in the same direction. This situation corresponds
to an object that experiences a force acting in the same direction as its velocity.
In this case, the object speeds up! Now suppose the velocity and acceleration are
in opposite directions. In this situation, the object moves in some direction and
experiences a force acting in the opposite direction. Therefore, the object slows
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down! It is very useful to equate the direction of the acceleration to the direction
of a force because it is easier from our everyday experience to think about what
effect a force will have on an object than to think only in terms of the direction of
the acceleration.

Pitfall Prevention 2.4

Negative Acceleration Keep in
mind that negative acceleration does
not necessarily mean that an object is

. . . . ‘ . . slowing down. If the acceleration is
2 -
uick Quiz 2.4 If a caris traveling eastward and slowing down, what is the direc nE bt ancdlihe veloeit s

tion of the force on the car that causes it to slow down? (a) eastward (b) west- tive, the object is speeding up!
o ward (c) neither eastward nor westward

Pitfall Prevention 2.5

Deceleration The word deceleration
has the common popular connota-

From now on, we shall use the term acceleration to mean instantaneous accelera- tion of slowing down. We will not
tion. When we mean average acceleration, we shall always use the adjective average. use this word in this book because
Because v, = dx/dt, the acceleration can also be written as B A ol L

9 given for negative acceleration.
dv, d{dx d*x
a, = =—|=]|== (2.12)
dt  di\ dt dt

That is, in one-dimensional motion, the acceleration equals the second derivative of
x with respect to time.

Conceptual Example 2.5 Graphical Relationships Between x, v,, and a,

The position of an object moving along the xaxis varies with time as in Figure 2.8a. Graph the velocity versus time and
the acceleration versus time for the object.

SOLUTION

The velocity at any instant is the slope of the tangent
to the x—¢ graph at that instant. Between ¢ = 0 and / =
@, the slope of the x—/ graph increases uniformly, so
the velocity increases linearly as shown in Figure 2.8b.
Between (g and (g, the slope of the x—/ graph is con-

stant, so the velocity remains constant. Between /g and L

lg» the slope of the x—{ graph decreases, so the value of ll® l li© [i® li® li®
the velocity in the v~/ graph decreases. At /g, the slope v, ! Lo ! Lo

of the x—i¢ graph is zero, so the velocity is zero at that | L ! Lo
instant. Between /g and (g, the slope of the x—¢ graph ! A ! Lo

and therefore the velocity are negative and decrease uni- | [ [P S
formly in this interval. In the interval /g to {g, the slope l|® ‘@ ‘o M(@

of the x—/ graph is still negative, and at /g it goes to zero. b : [
Finally, after /g, the slope of the x—/ graph is zero, mean- @ : [

|

ing that the object is at rest for (> (g,

The acceleration at any instant is the slope of the tan-
gent to the v,~f graph at that instant. The graph of accel-
eration versus time for this object is shown in Figure 2.8c.

e ———————— =
~

The acceleration is constant and positive between 0 and
@, where the slope of the v~/ graph is positive. It is zero

between g and /g and for /> (g because the slope of the ~ Figure 2.8 (Conceptual Example 2.5) (a) Position~time graph
for an object moving along the xaxis. (b) The velocity—-time graph

for the object is obtained by measuring the slope of the position—
time graph at each instant. (c) The acceleration—time graph for
during this interval. Between /g and /g, the acceleration the object is obtained by measuring the slope of the velocity—time
is positive like it is between 0 and /g, but higher in value graph at each instant.
because the slope of the v~ graph is steeper.

Notice that the sudden changes in acceleration shown in Figure 2.8c are unphysical. Such instantaneous changes

v,—t graph is zero at these times. It is negative between
lg and (g because the slope of the v~ graph is negative

cannot occur in reality.
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Example 2.6 Average and Instantaneous Acceleration The acceleration at ® is equal to
the slope of the green tangent
The velocity of a particle moving along the xaxis varies according to the expres- line at = 2's, which is =20 m/s*.
sion v, = 40 — 5¢?, where v, is in meters per second and ¢is in seconds. v, (m/s)
40 ¢
(A) Find the average acceleration in the time interval ¢ = 0 to ¢ = 2.0 s. @
30
SOLUTION 20
Think about what the particle is doing from the 10

mathematical representation. Is it moving at ¢ =
0? In which direction? Does it speed up or slow

down? Figure 2.9 is a v,—¢ graph that was created ) —10
Figure 2.9 (Example 2.6)

The velocity—time graph for a

0 t(s)

from the velocity versus time expression given in

—9 0
the.problem state.ment. 1??ecause the slope of the particle moving along the xaxis 2
entire v,—( curve is negative, we expect the accel- according to the expression 30
eration to be negative. v, =40 — 512 0 1 9 3 4
Find the velocities at ; = g = 0 and ¢, = (g = 2.0 s by v,@ = 40 — big? = 40 — 5(0)* = +40 m/s
substituting these values of ¢into the expression for the

I P v, = 40 — Blg? = 40 — 5(2.0)? = +20 m/s
velocity:
. . e Uy~ Ui Ve~ U@  20m/s —40m/s
Find the average acceleration in the specified time inter- I = =
= lg — l@ 20s—0s
val At = Ig — 1g = 2.0 s:
= —10 m/s?

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue
line joining the initial and final points on the velocity—time graph, is negative.

(B) Determine the acceleration at ¢ = 2.0s.

SOLUTION

Knowing that the initial velocity at any time ¢ is vy =40 = 5( + AN? =40 — 512 — 10t At — 5(An?
v,; = 40 — 52, find the velocity at any later time ¢ + At

Find the change in velocity over the time interval A¢: Av, = v, — v, = —101 At — 5(A1)?
To find the acceleration at any time ¢, divide this a, = lim ﬁ :Alim“(—IOt —5A¢) = —10¢
1= =

expression by Azand take the limit of the result as At
approaches zero:

Substitute ¢t = 2.0 s: a,= (—10)(2.0) m/s*> = —20 m/s?

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing
down.

Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the
blue line in Figure 2.9 connecting points ® and ®. The instantaneous acceleration in part (B) is the slope of the green
line tangent to the curve at point ®. Notice also that the acceleration is not constant in this example. Situations involv-
ing constant acceleration are treated in Section 2.6.

So far, we have evaluated the derivatives of a function by starting with the def-
inition of the function and then taking the limit of a specific ratio. If you are
familiar with calculus, you should recognize that there are specific rules for taking
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derivatives. These rules, which are listed in Appendix B.6, enable us to evaluate
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of ¢
such as in the expression

x = At"
where A and n are constants. (This expression is a very common functional form.)
The derivative of x with respect to ¢is

dx 1
— = nAt"
di

Applying this rule to Example 2.6, in which v, = 40 — 5¢2, we quickly find that the
acceleration is a, = dv,/dt = —101, as we found in part (B) of the example.

Motion Diagrams

The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. In forming a mental representation of a
moving object, a pictorial representation called a motion diagram is sometimes use-
ful to describe the velocity and acceleration while an object is in motion.

A motion diagram can be formed by imagining a stroboscopic photograph of a
moving object, which shows several images of the object taken as the strobe light
flashes at a constant rate. Figure 2.1a is a motion diagram for the car studied in
Section 2.1. Figure 2.10 represents three sets of strobe photographs of cars moving
along a straight roadway in a single direction, from left to right. The time intervals
between flashes of the stroboscope are equal in each part of the diagram. So as
to not confuse the two vector quantities, we use red arrows for velocity and purple
arrows for acceleration in Figure 2.10. The arrows are shown at several instants dur-
ing the motion of the object. Let us describe the motion of the car in each diagram.

In Figure 2.10a, the images of the car are equally spaced, showing us that the car
moves through the same displacement in each time interval. This equal spacing is
consistent with the car moving with constant positive velocity and zevo acceleration. We
could model the car as a particle and describe it with the particle under constant
velocity model.

In Figure 2.10b, the images become farther apart as time progresses. In this
case, the velocity arrow increases in length with time because the car’s displace-
ment between adjacent positions increases in time. These features suggest the car is
moving with a positive velocity and a positive acceleration. The velocity and acceleration
are in the same direction. In terms of our earlier force discussion, imagine a force
pulling on the car in the same direction it is moving: it speeds up.

This car moves at
constant velocity (zero
acceleration).

This car has a constant
acceleration in the
direction of its velocity.

This car has a
constant acceleration
in the direction
opposite its velocity.

Figure 2.10 Motion diagrams
of a car moving along a straight
roadway in a single direction.
The velocity at each instant is
indicated by a red arrow, and the
constant acceleration is indicated
by a purple arrow.
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I
[
I
I
Slope = v,; {
t

Slope = a,

ay

Slope = 0

—>

=

le——

[y I ——
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Figure 2.11 A particle under
constant acceleration g, moving
along the xaxis: (a) the position—
time graph, (b) the velocity—time
graph, and (c) the acceleration—
time graph.

In Figure 2.10c, we can tell that the car slows as it moves to the right because its
displacement between adjacent images decreases with time. This case suggests the
car moves to the right with a negative acceleration. The length of the velocity arrow
decreases in time and eventually reaches zero. From this diagram, we see that the
acceleration and velocity arrows are nof in the same direction. The car is moving
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine
a force pulling on the car opposite to the direction it is moving: it slows down.

Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down,

© its acceleration must be negative. (c) A particle with constant acceleration can
o never stop and stay stopped.

Analysis Model: Particle
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult
to analyze. A very common and simple type of one-dimensional motion, however, is
that in which the acceleration is constant. In such a case, the average acceleration
a, .y OVEr any time interval is numerically equal to the instantaneous acceleration a,
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis
model: the particle under constant acceleration. In the discussion that follows, we
generate several equations that describe the motion of a particle for this model.

If we replace a,,,, by a,in Equation 2.9 and take ¢, = 0 and / to be any later time
{, we find that

X,avg

Yy = Vi
a =
To—=0
or
Uy = v, + at (for constant a,) (2.13)

This powerful expression enables us to determine an object’s velocity at any time
¢t if we know the object’s initial velocity v,;, and its (constant) acceleration a,. A
velocity—time graph for this constant-acceleration motion is shown in Figure 2.11b.
The graph is a straight line, the slope of which is the acceleration a,; the (constant)
slope is consistent with @, = dv,/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a
slope of zero.

Because velocity at constant acceleration varies linearly in time according to
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity v,; and the final velocity v,

v, T e

v (for constant a,) (2.14)

X,avg = 9
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Notice that this expression for average velocity applies orly in situations in which
the acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.14 to obtain the position of an object as
a function of time. Recalling that Ax in Equation 2.2 represents x; — x; and recog-
nizing that At = {,— {;= ¢ — 0 = ¢, we find that

Xp— X, = v t= %(vm- + vxf)t

x,avg
Xp= x; + s(vg + vt (for constant a,) (2.15)

This equation provides the final position of the particle at time 7 in terms of the
initial and final velocities.

