Superposition and
Standing Waves

The wave model was introduced in the previous two chapters. We have seen that
waves are very different from particles. A particle is of zero size, whereas a wave has a
characteristic size, its wavelength. Another important difference between waves and par-
ticles is that we can explore the possibility of two or more waves combining at one point

in the same medium. Particles can be combined to form extended objects, but the particles
must be at different locations. In contrast, two waves can both be present at the same loca-
tion. The ramifications of this possibility are explored in this chapter.

When waves are combined in systems with boundary conditions, only certain allowed
frequencies can exist and we say the frequencies are quantized. Quantization is a notion
that is at the heart of quantum mechanics, a subject introduced formally in Chapter 40.
There we show that analysis of waves under boundary conditions explains many of the
quantum phenomena. In this chapter, we use quantization to understand the behavior of the
wide array of musical instruments that are based on strings and air columns.
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Blues master B. B. King takes
advantage of standing waves on
strings. He changes to higher notes
on the guitar by pushing the strings
against the frets on the fingerboard,
shortening the lengths of the
portions of the strings that vibrate.
(AP Photo/Danny Moloshok)
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Superposition principle p>

Pitfall Prevention 18.1

Do Waves Actually Interfere? In
popular usage, the term inferfere
implies that an agent affects a
situation in some way so as to pre-
clude something from happening.
For example, in American foot-
ball, pass interference means that

a defending player has affected
the receiver so that the receiver

is unable to catch the ball. This
usage is very different from its
use in physics, where waves pass
through each other and interfere,
but do not affect each other in
any way. In physics, interference
is similar to the notion of combina-
tion as described in this chapter.

Constructive interference P

Destructive interference P

Chapter 18 Superposition and Standing Waves

We also consider the combination of waves having different frequencies. When two
sound waves having nearly the same frequency interfere, we hear variations in the loudness
called beats. Finally, we discuss how any nonsinusoidal periodic wave can be described as a
sum of sine and cosine functions.

Analysis Model: Waves in Interference

Many interesting wave phenomena in nature cannot be described by a single travel-
ing wave. Instead, one must analyze these phenomena in terms of a combination of
traveling waves. As noted in the introduction, waves have a remarkable difference
from particles in that waves can be combined at the same location in space. To ana-
lyze such wave combinations, we make use of the superposition principle:

If two or more traveling waves are moving through a medium, the resultant
value of the wave function at any point is the algebraic sum of the values of
the wave functions of the individual waves.

Waves that obey this principle are called linear waves. (See Section 16.6.) In the case
of mechanical waves, linear waves are generally characterized by having amplitudes
much smaller than their wavelengths. Waves that violate the superposition prin-
ciple are called nonlinear waves and are often characterized by large amplitudes. In
this book, we deal only with linear waves.

One consequence of the superposition principle is that two traveling waves can
pass through each other without being destroyed or even altered. For instance,
when two pebbles are thrown into a pond and hit the surface at different locations,
the expanding circular surface waves from the two locations simply pass through
each other with no permanent effect. The resulting complex pattern can be viewed
as two independent sets of expanding circles.

Figure 18.1 is a pictorial representation of the superposition of two pulses. The
wave function for the pulse moving to the right is y;, and the wave function for the
pulse moving to the left is y,. The pulses have the same speed but different shapes,
and the displacement of the elements of the medium is in the positive y direction
for both pulses. When the waves overlap (Fig. 18.1b), the wave function for the
resulting complex wave is given by y; + y,. When the crests of the pulses coincide
(Fig. 18.1c), the resulting wave given by y; + y, has a larger amplitude than that of
the individual pulses. The two pulses finally separate and continue moving in their
original directions (Fig. 18.1d). Notice that the pulse shapes remain unchanged
after the interaction, as if the two pulses had never met!

The combination of separate waves in the same region of space to produce a
resultant wave is called interference. For the two pulses shown in Figure 18.1, the
displacement of the elements of the medium is in the positive y direction for both
pulses, and the resultant pulse (created when the individual pulses overlap) exhib-
its an amplitude greater than that of either individual pulse. Because the displace-
ments caused by the two pulses are in the same direction, we refer to their superpo-
sition as constructive interference.

Now consider two pulses traveling in opposite directions on a taut string where
one pulse is inverted relative to the other as illustrated in Figure 18.2. When these
pulses begin to overlap, the resultant pulse is given by y, + y,, but the values of the
function y, are negative. Again, the two pulses pass through each other; because
the displacements caused by the two pulses are in opposite directions, however, we
refer to their superposition as destructive interference.