We can obtain another useful expression for the position of a particle under
constant acceleration by substituting Equation 2.13 into Equation 2.15:

xfz X; + %[Uxi + (vxz + axt)]t
X=X+ vt + sat> (for constant a,) (2.16)

This equation provides the final position of the particle at time ¢ in terms of the
initial position, the initial velocity, and the constant acceleration.

The position—time graph for motion at constant (positive) acceleration shown
in Figure 2.11a is obtained from Equation 2.16. Notice that the curve is a parab-
ola. The slope of the tangent line to this curve at ¢ = 0 equals the initial velocity
v, and the slope of the tangent line at any later time ¢ equals the velocity v, at
that time.

Finally, we can obtain an expression for the final velocity that does not contain
time as a variable by substituting the value of /from Equation 2.13 into Equation 2.15:

2 2
Uy — Uy v v
xf xi xf xi
xp= x; + %(vxi + vxf)(ax ) =x; + 9u
v = v+ 2a,(x,— x;) (for constant a,) (217)

This equation provides the final velocity in terms of the initial velocity, the constant
acceleration, and the position of the particle.

For motion at zero acceleration, we see from Equations 2.13 and 2.16 that

Uy T O T vx} when a, = 0

xp=x; + vd
That is, when the acceleration of a particle is zero, its velocity is constant and its
position changes linearly with time. In terms of models, when the acceleration of a
particle is zero, the particle under constant acceleration model reduces to the par-
ticle under constant velocity model (Section 2.3).

Equations 2.13 through 2.17 are kinematic equations that may be used to solve
any problem involving a particle under constant acceleration in one dimension.
These equations are listed together for convenience on page 38. The choice of
which equation you use in a given situation depends on what you know beforehand.
Sometimes it is necessary to use two of these equations to solve for two unknowns.
You should recognize that the quantities that vary during the motion are position
Xy velocity Uy and time {.

You will gain a great deal of experience in the use of these equations by solving
a number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.

4 Position as a function of
velocity and time for the
particle under constant
acceleration model

< Position as a function of time
for the particle under con-
stant acceleration model

4 Velocity as a function
of position for the
particle under constant
acceleration model
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@uick Quiz 2.6 In Figure 2.12, match each v,~¢ graph on the top with the a,~¢
o graph on the bottom that best describes the motion.

Figure 2.12 (Quick Quiz 2.6)
Parts (a), (b), and (c) are v~ graphs
of objects in one-dimensional
motion. The possible accelerations
of each object as a function of time
are shown in scrambled order in (d),
(e), and (f).

RUEWSTHYOLSE  Particle Under Constant Acceleration

Imagine a moving object that can be modeled as a particle. If it
begins from position x; and initial velocity v,; and moves in a straight
line with a constant acceleration a,, its subsequent position and
velocity are described by the following kinematic equations:

Uy =y T ad (2.13)
Uy T Uy

Yomg=— o (2.14)
X = x; + %(vﬂ» 4 vx/)t (2.15)
Xp= %+ vl + %axt2 (2.16)
vxfg = v+ 2a,(x, — x;) (2.17)

U = —_— > >

o -] o) Q o
R e e —_— —

A jetlands on an aircraft carrier at a speed of 140 mi/h (= 63 m/s).

Example 2.7 Carrier Landing

Examples

U,

/.

(¢

® a car accelerating at a constant rate

along a straight freeway

® a dropped object in the absence of air

resistance (Section 2.7)

® an object on which a constant net force

acts (Chapter b)

® a charged particle in a uniform electric

field (Chapter 23)

(A) Whatis its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and

brings it to a stop?

SOLUTION

You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest sur-
prisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial
speed of 63 m/s, we also know that the final speed is zero. Because the acceleration of the jet is assumed constant, we
model it as a particle under constant acceleration. We define our x axis as the direction of motion of the jet. Notice that we
have no information about the change in position of the jet while it is slowing down.
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b 2.7
. . . . . vxf_vxt 0—63m/s
Equation 2.13 is the only equation in the particle a, = ~ .
. i 2.0s
under constant acceleration model that does not
involve position, so we use it to find the acceleration of = —32m/s?

the jet, modeled as a particle:

(B) If the jet touches down at position x; = 0, what is its final position?

SOLUTION

Use Equation 2.15 to solve for the final position: xp=x; + oy + vt =0+ 63 m/s +0)(2.0s) = 63m

Given the size of aircraft carriers, a length of 63 m seems reasonable for stopping the jet. The idea of using arresting
cables to slow down landing aircraft and enable them to land safely on ships originated at about the time of World War I.
The cables are still a vital part of the operation of modern aircraft carriers.

UWLZNRNES  Suppose the jet lands on the deck of the aircraft carrier with a speed faster than 63 m/s but has the same
acceleration due to the cable as that calculated in part (A). How will that change the answer to part (B)?

Answer If the jet is traveling faster at the beginning, it will stop farther away from its starting point, so the answer to
part (B) should be larger. Mathematically, we see in Equation 2.15 that if v,; is larger, then x will be larger.

Example 2.8 Watch Out for the Speed Limit!

A car traveling at a constant speed of 45.0 m/s passes a g =—1.00s =0 1o =2
trooper on a motorcycle hidden behind a billboard. One sec- ®

ond after the speeding car passes the billboard, the trooper A
sets out from the billboard to catch the car, accelerating at a - -

constant rate of 3.00 m/s%. How long does it take the trooper @

to overtake the car? K\\
SOLUTION ‘é
A pictorial representation (Fig. 2.13) helps clarify the
sequence of events. The car is modeled as a particle under con- Figure 2.13 (Example 2.8) A speeding car passes a hid-
stant velocity, and the trooper is modeled as a particle under den trooper.
constant acceleration.
First, we write expressions for the position of each vehicle as a function of time. It is convenient to choose the posi-
tion of the billboard as the origin and to set #g = 0 as the time the trooper begins moving. At that instant, the car has

already traveled a distance of 45.0 m from the billboard because it has traveled at a constant speed of v, = 45.0 m/s for
1's. Therefore, the initial position of the speeding car is xg = 45.0 m.

Using the particle under constant velocity model, apply Xegy = Xg T U
Equation 2.7 to give the car’s position at any time ¢:

xcart

A quick check shows that at ¢ = 0, this expression gives the car’s correct initial position when the trooper begins to
move: X, = Xg = 45.0 m.

The trooper starts from rest at /g = 0 and accelerates at xp= %+ vt + %axt2

a, = 3.00 m/s? away from the origin. Use Equation 2.16 Xooper = 0+ (0)1 + gat® = 5a,°
to give her position at any time /:

Set the positions of the car and trooper equal to repre- X irooper = Xear

sent the trooper overtaking the car at position ©: 19 .
P g P 3a,t’ = xg T Uyeul continued
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) 2.8
Rearrange to give a quadratic equation: 30482 — Uyt — xg = 0
¢ . . P Vecar © \/Ufcar + 2axx
Solve the quadratic equation for the time at which the =
: ; p a
trooper catches the car (for help in solving quadratic x
equations, see Appendix B.2.): 3
q ’ pp vx car UX car 2x
1 t=——= s T
a, a, a,

Evaluate the solution, choosing the positive root because t 31.0s

that is the only choice consistent with a time > 0:

_ 45.0m/s \/(45.0 m/s)?  2(45.0m)
3.00 m/s’ (3.00m/s*)?  3.00 m/s>

Why didn’t we choose ¢ = 0 as the time at which the car passes the trooper? If we did so, we would not be able to use
the particle under constant acceleration model for the trooper. Her acceleration would be zero for the first second and
then 3.00 m/s? for the remaining time. By defining the time ¢ = 0 as when the trooper begins moving, we can use the
particle under constant acceleration model for her movement for all positive times.

WLZARNES What if the trooper had a more powerful motorcycle with a larger acceleration? How would that change
the time at which the trooper catches the car?

Answer If the motorcycle has a larger acceleration, the trooper should catch up to the car sooner, so the answer for
the time should be less than 31 s. Because all terms on the right side of Equation (1) have the acceleration a, in the
denominator, we see symbolically that increasing the acceleration will decrease the time at which the trooper catches
the car.

Freely Falling Objects

It is well known that, in the absence of air resistance, all objects dropped near the
Earth’s surface fall toward the Earth with the same constant acceleration under
the influence of the Earth’s gravity. It was not until about 1600 that this conclusion
was accepted. Before that time, the teachings of the Greek philosopher Aristotle
(384-322 BC) had held that heavier objects fall faster than lighter ones.

The Italian Galileo Galilei (1564-1642) originated our present-day ideas con-
cerning falling objects. There is a legend that he demonstrated the behavior of fall-
ing objects by observing that two different weights dropped simultaneously from
the Leaning Tower of Pisa hit the ground at approximately the same time. Although

Georgios Kollidas/Shutterstock.com

Galileo Galilei there is some doubt that he carried out this particular experiment, it is well estab-
Italian physicist and astronomer lished that Galileo performed many experiments on objects moving on inclined
(1564-1642) planes. In his experiments, he rolled balls down a slight incline and measured the

Galileo formulated the laws that govern distances they covered in successive time intervals. The purpose of the incline was
the motion of objects in free fall and

rdrmany aihersignifeant discover- to reduce the accel.erati.on, which made it poss.ible for. him to make accura.te n.lea-
ies in physics and astronomy. Galileo surements of the time intervals. By gradually increasing the slope of the incline,
publicly defended Nicolaus Copernicus's he was finally able to draw conclusions about freely falling objects because a freely
assertion that the Sunis at the centerof - fa]ling ball is equivalent to a ball moving down a vertical incline.
the Universe (the heliocentric system). Yo . . . < .

: ; _ ou might want to try the following experiment. Simultaneously drop a coin and
He published Dialogue Concerning Two lsd . £ f h eiohe. TP the &R £ ai .
New World Systems t6 support the a crumpled-up piece of paper from the same heig t. .t ee ects of air resistance
Copernican model, a view that the Cath- are negligible, both will have the same motion and will hit the floor at the same
olic Church declared to be heretical. time. In the idealized case, in which air resistance is absent, such motion is referred
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to as free-fall motion. If this same experiment could be conducted in a vacuum, in
which air resistance is truly negligible, the paper and the coin would fall with the
same acceleration even when the paper is not crumpled. On August 2, 1971, astro-
naut David Scott conducted such a demonstration on the Moon. He simultaneously
released a hammer and a feather, and the two objects fell together to the lunar sur-
face. This simple demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to an
object dropped from rest. A freely falling object is any object moving freely under
the influence of gravity alone, regardless of its initial motion. Objects thrown
upward or downward and those released from rest are all falling freely once they
are released. Any freely falling object experiences an acceleration directed down-
ward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration, also called the accelera-
tion due lo gravity, by the symbol g The value of g decreases with increasing altitude
above the Earth’s surface. Furthermore, slight variations in g occur with changes
in latitude. At the Earth’s surface, the value of gis approximately 9.80 m/s?. Unless
stated otherwise, we shall use this value for ¢ when performing calculations. For
making quick estimates, use g = 10 m/s?.

If we neglect air resistance and assume the free-fall acceleration does not vary
with altitude over short vertical distances, the motion of a freely falling object mov-
ing vertically is equivalent to the motion of a particle under constant acceleration in
one dimension. Therefore, the equations developed in Section 2.6 for the particle
under constant acceleration model can be applied. The only modification for freely
falling objects that we need to make in these equations is to note that the motion
is in the vertical direction (the y direction) rather than in the horizontal direc-
tion (x) and that the acceleration is downward and has a magnitude of 9.80 m/s?.
Therefore, we choose a, = —¢g = —9.80 m/s?, where the negative sign means that
the acceleration of a freely falling object is downward. In Chapter 13, we shall study
how to deal with variations in gwith altitude.

é@%uick Quiz 2.7 Consider the following choices: (a) increases, (b) decreases,
 (¢) increases and then decreases, (d) decreases and then increases, (e) remains
- the same. From these choices, select what happens to (i) the acceleration and
o (ii) the speed of a ball after it is thrown upward into the air.

Conceptual Example 2.9 The Daring Skydivers

Pitfall Prevention 2.6

g and g Be sure not to confuse
the italic symbol gfor free-fall
acceleration with the nonitalic
symbol g used as the abbreviation
for the unit gram.

Pitfall Prevention 2.7

The Sign of g Keep in mind that
gis a positive number. It is tempt-
ing to substitute —9.80 m/s? for g,
but resist the temptation. Down-
ward gravitational acceleration is
indicated explicitly by stating the

acceleration as a, = —g

Pitfall Prevention 2.8

Acceleration at the Top of the
Motion A common misconcep-
tion is that the acceleration of a
projectile at the top of its trajec-
tory is zero. Although the velocity
at the top of the motion of an
object thrown upward momen-
tarily goes to zero, the acceleration
is still that due to gravity at this
point. If the velocity and accelera-
tion were both zero, the projectile
would stay at the top.

A skydiver jumps out of a hovering helicopter. A few seconds later, another skydiver jumps out, and they both fall along
the same vertical line. Ignore air resistance so that both skydivers fall with the same acceleration. Does the difference
in their speeds stay the same throughout the fall? Does the vertical distance between them stay the same throughout

the fall?

SOLUTION

At any given instant, the speeds of the skydivers are dif-
ferent because one had a head start. In any time interval
At after this instant, however, the two skydivers increase
their speeds by the same amount because they have the
same acceleration. Therefore, the difference in their
speeds remains the same throughout the fall.

The first jumper always has a greater speed than the
second. Therefore, in a given time interval, the first sky-
diver covers a greater distance than the second. Conse-
quently, the separation distance between them increases.
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Example 2.10 Not a Bad Throw for a Rookie! t@:%)is
Yo = 20.4m
v,e=0

4
|
A stone thrown from the top of a building is given an initial velocity : af.@= —9.80 m/s?
of 20.0 m/s straight upward. The stone is launched 50.0 m above the :
ground, and the stone just misses the edge of the roof on its way down x
|
|
|
|
|
|
|

as shown in Figure 2.14.

|
|
|
|
|
|
|
|
|
|
l® i 0 :
(A) Using (g = 0 as the time the stone leaves the thrower’s hand at Je= go 0m/ |
e . . . a Q U@ = Um/s
position ®, determine the time at which the stone reaches its maxi- a;g= ~9.80 m/s2 1 © (o=408s
mum height. ¥ ; =0
| o= —20.0m/s
I 4= —980m/s
SOLUTION L oe
|
You most likely have experience Figure 2.14 (Example 2.10) Position, |
with dropping objects or throw- velocity, and acceleration values at +
ing them upward and watching various times for a freely falling stone :
. thrown initially upward with a velocity |
them fall, so this problem should - ) .. ,
X o R v,; = 20.0 m/s. Many of the quantities |
describe a familiar experience. in the labels for points in the motion I
To simulate this situation, toss a of the stone are calculated in the :
small object upward and notice example. Can y(;u verify the other val- | ®) le="5.00s
the time interval required for it ~ uesthatarenot: 50.0 m I yp=—225m
to fall to the floor. Now imagine IoheT _3958 m?SQ
. . . . a,p=— —J. m/s
throwing that object upward from the roof of a building. Because the : »©
stone is in free fall, it is modeled as a particle under constant acceleration :
due to gravity. :
Recognize that the initial velocity is positive because the stone |
is launched upward. The velocity will change sign after the stone |
reaches its highest point, but the acceleration of the stone will always : 583
be downward so that it will always have a negative value. Choose an : ;g; _'503 m
initial point just after the stone leaves the person’s hand and a final ' | '® ue=—37.1m/s
point at the top of its flight. ay@= —9.80 m/s?
. . . Uy~ Uy
Use Equation 2.13 to calculate the time at which the vy= v tat 7 ot=
. . . - a,
stone reaches its maximum height: Y
Substi ical val L= 0—20.0m/s 9.04
ubstitute numerical values: =lg= "o, 5 = 204s
—9.80 m /s’

(B) Find the maximum height of the stone.

SOLUTION

As in part (A), choose the initial and final points at the beginning and the end of the upward flight.

Set yg = 0 and substitute the time from part Ynax = Yo = Yo T Vi@l T %ayt2
(A) into Equation 2.16 to find the maximum

height: ye = 0 + (20.0 m/s)(2.04s) + 5(—9.80 m/s*)(2.04 s)> = 20.4m

(C) Determine the velocity of the stone when it returns to the height from which it was thrown.

SOLUTION

Choose the initial point where the stone is launched and the final point when it passes this position coming down.

2

Substitute known values into Equation 2.17: 1o = Ve T 20,0 ~ Ya)

v)©2 = (20.0 m/s)? + 2(—9.80 m/s?)(0 — 0) = 400 m?/s>

o = —20.0m/s
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b 2.10

When taking the square root, we could choose either a positive or a negative root. We choose the negative root because
we know that the stone is moving downward at point ©. The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but is opposite in direction.

(D) Find the velocity and position of the stone at ¢ = 5.00 s.

SOLUTION

Choose the initial point just after the throw and the final point 5.00 s later.

Calculate the velocity at ® from Equation 2.13: V0= Ve t ai=20.0 m/s + (—9.80 m/s?)(5.00s) = —29.0 m/s
Use Equation 2.16 to find the position of the Yo = Yo T vy@t + %a),tQ
stone at /g = 5.00s: =0+ (20.0 m/s)(5.00 s) + 5(—9.80 m/s2)(5.00 s)2

= —225m

The choice of the time defined as ¢ = 0 is arbitrary and up to you to select as the problem solver. As an example of this
arbitrariness, choose = 0 as the time at which the stone is at the highest point in its motion. Then solve parts (C) and
(D) again using this new initial instant and notice that your answers are the same as those above.

WP What if the throw were from 30.0 m above the ground instead of 50.0 m? Which answers in parts (A) to
(D) would change?

Answer None of the answers would change. All the motion takes place in the air during the first 5.00 s. (Notice that
even for a throw from 30.0 m, the stone is above the ground at ¢ = 5.00 s.) Therefore, the height of the throw is not an
issue. Mathematically, if we look back over our calculations, we see that we never entered the height of the throw into
any equation.

Kinematic Equations Derived from Calculus

This section assumes the reader is familiar with the techniques of integral calculus.
If you have not yet studied integration in your calculus course, you should skip this
section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position
as a function of time is known. Mathematically, the velocity equals the derivative of
the position with respect to time. It is also possible to find the position of a particle
if its velocity is known as a function of time. In calculus, the procedure used to
perform this task is referred to either as integration or as finding the antiderivative.
Graphically, it is equivalent to finding the area under a curve.

Suppose the vt graph for a particle moving along the x axis is as shown in
Figure 2.15 on page 44. Let us divide the time interval /, — {; into many small inter-
vals, each of duration A/,. From the definition of average velocity, we see that the
displacement of the particle during any small interval, such as the one shaded in
Figure 2.15, is given by Ax, = v,, ., Al,, where v,, .. is the average velocity in that
interval. Therefore, the displacement during this small interval is simply the area of
the shaded rectangle in Figure 2.15. The total displacement for the interval {, — ¢ is
the sum of the areas of all the rectangles from ¢ to #:

Ax = E vxn,avg Atn
n

where the symbol X (uppercase Greek sigma) signifies a sum over all terms, that is,
over all values of n. Now, as the intervals are made smaller and smaller, the num-
ber of terms in the sum increases and the sum approaches a value equal to the area
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Figure 2.15 Velocity versus time
for a particle moving along the

x axis. The total area under the
curve is the total displacement of
the particle.

Definite integral P>

v, = v,; = constant

At

<
—

xi

~F——— - — — —

Figure 2.16 The velocity-time
curve for a particle moving with
constant velocity v,;. The displace-
ment of the particle during the
time interval ¢, — ¢;is equal to the
area of the shaded rectangle.

The area of the shaded rectangle
v is equal to the displacement in
the time interval As,.

U)m,avg ________________

At

n

under the curve in the velocity—time graph. Therefore, in the limit n— %, or A, — 0,
the displacement is
Ax = Allirgoz Vavg Ay (2.18)
" n
If we know the v ~t graph for motion along a straight line, we can obtain the dis-
placement during any time interval by measuring the area under the curve corre-
sponding to that time interval.

The limit of the sum shown in Equation 2.18 is called a definite integral and is
written

Y
AltiI—I?O > Vg Al = J v (1) dt (2.19)

where v,(#) denotes the velocity at any time ¢. If the explicit functional form of v (?)
is known and the limits are given, the integral can be evaluated. Sometimes the
v~ graph for a moving particle has a shape much simpler than that shown in Fig-
ure 2.15. For example, suppose an object is described with the particle under con-
stant velocity model. In this case, the v,—# graph is a horizontal line as in Figure 2.16
and the displacement of the particle during the time interval A/is simply the area
of the shaded rectangle:

Ax = v,; At (when v, = v,; = constant)

Kinematic Equations
We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.13 and 2.16.
The defining equation for acceleration (Eq. 2.10),
dv
a, =
dt

may be written as dv, = a, dt or, in terms of an integral (or antiderivative), as

X

{
Uy — Uy :J a,dl
0

For the special case in which the acceleration is constant, a, can be removed from
the integral to give
t

Uy = Uy = %J dt=a(t—0)=ayu (2.20)
(

)
which is Equation 2.13 in the particle under constant acceleration model.
Now let us consider the defining equation for velocity (Eq. 2.5):
dx

T



General Problem-Solving Strategy

We can write this equation as dx = v, di or in integral form as

12
Xp— X =J v, dt
0

Because v, = v, = v,; + a,t, this expression becomes

12 l 92
/2
Xp— X J(vm+axt) dt=f vy, dt + axf tdt=vx,;(t—0)+ax<2—0>

0 0 0

l

2
Xp— X = vt + %axt'

which is Equation 2.16 in the particle under constant acceleration model.