The superposition principle is the centerpiece of the analysis model called
waves in interference. In many situations, both in acoustics and optics, waves com-
bine according to this principle and exhibit interesting phenomena with practical
applications.
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When the pulses overlap, the
wave function is the sum of
the individual wave functions.
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When the crests of the two
pulses align, the amplitude is
the sum of the individual
amplitudes.
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When the pulses no longer
overlap, they have not been
permanently affected by the

interference.
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Figure 18.1 Constructive interfer-
ence. Two positive pulses travel on

a stretched string in opposite direc-
tions and overlap.
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When the pulses overlap, the
wave function is the sum of
the individual wave functions.

Y1tYe

When the crests of the two
pulses align, the amplitude is
the difference between the
individual amplitudes.
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When the pulses no longer
overlap, they have not been
permanently affected by the
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Figure 18.2 Destructive interfer-
ence. Two pulses, one positive and
one negative, travel on a stretched
string in opposite directions and
overlap.

Duick Quiz 18.1 Two pulses move in opposite directions on a string and are iden-
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tical in shape except that one has positive displacements of the elements of the

string and the other has negative displacements. At the moment the two pulses

completely overlap on the string, what happens? (a) The energy associated with
: the pulses has disappeared. (b) The string is not moving. (c) The string forms a
& straight line. (d) The pulses have vanished and will not reappear.

Superposition of Sinusoidal Waves

Let us now apply the principle of superposition to two sinusoidal waves traveling in
the same direction in a linear medium. If the two waves are traveling to the right
and have the same frequency, wavelength, and amplitude but differ in phase, we
can express their individual wave functions as

¥y, = Asin (kx — wl) y, = Asin (kx — ot + ¢)

where, as usual, k = 277/, = 27f, and ¢ is the phase constant as discussed in Sec-
tion 16.2. Hence, the resultant wave function y is

y=19 + 9y, = A[sin (kx — wl) + sin (kx — wt + ¢)]

To simplify this expression, we use the trigonometric identity

. . a— b\ . a+ b
s1na+smb=2cos(2>sm< 5 >
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Figure 18.3 The superposition
of two identical waves y; and y,
(blue and green, respectively) to
yield a resultant wave (red-brown).

Resultant of two traveling P>
sinusoidal waves

A sound wave from the speaker
(S) propagates into the tube and
splits into two parts at point P.

Path length 7y

Path length ry

The two waves, which combine
at the opposite side, are
detected at the receiver (R).

Figure 18.4 An acoustical
system for demonstrating interfer-
ence of sound waves. The upper
path length r, can be varied by
sliding the upper section.
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! y The individual waves are in phase
) A M and therefore indistinguishable.
a X Constructive interference: the
/ < amplitudes add.
¢=0°

N i The individual waves are 180° out
b A/K) / of phase.
. /NN

Destructive interference: the

A ‘¢ waves cancel.
¢ = 180°
y b N R This intermediate result is neither
Yo constructive nor destructive.
| x
> e
¢ = 60°

Letting @ = kx — wtand b = kx — wt + ¢, we find that the resultant wave function y

reduces to
y = 2A cos (Z) sin <kx — wt + Z)

This result has several important features. The resultant wave function y also is
sinusoidal and has the same frequency and wavelength as the individual waves
because the sine function incorporates the same values of k and o that appear in
the original wave functions. The amplitude of the resultant wave is 2A cos (¢/2),
and its phase constant is ¢p/2. If the phase constant ¢ of the original wave equals 0,
then cos (¢/2) = cos 0 = 1 and the amplitude of the resultant wave is 24, twice the
amplitude of either individual wave. In this case, the crests of the two waves are at
the same locations in space and the waves are said to be everywhere in phase and
therefore interfere constructively. The individual waves y; and y, combine to form
the red-brown curve y of amplitude 24 shown in Figure 18.3a. Because the indi-
vidual waves are in phase, they are indistinguishable in Figure 18.3a, where they
appear as a single blue curve. In general, constructive interference occurs when
cos (¢/2) = *£1. Thatis true, for example, when ¢ = 0, 277, 477, . . . rad, that is, when
¢ is an even multiple of .

When ¢ is equal to 7 rad or to any odd multiple of 7, then cos (¢/2) = cos (7/2) =
0 and the crests of one wave occur at the same positions as the troughs of the sec-
ond wave (Fig. 18.3b). Therefore, as a consequence of destructive interference, the
resultant wave has zero amplitude everywhere as shown by the straight red-brown
line in Figure 18.3b. Finally, when the phase constant has an arbitrary value other
than 0 or an integer multiple of 7 rad (Fig. 18.3¢), the resultant wave has an ampli-
tude whose value is somewhere between 0 and 2A.