Besides what you might expect to learn about physics concepts, a very valu-
able skill you should hope to take away from your physics course is the ability to
solve complicated problems. The way physicists approach complex situations and
break them into manageable pieces is extremely useful. The following is a general
problem-solving strategy to guide you through the steps. To help you remember
the steps of the strategy, they are Conceptualize, Categorize, Analyze, and Finalize.

45

GENERAL PROBLEM-SOLVING STRATEGY

Conceptualize

® The first things to do when approaching a problem
are to think about and understand the situation. Study
carefully any representations of the information (for
example, diagrams, graphs, tables, or photographs)
that accompany the problem. Imagine a movie, run-
ning in your mind, of what happens in the problem.

e If a pictorial representation is not provided, you
should almost always make a quick drawing of the
situation. Indicate any known values, perhaps in a
table or directly on your sketch.

* Now focus on what algebraic or numerical informa-
tion is given in the problem. Carefully read the prob-
lem statement, looking for key phrases such as “starts
from rest” (v; = 0), “stops” (vj = 0), or “falls freely”

(a,= —g=—9.80 m/s?).

* Now focus on the expected result of solving the prob-
lem. Exactly what is the question asking? Will the
final result be numerical or algebraic? Do you know
what units to expect?

e Don’t forget to incorporate information from your
own experiences and common sense. What should
a reasonable answer look like? For example, you
wouldn’t expect to calculate the speed of an automo-
bile to be 5 X 10° m/s.

Categorize

® Once you have a good idea of what the problem is
about, you need to simplify the problem. Remove

the details that are not important to the solution.
For example, model a moving object as a particle. If
appropriate, ignore air resistance or friction between
a sliding object and a surface.

Once the problem is simplified, it is important to ca-
egorize the problem. Is it a simple substitution problem
such that numbers can be substituted into a simple
equation or a definition? If so, the problem is likely
to be finished when this substitution is done. If not,
you face what we call an analysis problem: the situation
must be analyzed more deeply to generate an appro-
priate equation and reach a solution.

If it is an analysis problem, it needs to be categorized
further. Have you seen this type of problem before?
Does it fall into the growing list of types of problems
that you have solved previously? If so, identify any
analysis model(s) appropriate for the problem to pre-
pare for the Analyze step below. We saw the first three
analysis models in this chapter: the particle under
constant velocity, the particle under constant speed,
and the particle under constant acceleration. Being
able to classify a problem with an analysis model can
make it much easier to lay out a plan to solve it. For
example, if your simplification shows that the prob-
lem can be treated as a particle under constant accel-
eration and you have already solved such a problem
(such as the examples in Section 2.6), the solution to
the present problem follows a similar pattern.

continued
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Analyze

* Now you must analyze the problem and strive for a
mathematical solution. Because you have already
categorized the problem and identified an analysis
model, it should not be too difficult to select relevant
equations that apply to the type of situation in the
problem. For example, if the problem involves a par-
ticle under constant acceleration, Equations 2.13 to
2.17 are relevant.

e Use algebra (and calculus, if necessary) to solve sym-
bolically for the unknown variable in terms of what is
given. Finally, substitute in the appropriate numbers,
calculate the result, and round it to the proper num-
ber of significant figures.

Finalize

* Examine your numerical answer. Does it have the
correct units? Does it meet your expectations from
your conceptualization of the problem? What about
the algebraic form of the result? Does it make sense?
Examine the variables in the problem to see whether
the answer would change in a physically meaning-
ful way if the variables were drastically increased or
decreased or even became zero. Looking at limiting
cases to see whether they yield expected values is a
very useful way to make sure that you are obtaining
reasonable results.

When you Conceptualize a problem, try to under-
stand the situation that is presented in the prob-
lem statement. Study carefully any representa-
tions of the information (for example, diagrams,
graphs, tables, or photographs) that accompany
the problem. Imagine a movie, running in your

mind, of what happens in the problem.

Carrier Landing

Example 2.7

e Think about how this problem compared with others
you have solved. How was it similar? In what critical
ways did it differ? Why was this problem assigned?
Can you figure out what you have learned by doing
it? If it is a new category of problem, be sure you
understand it so that you can use it as a model for
solving similar problems in the future.

When solving complex problems, you may need to
identify a series of subproblems and apply the problem-
solving strategy to each. For simple problems, you prob-
ably don’t need this strategy. When you are trying to
solve a problem and you don’t know what to do next,
however, remember the steps in the strategy and use
them as a guide.

For practice, it would be useful for you to revisit
the worked examples in this chapter and identify the
Conceptualize, Categorize, Analyze, and Finalize steps. In
the rest of this book, we will label these steps explicitly
in the worked examples. Many chapters in this book
include a section labeled Problem-Solving Strategy that
should help you through the rough spots. These sec-
tions are organized according to the General Problem-
Solving Strategy outlined above and are tailored to the
specific types of problems addressed in that chapter.

To clarify how this Strategy works, we repeat Exam-
ple 2.7 below with the particular steps of the Strategy
identified.

Simplify the problem. Remove the details that
are not important to the solution. Then Catego-
rize the problem. Is it a simple substitution prob-
lem such that numbers can be substituted into a
simple equation or a definition? If not, you face
an analysis problem. In this case, identify the
appropriate analysis model.

A jet lands on an aircpaft carrier at a speed of 140 mi/h (= 63 m/s).

(A) What is its acceleration (assumed constant) if it stops-in 2.0 s due to an arresting cable that snags the jet and brings

it to a stop?

SOLUTION

Conceptualize

You might have seen movies-or television shows in which a jet lands on an aircraft carrier and is brought to rest surpris-
ingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial speed

of 63 m/s, we alsoKnow that the final speed is zero.

Categorize

Because the acceleration of the jet is assumed constant, we model it as a particle under constant acceleration.
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Analyze
We define our x axis as the direction of motion of the jet. Notice that we have no information about the change in posi-

tion of the jet while it is slowing down.
Uy T Y 0 —63m/s
t 2.0s

Equation 2.13 is the only equation in the particle under a, =
constant acceleration model that does not involve position,
so we use it to find the acceleration of the jet, modeled as
a particle:

—32 m/s?

(B) If the jet touches down at position x; = 0, what is its final position?

Use Equation 2.15 to solve for the final position: x=x+3(vy +v)t=0+563m/s +0)(2.0s) =63 m

Finalize
Given the size of aircraft carriers, a length of 63 m seems reasonable for stopping the jet. The idea of using arresting
cables to slow dewn landing aircraft and enable them to land safely on ships originated at about the time of World War I.

Now Analyze the problem. Select Finalize the problem. Examine the numerical What If? questions will appear in
relevant equations from the analysis answer. Does it have the correct units? Does it many examples in the text, and
model. Solve symbolically for the meet your expectations from your conceptual- offer a variation on the situation just
unknown variable in terms of what is ization of the problem? Does the answer make explored. This feature encourages
given. Substitute in the appropriate sense? What about the algebraic form of the you to think about the results of the
numbers, calculate the result, and result? Examine the variables in the problem to example and assists in conceptual
round it to the proper number of see whether the answer would change in a physi- understanding of the principles.
significant figures. cally meaningful way if the variables were drasti-

cally increased or decreased or even became zero.

Summary

When a particle moves The average velocity of a particle during some time interval is the displacement
along the xaxis from Ax divided by the time interval Az during which that displacement occurs:
some initial position x, to Ax
some final position «;, its Veag = 3, (2.2)
displacement is L . . .
The average speed of a particle is equal to the ratio of the total distance it travels to
Ax=x—x  (21) the total time interval during which it travels that distance:
d
Vag = 1 (2.3)

continued
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The instantaneous velocity of a particle The average acceleration of a particle is defined as the ratio of
is defined as the limit of the ratio Ax/At as the change in its velocity Av, divided by the time interval Az dur-
Atapproaches zero. By definition, this limit ing which that change occurs:
equals the derivative of x with respect to ¢, Av V= Uy

x X X1
or the time rate of change of the position: Coag = A, =, 7 (2.9)
f i
v, = lim & = = (2.5) The instantaneous acceleration is equal to the limit of the ratio

A0 Agdt Aw,/Atas Arapproaches 0. By definition, this limit equals the deriva-
The instantaneous speed of a partic]e is tive of U, with respect to i, or the time rate of change of the Velocity:
equal to the magnitude of its instantaneous
Vﬂloch ¢ a, = lim Av, _ dv, (2.10)

Ve oA A dt

Concepts and Principles

When an object’s velocity and acceleration are An object falling freely in the presence of the Earth’s
in the same direction, the object is speeding up. gravity experiences free-fall acceleration directed toward
On the other hand, when the object’s velocity and the center of the Earth. If air resistance is neglected, if the
acceleration are in opposite directions, the object is motion occurs near the surface of the Earth, and if the
slowing down. Remembering that F, & a_is a useful range of the motion is small compared with the Earth’s
way to identify the direction of the acceleration by radius, the free-fall acceleration a, = —gis constant over
associating it with a force. the range of motion, where gis equal to 9.80 m/s’.

Complicated problems are best An important aid to problem solving is the use of analysis models.
approached in an organized man- Analysis models are situations that we have seen in previous problems.
ner. Recall and apply the Conceptu- Each analysis model has one or more equations associated with it. When
alize, Categorize, Analyze, and Finalize solving a new problem, identify the analysis model that corresponds to the
steps of the General Problem- problem. The model will tell you which equations to use. The first three
Solving Strategy when you need analysis models introduced in this chapter are summarized below.
them.

Analysis Models for Problem-Solving

Particle Under Constant Velocity. If a particle moves Particle Under Constant Speed. If a particle moves
in a straight line with a constant speed v,, its constant a distance d along a curved or straight path with a con-
velocity is given by stant speed, its constant speed is given by

Ax d
_ =22 == 2.8

and its position is given by //,?