In the more general case in which the waves have the same wavelength but dif-
ferent amplitudes, the results are similar with the following exceptions. In the in-
phase case, the amplitude of the resultant wave is not twice that of a single wave,
but rather is the sum of the amplitudes of the two waves. When the waves are 7 rad
out of phase, they do not completely cancel as in Figure 18.3b. The result is a wave
whose amplitude is the difference in the amplitudes of the individual waves.

Interference of Sound Waves

One simple device for demonstrating interference of sound waves is illustrated in
Figure 18.4. Sound from a loudspeaker S is sent into a tube at point P, where there is
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a T-shaped junction. Half the sound energy travels in one direction, and half travels
in the opposite direction. Therefore, the sound waves that reach the receiver R can
travel along either of the two paths. The distance along any path from speaker to
receiver is called the path length ». The lower path length r, is fixed, but the upper
path length 7, can be varied by sliding the U-shaped tube, which is similar to that
on aslide trombone. When the difference in the path lengths Ar = |r, — r| is either
zero or some integer multiple of the wavelength A (that is, Ar = nA, where n =
0,1, 2,3,...), the two waves reaching the receiver at any instant are in phase and
interfere constructively as shown in Figure 18.3a. For this case, a maximum in the
sound intensity is detected at the receiver. If the path length r, is adjusted such that
the path difference Ar=A/2,3A/2, ..., nA/2 (for n odd), the two waves are exactly
a rad, or 180°, out of phase at the receiver and hence cancel each other. In this case
of destructive interference, no sound is detected at the receiver. This simple experi-
ment demonstrates that a phase difference may arise between two waves generated
by the same source when they travel along paths of unequal lengths. This impor-
tant phenomenon will be indispensable in our investigation of the interference of
light waves in Chapter 37.

AUEINERVGGEE  Waves in Interference

Imagine two waves traveling Y+ Yo Examples:
in the same location through Ny
a medium. The displacement
of elements of the medium is
affected by both waves. Accord-
ing to the principle of superpo-
sition, the displacement is the
sum of the individual displace-
ments that would be caused by
each wave. When the waves are in phase, constructive interference

® a piano tuner listens to a piano string
and a tuning fork vibrating together
Constructive and notices beats (Section 18.7)

o
+ i 3
Ji+ Y2y interference e light waves from two coherent sources

combine to form an interference pat-
Destructive tern on a screen (Chapter 37)

interference ¢ a thin film of oil on top of water shows
swirls of color (Chapter 37)

occurs and the resultant displacement is larger than the individual ® x-rays passing through a crystalline solid
displacements. Destructive interference occurs when the waves are combine to form a Laue pattern
out of phase. (Chapter 38)

Example 18.1 Two Speakers Driven by the Same Source

Two identical loudspeakers placed 3.00 m apart are driven by the same oscillator (Fig. 18.5). A listener is originally at
point O, located 8.00 m from the center of the line connecting the two speakers. The listener then moves to point P,
which is a perpendicular distance 0.350 m from O, and she experiences the first minimum in sound intensity. What is
the frequency of the oscillator?

SOLUTION

Conceptualize In Figure 18.4, a sound wave enters a T3 n

0.350 m
tube and is then acoustically split into two different paths Mim r|
before recombining at the other end. In this example, 500 m 8.00 m . !
a signal representing the sound is electrically split and o % o Tl‘ 8; o
sent to two different loudspeakers. After leaving the
speakers, the sound waves recombine at the position of L A J
the listener. Despite the difference in how the splitting 8.00m
occurs, the path difference discussion related to Figure Figure 18.5 (Example 18.1) Two identical loudspeakers emit
18.4 can be applied here. sound waves to a listener at P.

Categorize Because the sound waves from two separate sources combine, we apply the waves in interference analysis
model. conlinued
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Analyze Figure 18.5 shows the physical arrangement of the speakers, along with two shaded right triangles that can be
drawn on the basis of the lengths described in the problem. The first minimum occurs when the two waves reaching

the listener at point Pare 180° out of phase, in other words, when their path difference Arequals A/2.

From the shaded triangles, find the path lengths from
the speakers to the listener:

1= V(8.00m)? + (1.15m)? = 8.08 m

ro = V(8.00m)? + (1.85m)? = 8.21 m

Hence, the path difference is », — r; = 0.13 m. Because this path difference must equal A/2 for the first minimum,

A=0.26m.