. AN

X= %+ Ut (2.7) 4 o
N )
o Q 2 @ \\ - 7
U — —_— —p —p i

Particle Under Constant Acceleration. If a particle %= x; + o{vg + vt (2.15)
moves in a straight line with a constant acceleration a,,
its motion is described by the kinematic equations: X =%+ vl + La? (2.16)

V= Uy T oayd (2.13)
v2 = U0+ 2a,(x— x;) (2.17)
v,; T Uys
Vog = — o (2.14) Vs g —— = =
’ 2 ) ) o ) >

a—b;b—b — —>



Objective Questions

1. One drop of oil falls straight down onto the road from

the engine of a moving car every 5 s. Figure OQ2.1
shows the pattern of the drops left behind on the pave-
ment. What is the average speed of the car over this
section of its motion? (a) 20 m/s (b) 24 m/s (c) 30 m/s
(d) 100 m/s (e) 120 m/s

600 m g

Figure 0Q2.1

. A racing car starts from rest at ¢ = 0 and reaches a
final speed v at time ¢ If the acceleration of the car
is constant during this time, which of the following
statements are true? (a) The car travels a distance vi.
(b) The average speed of the caris v/2. (c) The magni-
tude of the acceleration of the car is v/t. (d) The veloc-
ity of the car remains constant. (¢) None of statements
(a) through (d) is true.

. A juggler throws a bowling pin straight up in the air.
After the pin leaves his hand and while it is in the air,
which statement is true? (a) The velocity of the pin is
always in the same direction as its acceleration. (b) The
velocity of the pin is never in the same direction as its
acceleration. (c) The acceleration of the pin is zero.
(d) The velocity of the pin is opposite its acceleration
on the way up. (e) The velocity of the pin is in the same
direction as its acceleration on the way up.

. When applying the equations of kinematics for an
object moving in one dimension, which of the follow-
ing statements must be true? (a) The velocity of the
object must remain constant. (b) The acceleration of
the object must remain constant. (c) The velocity of the
object must increase with time. (d) The position of
the object must increase with time. (e) The velocity of
the object must always be in the same direction as its
acceleration.

. A cannon shell is fired straight up from the ground at an
initial speed of 225 m/s. After how much time is the shell
at a height of 6.20 X 102> m above the ground and mov-
ing downward? (a) 2.96 s (b) 17.3 s (c) 254 s (d) 33.6 s
(e) 43.0s

. An arrow is shot straight up in the air at an initial speed
of 15.0 m/s. After how much time is the arrow moving
downward at a speed of 8.00 m/s? (a) 0.714s (b) 1.24 s
() 1.87s (d) 2.35s (e) 3.22's

. When the pilot reverses the propeller in a boat moving
north, the boat moves with an acceleration directed
south. Assume the acceleration of the boat remains
constant in magnitude and direction. What hap-
pens to the boat? (a) It eventually stops and remains
stopped. (b) It eventually stops and then speeds up in
the forward direction. (c) It eventually stops and then
speeds up in the reverse direction. (d) It never stops

10.

11.

12.
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denotes answer available in Student Solutions Manual/Study Guide

but loses speed more and more slowly forever. (e) It
never stops but continues to speed up in the forward
direction.

. Arock is thrown downward from the top of a 40.0-m-tall

tower with an initial speed of 12 m/s. Assuming negligi-
ble air resistance, what is the speed of the rock just before
hitting the ground? (a) 28 m/s (b) 30 m/s (c) 56 m/s
(d) 784 m/s (e) More information is needed.

. A skateboarder starts from rest and moves down a hill

with constant acceleration in a straight line, traveling
for 6 s. In a second trial, he starts from rest and moves
along the same straight line with the same acceleration
for only 2 s. How does his displacement from his starting
point in this second trial compare with that from the
first trial? (a) one-third as large (b) three times larger
(c) one-ninth as large (d) nine times larger (e) 1/ V3
times as large

On another planet, a marble is released from rest at the
top of a high cliff. It falls 4.00 m in the first 1 s of its
motion. Through what additional distance does it fall in
the next 1s? (a) 4.00m (b) 8.00m (c) 12.0 m (d) 16.0 m
(e) 20.0 m

As an object moves along the x axis, many measure-
ments are made of its position, enough to generate
a smooth, accurate graph of x versus . Which of the
following quantities for the object cannot be obtained
from this graph alone? (a) the velocity at any instant
(b) the acceleration at any instant (c) the displacement
during some time interval (d) the average velocity dur-
ing some time interval (e) the speed at any instant

A pebble is dropped from rest from the top of a tall cliff
and falls 4.9 m after 1.0 s has elapsed. How much far-
ther does it drop in the next 2.0 s? (a) 9.8 m (b) 19.6 m
(c) 39 m (d) 44 m (e) none of the above

A student at the top of a building of height / throws

14.

15.

one ball upward with a speed of v, and then throws a
second ball downward with the same initial speed wv;.
Just before it reaches the ground, is the final speed
of the ball thrown upward (a) larger, (b) smaller, or
(c) the same in magnitude, compared with the final
speed of the ball thrown downward?

You drop a ball from a window located on an upper
floor of a building. It strikes the ground with speed v.
You now repeat the drop, but your friend down on the
ground throws another ball upward at the same speed
v, releasing her ball at the same moment that you drop
yours from the window. At some location, the balls
pass each other. Is this location (a) af the halfway point
between window and ground, (b) above this point, or
(c) below this point?

A pebble is released from rest at a certain height and
falls freely, reaching an impact speed of 4 m/s at the
floor. Next, the pebble is thrown down with an initial
speed of 3 m/s from the same height. What is its speed
at the floor? (@) 4 m/s (b) 5 m/s (¢) 6 m/s (d) 7 m/s
(e) 8 m/s
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16.

17.
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A ball is thrown straight up in the air. For which situa-
tion are both the instantaneous velocity and the accel-
eration zero? (a) on the way up (b) at the top of its
flight path (c) on the way down (d) halfway up and
halfway down (e) none of the above

A hard rubber ball,
not affected by air
resistance in its mo- / \
tion, is tossed upward
from shoulder height,
falls to the sidewalk, V!
rebounds to a smaller \
maximum height, and

is caught on its way ©

down again. This mo- Figure 0Q2.17
tion is represented in
Figure 0Q2.17, where
the successive positions of the ball ® through ® are not
equally spaced in time. At point ® the center of the ball
is at its lowest point in the motion. The motion of the
ball is along a straight, vertical line, but the diagram
shows successive positions offset to the right to avoid
overlapping. Choose the positive y direction to be up-
ward. (a) Rank the situations ® through ® according
to the speed of the ball \vy| at each point, with the larg-
est speed first. (b) Rank the same situations according
to the acceleration a, of the ball at each point. (In both
rankings, remember that zero is greater than a negative
value. If two values are equal, show that they are equal
in your ranking.)

18. Each of the strobe photographs (a), (b), and (c) in Fig-

ure 0Q2.18 was taken of a single disk moving toward
the right, which we take as the positive direction.
Within each photograph, the time interval between
images is constant. (i) Which photograph shows
motion with zero acceleration? (ii) Which photograph
shows motion with positive acceleration? (iii) Which
photograph shows motion with negative acceleration?

© Cengage Learning/Charles D. Winters

Figure 0Q2.18 Objective Question 18 and Problem 23.

denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions

If the average velocity of an object is zero in some time 6. You throw a ball vertically upward so that it leaves the

interval, what can you say about the displacement of
the object for that interval?

. Try the following experiment away from traffic where

you can do it safely. With the car you are driving mov-
ing slowly on a straight, level road, shift the transmis-
sion into neutral and let the car coast. At the moment
the car comes to a complete stop, step hard on the
brake and notice what you feel. Now repeat the same
experiment on a fairly gentle, uphill slope. Explain the
difference in what a person riding in the car feels in
the two cases. (Brian Popp suggested the idea for this
question.)

. If a car is traveling eastward, can its acceleration be

westward? Explain.

ground with velocity +5.00 m/s. (a) What is its velocity
when it reaches its maximum altitude? (b) What is its
acceleration at this point? (c) What is the velocity with
which it returns to ground level? (d) What is its accel-
eration at this point?

. (@) Can the equations of kinematics (Eqs. 2.13-2.17)

be used in a situation in which the acceleration varies
in time? (b) Can they be used when the acceleration is
zero?

. (a) Can the velocity of an object at an instant of time

be greater in magnitude than the average velocity over
a time interval containing the instant? (b) Can it be
less?

Two cars are moving in the same direction in paral-

4. If the \’61.0(‘,1ty of a paﬂrtlcle. is zero, can the particle’s lel lanes along a highway. At some instant, the velocity
acceleration be zero? Explain. of car A exceeds the velocity of car B. Does that mean
5. If the velocity of a particle is nonzero, can the particle’s that the acceleration of car A is greater than that of car

acceleration be zero? Explain.

B? Explain.
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WebAssign

Section 2.1 Position, Velocity, and Speed

The position versus time for a certain particle moving

along the x axis is shown in Figure P2.1. Find the aver-
age velocity in the time intervals (a) 0 to 2 s, (b) O to 4,
(c)2sto4s, (d) 4sto7s,and (e) 0 to 8s.

x (m)
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Figure P2.1 Problems 1 and 9.

2. The speed of a nerve impulse in the human body is
about 100 m/s. If you accidentally stub your toe in the
dark, estimate the time it takes the nerve impulse to
travel to your brain.

A person walks first at a constant speed of 5.00 m/s
1] along a straight line from point ® to point ® and then
back along the line from ® to ® at a constant speed of
3.00 m/s. (a) What is her average speed over the entire
trip? (b) What is her average velocity over the entire trip?

4. A particle moves according to the equation x = 102,

M where x is in meters and ¢ is in seconds. (a) Find the
average velocity for the time interval from 2.00 s to
3.00 s. (b) Find the average velocity for the time inter-
val from 2.00 to 2.10 s.

5. The position of a pinewood derby car was observed at
various times; the results are summarized in the fol-
lowing table. Find the average velocity of the car for
(a) the first second, (b) the last 3 s, and (c) the entire
period of observation.

ts) O 10 20 30 40 50
x(m) 0 2.3 92 207 368 575

Section 2.2 Instantaneous Velocity and Speed

6. The position of a particle moving along the x axis var-
ies in time according to the expression x = 3¢2, where
x is in meters and ¢ is in seconds. Evaluate its position
(a) at ¢ = 3.00 s and (b) at 3.00 s + A¢ (c) Evaluate the
limit of Ax/At¢as Atzapproaches zero to find the velocity
att=3.00s.

Problems 51

Analysis Model tutorial available in
Enhanced WebAssign

Y1 Master It tutorial available in Enhanced

Watch It video solution available in
Enhanced WebAssign

A position—time graph for a particle moving along
the x axis is shown in Figure P2.7. (a) Find the aver-
age velocity in the time interval 1 = 1.50 s to ¢ = 4.00 s.
(b) Determine the instantaneous velocity at t = 2.00 s
by measuring the slope of the tangent line shown in
the graph. (c) At what value of ¢is the velocity zero?

x (m)

Figure P2.7

8. An athlete leaves one end of a pool of length Lat ¢ =0
and arrives at the other end at time ¢,. She swims back
and arrives at the starting position at time /,. If she is
swimming initially in the positive x direction, deter-
mine her average velocities symbolically in (a) the first
half of the swim, (b) the second half of the swim, and
(c) the round trip. (d) What is her average speed for
the round trip?

9. Find the instantaneous velocity of the particle
described in Figure P2.1 at the following times: (a) { =
1.0s,(b) t=38.0s,(c) t=4.5s,and (d) t = 7.5s.

Section 2.3 Analysis Model: Particle
Under Constant Velocity

10. Review. The North American and European plates
of the Earth’s crust are drifting apart with a relative
speed of about 25 mm/yr. Take the speed as constant
and find when the rift between them started to open,
to reach a current width of 2.9 X 10% mi.

11. A hare and a tortoise compete in a race over a straight
course 1.00 km long. The tortoise crawls at a speed of
0.200 m/s toward the finish line. The hare runs at a
speed of 8.00 m/s toward the finish line for 0.800 km
and then stops to tease the slow-moving tortoise as the
tortoise eventually passes by. The hare waits for a while
after the tortoise passes and then runs toward the
finish line again at 8.00 m/s. Both the hare and the
tortoise cross the finish line at the exact same instant.
Assume both animals, when moving, move steadily at
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their respective speeds. (a) How far is the tortoise from
the finish line when the hare resumes the racer (b) For
how long in time was the hare stationary?

12. A car travels along a straight line at a constant speed of
60.0 mi/h for a distance d and then another distance d
in the same direction at another constant speed. The
average velocity for the entire trip is 30.0 mi/h. (a) What
is the constant speed with which the car moved during
the second distance d? (b) What If? Suppose the second
distance d were traveled in the opposite direction; you
forgot something and had to return home at the same
constant speed as found in part (a). What is the average
velocity for this trip? (c) What is the average speed for
this new trip?

13. A person takes a trip, driving with a constant speed of
M 89.5 km/h, except for a 22.0-min rest stop. If the per-
son’s average speed is 77.8 km/h, (a) how much time is
spent on the trip and (b) how far does the person travel?

Section 2.4 Acceleration

Review. A 50.0-g Super Ball traveling at 25.0 m/s bounces
[ off a brick wall and rebounds at 22.0 m/s. A high-speed
camera records this event. If the ball is in contact with
the wall for 3.50 ms, what is the magnitude of the aver-

age acceleration of the ball during this time interval?

15. A velocity—time graph for an object moving along the
x axis is shown in Figure P2.15. (a) Plot a graph of the
acceleration versus time. Determine the average accel-
eration of the object (b) in the time interval = 5.00s to
t=15.0 s and (c) in the time interval /= 0 to ¢ = 20.0 s.

v, (m/s)
8 -

(= 2]
T

L(s)
-2
-4
-6
-8

Figure P2.15

16. A child rolls a marble on a bent track that is 100 cm
long as shown in Figure P2.16. We use x to represent
the position of the marble along the track. On the hor-
izontal sections from x = 0 to x = 20 cm and from x =
40 ¢cm to x = 60 cm, the marble rolls with constant
speed. On the sloping sections, the marble’s speed
changes steadily. At the places where the slope changes,
the marble stays on the track and does not undergo any
sudden changes in speed. The child gives the marble
some initial speed at x = 0 and ¢ = 0 and then watches
it roll to x = 90 cm, where it turns around, eventually
returning to x = 0 with the same speed with which the
child released it. Prepare graphs of x versus ¢, v, versus
t,and a, versus {, vertically aligned with their time axes
identical, to show the motion of the marble. You will
not be able to place numbers other than zero on the

horizontal axis or on the velocity or acceleration axes,
but show the correct graph shapes.

100 cm

20 cm

40 cm 60 cm

Figure P2.16

17. Figure P2.17 shows a graph of v, versus /for the motion
of a motorcyclist as he starts from rest and moves along
the road in a straight line. (a) Find the average accel-
eration for the time interval 1 = 0 to ¢ = 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest
positive value and the value of the acceleration at that
instant. (c) When is the acceleration zero? (d) Estimate
the maximum negative value of the acceleration and
the time at which it occurs.

v, (m/s)
10

8

N A~ O

Figure P2.17

18. (a) Use the data in Problem 5 to construct a smooth
graph of position versus time. (b) By constructing tan-
gents to the x({) curve, find the instantaneous velocity
of the car at several instants. (c) Plot the instantaneous
velocity versus time and, from this information, deter-
mine the average acceleration of the car. (d) What was
the initial velocity of the car?

19. A particle starts from rest 4 _(m/s2)

M and accelerates as shown 2
in Figure P2.19. Deter- 1
mine (a) the particle’s 0 | —t(5)
speed at ¢+ = 10.0 s and at 5 10 15 20
1=20.0s,and (b) the dis- ~'[
tance traveled in the first — —2}
20.0 s. —3L

20. An object moves along Figure P2.19

the x axis according to

the equation x = 3.00¢> — 2.00¢ + 3.00, where x is in
meters and ¢ is in seconds. Determine (a) the average
speed between ( = 2.00 s and ¢ = 3.00 s, (b) the instan-
taneous speed at ¢ = 2.00 s and at ¢ = 3.00 s, (c) the
average acceleration between ¢ = 2.00 s and ¢ = 3.00 s,
and (d) the instantaneous acceleration at { = 2.00 s
and = 3.00s. (e) At what time is the object at rest?

A particle moves along the x axis according to the
7] equation x = 2.00 + 3.00¢ — 1.00¢%, where xis in meters
and ¢is in seconds. At ¢t = 3.00 s, find (a) the position of

the particle, (b) its velocity, and (c) its acceleration.



Section 2.5 Motion Diagrams

22. Draw motion diagrams for (a) an object moving to the
right at constant speed, (b) an object moving to the
right and speeding up at a constant rate, (c) an object
moving to the right and slowing down at a constant
rate, (d) an object moving to the left and speeding up
at a constant rate, and (e) an object moving to the left
and slowing down at a constant rate. (f) How would
your drawings change if the changes in speed were not
uniform, that is, if the speed were not changing at a
constant rate?

23. Each of the strobe photographs (a), (b), and (c) in Fig-
ure 0OQ2.18 was taken of a single disk moving toward
the right, which we take as the positive direction.
Within each photograph the time interval between
images is constant. For each photograph, prepare
graphs of x versus ¢, v, versus {, and a, versus [, verti-
cally aligned with their time axes identical, to show the
motion of the disk. You will not be able to place num-
bers other than zero on the axes, but show the correct
shapes for the graph lines.

Section 2.6 Analysis Model: Particle
Under Constant Acceleration

24. The minimum distance required to stop a car moving
at 35.0 mi/h is 40.0 ft. What is the minimum stopping
distance for the same car moving at 70.0 mi/h, assum-
ing the same rate of acceleration?

25. An electron in a cathode-ray tube accelerates uniformly
from 2.00 X 10* m/s to 6.00 X 10 m/s over 1.50 cm.
(a) In what time interval does the electron travel this
1.50 cm? (b) What is its acceleration?

26. A speedboat moving at 30.0 m/s approaches a no-wake
buoy marker 100 m ahead. The pilot slows the boat
with a constant acceleration of —3.50 m/s? by reducing
the throttle. (a) How long does it take the boat to reach
the buoy? (b) What is the velocity of the boat when it
reaches the buoy?

27. A parcel of air moving in a straight tube with a constant
acceleration of —4.00 m/s? has a velocity of 13.0 m/s at
10:05:00 a.m. (a) What is its velocity at 10:05:01 a.m.?
(b) At 10:05:04 a.m.? (c) At 10:04:59 a.m.? (d) Describe
the shape of a graph of velocity versus time for this par-
cel of air. (e) Argue for or against the following state-
ment: “Knowing the single value of an object’s constant
acceleration is like knowing a whole list of values for its
velocity.”

28. A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.

An object moving with uniform acceleration has a

7} velocity of 12.0 cm/s in the positive x direction when its

x coordinate is 3.00 cm. If its x coordinate 2.00 s later is
—5.00 cm, what is its acceleration?

In Example 2.7, we investigated a jet landing on an
[} aircraft carrier. In a later maneuver, the jet comes in
for a landing on solid ground with a speed of 100 m/s,
and its acceleration can have a maximum magnitude

Problems 53

of 5.00 m/s? as it comes to rest. (a) From the instant
the jet touches the runway, what is the minimum time
interval needed before it can come to rest? (b) Can
this jet land at a small tropical island airport where the
runway is 0.800 km long? (c) Explain your answer.

31.|Review. Colonel John P. Stapp, USAF, participated in

7] studying whether a jet pilot could survive emergency
ejection. On March 19, 1954, he rode a rocket-propelled
sled that moved down a track at a speed of 632 mi/h.
He and the sled were safely brought to rest in 1.40 s
(Fig. P2.31). Determine (a) the negative acceleration
he experienced and (b) the distance he traveled during
this negative acceleration.

A ’ AT

left, Courtesy U.S. Air Force;
right, NASA/Photo Researchers, Inc.
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Figure P2.31 (iefi) Col. John Stapp and his rocket sled are
brought to rest in a very short time interval. (right) Stapp’s face is
contorted by the stress of rapid negative acceleration.

32. Solve Example 2.8 by a graphical method. On the same
graph, plot position versus time for the car and the
trooper. From the intersection of the two curves, read
the time at which the trooper overtakes the car.

33. A truck on a straight road starts from rest, accelerat-
ing at 2.00 m/s? until it reaches a speed of 20.0 m/s.
Then the truck travels for 20.0 s at constant speed until
the brakes are applied, stopping the truck in a uniform
manner in an additional 5.00 s. (a) How long is the
truck in motion? (b) What is the average velocity of the
truck for the motion described?

34. Why s the following siluation impossible? Starting from
rest, a charging rhinoceros moves 50.0 m in a straight
line in 10.0 s. Her acceleration is constant during the
entire motion, and her final speed is 8.00 m/s.

The driver of a car slams on the brakes when he sees
[l a tree blocking the road. The car slows uniformly
M with an acceleration of —5.60 m/s? for 4.20 s, making
straight skid marks 62.4 m long, all the way to the tree.
With what speed does the car then strike the tree?

36. In the particle under constant acceleration model,
we identify the variables and parameters v,;, Uy g, L,
and x; — x,. Of the equations in the model, Equations
2.13-2.17, the first does not involve x, — x;, the sec-
ond and third do not contain a,, the fourth omits v,
and the last leaves out ¢. So, to complete the set, there
should be an equation not involving v,,. (a) Derive it
from the others. (b) Use the equation in part (a) to
solve Problem 35 in one step.

37. A speedboat travels in a straight line and increases in
speed uniformly from v; = 20.0 m/s to v, = 30.0 m/s in
(GP P displacement Ax of 200 m. We wish to find the time
interval required for the boat to move through this
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displacement. (a) Draw a coordinate system for this
situation. (b) What analysis model is most appropri-
ate for describing this situation? (c) From the analysis
model, what equation is most appropriate for finding
the acceleration of the speedboat? (d) Solve the equa-
tion selected in part (c) symbolically for the boat’s
acceleration in terms of v, v and Ax. (e) Substitute
numerical values to obtain the acceleration numeri-
cally. (f) Find the time interval mentioned above.

A particle moves along the x axis. Its position is given
by the equation x = 2 + 3¢ — 4/%, with xin meters and
tin seconds. Determine () its position when it changes
direction and (b) its velocity when it returns to the
position it had at = 0.

A glider of length € moves through a stationary pho-
togate on an air track. A photogate (Fig. P2.39) is
a device that measures the time interval A¢z; dur-
ing which the glider blocks a beam of infrared light
passing across the photogate. The ratio v, = €/At, is
the average velocity of the glider over this part of its
motion. Suppose the glider moves with constant accel-
eration. (a) Argue for or against the idea that v, is
equal to the instantaneous velocity of the glider when
it is halfway through the photogate in space. (b) Argue
for or against the idea that v, is equal to the instanta-
neous velocity of the glider when it is halfway through
the photogate in time.

40.

41.

Figure P2.39 Problems 39 and 40.

A glider of length 12.4 cm moves on an air track with
constant acceleration (Fig P2.39). A time interval of
0.628 s elapses between the moment when its front
end passes a fixed point ® along the track and the
moment when its back end passes this point. Next, a
time interval of 1.39 s elapses between the moment
when the back end of the glider passes the point ® and
the moment when the front end of the glider passes
a second point farther down the track. After that,
an additional 0.431 s elapses until the back end of the
glider passes point ®. (a) Find the average speed of the
glider as it passes point ®. (b) Find the acceleration of
the glider. (c) Explain how you can compute the accel-
eration without knowing the distance between points

® and ®.

An object moves with constant acceleration 4.00 m /s
and over a time interval reaches a final velocity of
12.0 m/s. (a) If its initial velocity is 6.00 m /s, what is its
displacement during the time interval? (b) What is the
distance it travels during this interval? (c) If its initial
velocity is —6.00 m/s, what is its displacement during

Ralph McGrew

42,

43.

44

the time interval? (d) What is the total distance it trav-
els during the interval in part (c)?

At t = 0, one toy car is set rolling on a straight track
with initial position 15.0 cm, initial velocity —3.50 cm/s,
and constant acceleration 2.40 cm/s?. At the same
moment, another toy car is set rolling on an adjacent
track with initial position 10.0 cm, initial velocity
+5.50 cm/s, and constant acceleration zero. (a) At
what time, if any, do the two cars have equal speeds?
(b) What are their speeds at that time? (c) At what
time(s), if any, do the cars pass each other? (d) What
are their locations at that time? (e) Explain the differ-
ence between question (a) and question (c) as clearly
as possible.

Figure P2.43 represents part % (m/s) )
of the performance data 50
of a car owned by a proud 40
physics student. (a) Calcu- 30
late the total distance trav- 20
eled by computing the area

under the red-brown graph <y
line. (b) What distance does 0 10 20 30 40 50
the car travel between the
times ¢+ = 10 s and ¢ = 40 s?
(c) Draw a graph of its accel-
eration versus time between ¢ = 0 and ¢ = 50 s. (d) Write
an equation for x as a function of time for each phase of
the motion, represented by the segments Oa, ab, and be.
(e) What is the average velocity of the car between ¢ = 0
and ¢ = 50 s?

(s)

Figure P2.43

. A hockey player is standing on his skates on a frozen

[l pond when an opposing player, moving with a uni-

form speed of 12.0 m/s, skates by with the puck. After
3.00 s, the first player makes up his mind to chase his
opponent. If he accelerates uniformly at 4.00 m/s?,
(a) how long does it take him to catch his opponent
and (b) how far has he traveled in that time? (Assume
the player with the puck remains in motion at constant
speed.)

Section 2.7 Freely Falling Objects

Note: In all problems in this section, ignore the effects
of air resistance.

45.

46.

In Chapter 9, we will define the center of mass of an
object and prove that its motion is described by the
particle under constant acceleration model when con-
stant forces act on the object. A gymnast jumps straight
up, with her center of mass moving at 2.80 m/s as she
leaves the ground. How high above this point is her
center of mass (a) 0.100 s, (b) 0.200 s, (c) 0.300 s, and
(d) 0.500 s thereafter?

An attacker at the base of a castle wall 3.65 m high
throws a rock straight up with speed 7.40 m/s from a
height of 1.55 m above the ground. (a) Will the rock
reach the top of the wall? (b) If so, what is its speed at
the top? If not, what initial speed must it have to reach
the top? (c) Find the change in speed of a rock thrown
straight down from the top of the wall at an initial
speed of 740 m/s and moving between the same two



points. (d) Does the change in speed of the downward-
moving rock agree with the magnitude of the speed
change of the rock moving upward between the same
elevations? (e) Explain physically why it does or does
not agree.

47. Why is the following situa-
tion impossible? Emily chal-
lenges David to catch a
$1 bill as follows. She
holds the bill vertically
as shown in Figure P2.47,
with the center of the bill
between but not touching
David’s index finger and
thumb. Without warning, :

Emily releases the bill. Figure P2.47

David catches the bill without moving his hand down-
ward. David’s reaction time is equal to the average
human reaction time.

A baseball is hit so that it travels straight upward after
M being struck by the bat. A fan observes that it takes
3.00 s for the ball to reach its maximum height. Find
(a) the ball’s initial velocity and (b) the height it reaches.

49. It is possible to shoot an arrow at a speed as high as
100 m/s. (a) If friction can be ignored, how high would
an arrow launched at this speed rise if shot straight up?
(b) How long would the arrow be in the air?

50. The height of a helicopter above the ground is given
by i = 8.00¢%, where h is in meters and ¢ is in seconds.
At t = 2.00 s, the helicopter releases a small mailbag.
How long after its release does the mailbag reach the
ground?

51. A ball is thrown directly downward with an initial
speed of 8.00 m/s from a height of 30.0 m. After what
time interval does it strike the ground?

52. A ball is thrown upward from the ground with an ini-

I tial speed of 25 m/s; at the same instant, another ball
is dropped from a building 15 m high. After how long
will the balls be at the same height above the ground?

A student throws a set of keys vertically upward to her
Yl sorority sister, who is in a window 4.00 m above. The
second student catches the keys 1.50 s later. (a) With
what initial velocity were the keys thrown? (b) What was

the velocity of the keys just before they were caught?

54. At time ¢ = 0, a student throws a set of keys vertically
upward to her sorority sister, who is in a window at
distance % above. The second student catches the keys
at time ¢ (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just
before they were caught?

A daring ranch hand sitting on a tree limb wishes

[XYii to drop vertically onto a horse galloping under the
tree. The constant speed of the horse is 10.0 m/s, and
the distance from the limb to the level of the saddle
is 3.00 m. (a) What must be the horizontal distance
between the saddle and limb when the ranch hand
makes his move? (b) For what time interval is he in
the air?

© Cengage Learning/George Semple
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Problems 55

A package is dropped at time ¢ = 0 from a helicopter
that is descending steadily at a speed v;. (a) What is the
speed of the package in terms of v;, g, and ¢ (b) What
vertical distance d is it from the helicopter in terms of
gand ¢? (c) What are the answers to parts (a) and (b) if
the helicopter is rising steadily at the same speed?

Section 2.8 Kinematic Equations Derived from Calculus

Automotive engineers refer to the time rate of change

58.
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of acceleration as the “jerk.” Assume an object moves in
one dimension such that its jerk Jis constant. (a) Deter-
mine expressions for its acceleration a,(t), velocity v, (1),
and position x(¢#), given that its initial acceleration,
velocity, and position are a,, v,;, and x; respectively.
(b) Show that a,? = a,* + 2J(v, — v,;).

A student drives a 3 (m/s)
moped along a straight 8
road as  described
by the velocity—time
graph in Figure P2.58. 1y
Sketch  this  graph 0 A
in the middle of a
sheet of graph paper. —g
(a) Directly above your
graph, sketch a graph

of the position versus
time, aligning the time coordinates of the two graphs.
(b) Sketch a graph of the acceleration versus time
directly below the velocity—time graph, again align-
ing the time coordinates. On each graph, show the
numerical values of xand a, for all points of inflection.
(c) What is the acceleration at ¢ = 6.00 s? (d) Find the
position (relative to the starting point) at ¢ = 6.00 s.
(e) What is the moped’s final position at ¢ = 9.00 s?

(s)

Figure P2.58

The speed of a bullet as it travels down the barrel of a
rifle toward the opening is given by

v = (=5.00 X 107)¢ + (3.00 X 10°)¢

where v is in meters per second and ¢ is in seconds.
The acceleration of the bullet just as it leaves the
barrel is zero. (a) Determine the acceleration and
position of the bullet as functions of time when the
bullet is in the barrel. (b) Determine the time inter-
val over which the bullet is accelerated. (c¢) Find the
speed at which the bullet leaves the barrel. (d) What
is the length of the barrel?

Additional Problems

60. A certain automobile manufacturer claims that its

61.

deluxe sports car will accelerate from rest to a speed
of 42.0 m/s in 8.00 s. (a) Determine the average accel-
eration of the car. (b) Assume that the car moves with
constant acceleration. Find the distance the car travels
in the first 8.00 s. (c) What is the speed of the car 10.0 s
after it begins its motion if it can continue to move with
the same acceleration?

The froghopper Philaenus spumarius is supposedly the
best jumper in the animal kingdom. To start a jump,
this insect can accelerate at 4.00 km/s?> over a dis-
tance of 2.00 mm as it straightens its specially adapted
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“jumping legs.” Assume the acceleration is constant.
(a) Find the upward velocity with which the insect takes
off. (b) In what time interval does it reach this velocity?
(c) How high would the insect jump if air resistance
were negligible? The actual height it reaches is about
70 cm, so air resistance must be a noticeable force on
the leaping froghopper.

An object is at x = 0 at / = 0 and moves along the x
axis according to the velocity—time graph in Figure
P2.62. (a) What is the object’s acceleration between 0
and 4.0 s? (b) What is the object’s acceleration between
4.0 s and 9.0 s? (c) What is the object’s acceleration
between 13.0 s and 18.0 s? (d) At what time(s) is the
object moving with the lowest speed? (e) At what time
is the object farthest from x = 0? (f) What is the final
position x of the objectat ¢ = 18.0 s? (g) Through what
total distance has the object moved between ¢ = 0 and
t=18.0s?

v, (m/s)
20 -
10 -
0 : ll() 1I5 £s)
—10 ‘_7’
Figure P2.62

An inquisitive physics student and mountain climber
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climbs a 50.0-m-high cliff that overhangs a calm pool of
water. He throws two stones vertically downward, 1.00 s
apart, and observes that they cause a single splash. The
first stone has an initial speed of 2.00 m/s. (a) How long
after release of the first stone do the two stones hit the
water? (b) What initial velocity must the second stone
have if the two stones are to hit the water simultane-
ously? (c) What is the speed of each stone at the instant
the two stones hit the water?

In Figure 2.11b, the area under the velocity—time
graph and between the vertical axis and time ¢ (ver-
tical dashed line) represents the displacement. As
shown, this area consists of a rectangle and a triangle.
(a) Compute their areas. (b) Explain how the sum of
the two areas compares with the expression on the
right-hand side of Equation 2.16.

A ball starts from rest and accelerates at 0.500 m/s?
while moving down an inclined plane 9.00 m long.
When it reaches the bottom, the ball rolls up another
plane, where it comes to rest after moving 15.0 m on
that plane. (a) What is the speed of the ball at the bot-
tom of the first plane? (b) During what time interval
does the ball roll down the first plane? (c) What is the
acceleration along the second plane? (d) What is the
ball’s speed 8.00 m along the second plane?

A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box
that she crushed to a depth of 18.0 in. She suffered
only minor injuries. Ignoring air resistance, calculate
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(a) the speed of the woman just before she collided
with the ventilator and (b) her average acceleration
while in contact with the box. (c) Modeling her accel-
eration as constant, calculate the time interval it took
to crush the box.

An elevator moves downward in a tall building at a
constant speed of 5.00 m/s. Exactly 5.00 s after the
top of the elevator car passes a bolt loosely attached to
the wall of the elevator shaft, the bolt falls from rest.
(a) At what time does the bolt hit the top of the still-
descending elevator? (b) In what way is this problem
similar to Example 2.8? (c) Estimate the highest floor
from which the bolt can fall if the elevator reaches
the ground floor before the bolt hits the top of the
elevator.

Why is the following situation impossible? A freight train

69.
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is lumbering along at a constant speed of 16.0 m/s.
Behind the freight train on the same track is a passen-
ger train traveling in the same direction at 40.0 m/s.
When the front of the passenger train is 58.5 m from
the back of the freight train, the engineer on the pas-
senger train recognizes the danger and hits the brakes
of his train, causing the train to move with accelera-
tion —3.00 m/s’. Because of the engineer’s action, the
trains do not collide.

The Acela is an electric train on the Washington—-New
York-Boston run, carrying passengers at 170 mi/h.
A velocity—time graph for the Acela is shown in Fig-
ure P2.69. (a) Describe the train’s motion in each suc-
cessive time interval. (b) Find the train’s peak posi-
tive acceleration in the motion graphed. (c) Find the
train’s displacement in miles between ¢ = 0 and ¢ =

200 s.

v (mi/h)
200 -
150
100

50 4

0 | | | | | | é |

=50 0 50 100 150 200 250 300 350N\400
50

t(s)

Figure P2.69 Velocity-time graph for the Acela.

Two objects move with initial velocity —8.00 m/s, final
velocity 16.0 m/s, and constant accelerations. (a) The
first object has displacement 20.0 m. Find its accelera-
tion. (b) The second object travels a total distance of
22.0 m. Find its acceleration.

. At ¢t = 0, one athlete in a race running on a long,

straight track with a constant speed v, is a distance d,
behind a second athlete running with a constant speed
Uy. (@) Under what circumstances is the first athlete
able to overtake the second athlete? (b) Find the time ¢
at which the first athlete overtakes the second athlete,
in terms of d;, v;, and v,. (c) At what minimum dis-
tance d, from the leading athlete must the finish line
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be located so that the trailing athlete can at least tie for
first place? Express d, in terms of d;, v;, and v, by using
the result of part (b).

A catapult launches a test rocket vertically upward from
a well, giving the rocket an initial speed of 80.0 m/s at
ground level. The engines then fire, and the rocket
accelerates upward at 4.00 m/s? until it reaches an
altitude of 1 000 m. At that point, its engines fail and
the rocket goes into free fall, with an acceleration of
—9.80 m/s%. (a) For what time interval is the rocket in
motion above the ground? (b) What is its maximum
altitude? (c) What is its velocity just before it hits the
ground? (You will need to consider the motion while
the engine is operating and the free-fall motion
separately.)

Kathy tests her new sports car by racing with Stan,
XYl an experienced racer. Both start from rest, but Kathy
"l leaves the starting line 1.00 s after Stan does. Stan
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moves with a constant acceleration of 3.50 m/s?, while
Kathy maintains an acceleration of 4.90 m/s?. Find
(a) the time at which Kathy overtakes Stan, (b) the
distance she travels before she catches him, and
(c) the speeds of both cars at the instant Kathy over-
takes Stan.

Two students are on a balcony a distance / above the
street. One student throws a ball vertically downward
ataspeed v;; at the same time, the other student throws
a ball vertically upward at the same speed. Answer the
following symbolically in terms of v, g h, and &
(a) What is the time interval between when the first
ball strikes the ground and the second ball strikes the
ground? (b) Find the velocity of each ball as it strikes
the ground. (c) How far apart are the balls at a time ¢
after they are thrown and before they strike the
ground?

75.|Two objects, A and B, are con- y

76.

nected by hinges to a rigid
rod that has a length L. The
objects slide along perpen-
dicular guide rails as shown in
Figure P2.75. Assume object A
slides to the left with a constant
speed v. (a) Find the velocity vy
of object B as a function of the
angle 0. (b) Describe vy relative
to v. Is vy always smaller than v, larger than v, or the
same as v, or does it have some other relationship?

. L
L
X‘i
A
]

Figure P2.75

]

(0]

Astronauts on a distant planet toss a rock into the
air. With the aid of a camera that takes pictures at a
steady rate, they record the rock’s height as a func-
tion of time as given in the following table. (a) Find
the rock’s average velocity in the time interval between
each measurement and the next. (b) Using these aver-
age velocities to approximate instantaneous velocities
at the midpoints of the time intervals, make a graph of
velocity as a function of time. (¢) Does the rock move
with constant acceleration? If so, plot a straight line of
best fit on the graph and calculate its slope to find the
acceleration.
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Problems 57
Time (s) Height (m) Time (s) Height (m)
0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90

A motorist drives along a straight road at a constant
speed of 15.0 m/s. Just as she passes a parked motor-
cycle police officer, the officer starts to accelerate at
2.00 m/s? to overtake her. Assuming that the officer
maintains this acceleration, (a) determine the time
interval required for the police officer to reach the
motorist. Find (b) the speed and (c) the total displace-
ment of the officer as he overtakes the motorist.

A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart,
the train never reaches its maximum possible cruis-
ing speed. During rush hour the engineer minimizes
the time interval Atz between two stations by acceler-
ating at a rate a; = 0.100 m/s? for a time interval Ay
and then immediately braking with acceleration a, =
—0.500 m/s? fora time interval Af,. Find the minimum
time interval of travel A7and the time interval A.

Liz rushes down onto a subway platform to find her
train already departing. She stops and watches the cars
go by. Each car is 8.60 m long. The first moves past her
in 1.50 s and the second in 1.10 s. Find the constant
acceleration of the train.

A hard rubber ball, released at chest height, falls to the
pavement and bounces back to nearly the same height.
When it is in contact with the pavement, the lower side
of the ball is temporarily flattened. Suppose the maxi-
mum depth of the dent is on the order of 1 cm. Find
the order of magnitude of the maximum acceleration
of the ball while it is in contact with the pavement.
State your assumptions, the quantities you estimate,
and the values you estimate for them.

Challenge Problems

81.

A blue car of length 4.52 m is moving north on a road-
way that intersects another perpendicular roadway (Fig.
P2.81, page 58). The width of the intersection from near
edge to far edge is 28.0 m. The blue car has a constant
acceleration of magnitude 2.10 m/s> directed south.
The time interval required for the nose of the blue car
to move from the near (south) edge of the intersection
to the north edge of the intersection is 3.10 s. (a) How
far is the nose of the blue car from the south edge of
the intersection when it stops? (b) For what time inter-
val is any part of the blue car within the boundaries of
the intersection? (c) A red car is at rest on the perpen-
dicular intersecting roadway. As the nose of the blue car
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enters the intersection, the red car starts from rest and
accelerates east at 5.60 m/s?. What is the minimum dis-
tance from the near (west) edge of the intersection at
which the nose of the red car can begin its motion if it
is to enter the intersection after the blue car has entirely
left the intersection? (d) If the red car begins its motion
at the position given by the answer to part (c), with what
speed does it enter the intersection?

N
\/\é—»l
S
—
28.0 m
m-> .
ag o
ag
Figure P2.81

Review. As soon as a traffic light turns green, a car
speeds up from rest to 50.0 mi/h with constant accel-
eration 9.00 mi/h/s. In the adjoining bicycle lane, a
cyclist speeds up from rest to 20.0 mi/h with constant
acceleration 13.0 mi/h/s. Each vehicle maintains con-
stant velocity after reaching its cruising speed. (a) For
what time interval is the bicycle ahead of the car?
(b) By what maximum distance does the bicycle lead
the car?

In a women’s 100-m race, accelerating uniformly,

Laura takes 2.00 s and Healan 3.00 s to attain their
maximum speeds, which they each maintain for the
rest of the race. They cross the finish line simultane-
ously, both setting a world record of 10.4 s. (a) What is
the acceleration of each sprinter? (b) What are their
respective maximum speeds? (c) Which sprinter is
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ahead at the 6.00-s mark, and by how much? (d) What
is the maximum distance by which Healan is behind
Laura, and at what time does that occur?

Two thin rods are fastened
to the inside of a circular
ring as shown in Figure
P2.84. One rod of length D
is vertical, and the other of
length L makes an angle 0
with the horizontal. The two
rods and the ring lie in a ver-
tical plane. Two small beads
are free to slide without fric-
tion along the rods. (a) If the
two beads are released from
rest simultaneously from the
positions shown, use your intuition and guess which
bead reaches the bottom first. (b) Find an expression
for the time interval required for the red bead to fall
from point ® to point © in terms of gand D. (c) Find
an expression for the time interval required for the
blue bead to slide from point ® to point © in terms of
g, L, and 0. (d) Show that the two time intervals found
in parts (b) and (c) are equal. Hint: What is the angle
between the chords of the circle ® ® and ® ©? (e) Do
these results surprise you? Was your intuitive guess in
part (a) correct? This problem was inspired by an arti-
cle by Thomas B. Greenslade, Jr., “Galileo’s Paradox,”
Phys. Teach. 46, 294 (May 2008).

A man drops a rock into a well. (a) The man hears the
sound of the splash 2.40 s after he releases the rock
from rest. The speed of sound in air (at the ambient
temperature) is 336 m/s. How far below the top of
the well is the surface of the water? (b) What If? If
the travel time for the sound is ignored, what percent-
age error is introduced when the depth of the well is
calculated?

Figure P2.84