To obtain the oscillator frequency, use Equation 16.12,
v = Af, where v is the speed of sound in air, 343 m/s:

Finalize This example enables us to understand why the
speaker wires in a stereo system should be connected
properly. When connected the wrong way—that is, when
the positive (or red) wire is connected to the negative
(or black) terminal on one of the speakers and the other
is correctly wired—the speakers are said to be “out of

v 343 m/s
= — = —— = RINAFl
A 0.26 m

ing from one speaker destructively interferes with the
wave coming from the other at point O in Figure 18.5. A
rarefaction region due to one speaker is superposed on
a compression region from the other speaker. Although
the two sounds probably do not completely cancel each
other (because the left and right stereo signals are usu-

phase,” with one speaker moving outward while the other  ally not identical), a substantial loss of sound quality

moves inward. As a consequence, the sound wave com-  occurs at point O.

What if the speakers were connected out of phase? What happens at point Pin Figure 18.5?

Answer In this situation, the path difference of A/2 combines with a phase difference of A/2 due to the incorrect wir-
ing to give a full phase difference of A. As a result, the waves are in phase and there is a maximum intensity at point P.

Ve Standing Waves

The sound waves from the pair of loudspeakers in Example 18.1 leave the speakers

R
<l

|| in the forward direction, and we considered interference at a point in front of the
speakers. Suppose we turn the speakers so that they face each other and then have
them emit sound of the same frequency and amplitude. In this situation, two identi-
h— cal waves travel in opposite directions in the same medium as in Figure 18.6. These

» waves combine in accordance with the waves in interference model.

¥ We can analyze such a situation by considering wave functions for two transverse
< sinusoidal waves having the same amplitude, frequency, and wavelength but travel-
- ing in opposite directions in the same medium:
Figure 18.6 Two identical loud-
speakers emit sound waves toward
each other. When they overlap,
identical waves traveling in opposite
directions will combine to form
standing waves.

¥, = Asin (kx — wt)  y, = Asin (kx + ot)

where y, represents a wave traveling in the positive x direction and y, represents one
traveling in the negative x direction. Adding these two functions gives the resultant
wave function y:

Yy =19 + 9y, = Asin (kx — wf) + Asin (kx + wi)

When we use the trigonometric identity sin (¢ * b) = sin a cos b £ cos asin b, this
expression reduces to

y = (2A sin kx) cos wt (18.1)

Equation 18.1 represents the wave function of a standing wave. A standing wave
such as the one on a string shown in Figure 18.7 is an oscillation pattern with a sta-
tionary outline that results from the superposition of two identical waves traveling in
opposite directions.



18.2 Standing Waves 539

The amplitude of the vertical oscillation of any element of the string
depends on the horizontal position of the element. Each element
vibrates within the confines of the envelope function 2A sin kx.

Antinode Antinode

2A sin kx

© 1991 Richard Megna/Fundamental Photographs

Notice that Equation 18.1 does not contain a function of kx — wi. Therefore, it
is not an expression for a single traveling wave. When you observe a standing wave,
there is no sense of motion in the direction of propagation of either original wave.
Comparing Equation 18.1 with Equation 15.6, we see that it describes a special kind
of simple harmonic motion. Every element of the medium oscillates in simple har-
monic motion with the same angular frequency w (according to the cos w/ factor
in the equation). The amplitude of the simple harmonic motion of a given element
(given by the factor 2A sin kx, the coefficient of the cosine function) depends on
the location x of the element in the medium, however.

If you can find a noncordless telephone with a coiled cord connecting the hand-
set to the base unit, you can see the difference between a standing wave and a trav-
eling wave. Stretch the coiled cord out and flick it with a finger. You will see a pulse
traveling along the cord. Now shake the handset up and down and adjust your shak-
ing frequency until every coil on the cord is moving up at the same time and then
down. That is a standing wave, formed from the combination of waves moving away
from your hand and reflected from the base unit toward your hand. Notice that
there is no sense of traveling along the cord like there was for the pulse. You only
see up-and-down motion of the elements of the cord.

Equation 18.1 shows that the amplitude of the simple harmonic motion of an
element of the medium has a minimum value of zero when x satisfies the condition
sin kx = 0, that is, when

kx =0, , 2, 37, . . .
Because k = 2m/A, these values for kx give

A 3A nA
x=0,— A, —,... = n=20,1,2,3, ... (18.2)
2 2 2
These points of zero amplitude are called nodes.

The element of the medium with the greatest possible displacement from equi-
librium has an amplitude of 24, which we define as the amplitude of the standing
wave. The positions in the medium at which this maximum displacement occurs
are called antinodes. The antinodes are located at positions for which the coordi-
nate x satisfies the condition sin kx = *1, that is, when

m 3w bw
kx = 7’ ’ b
2° 2 2
Therefore, the positions of the antinodes are given by
A 3X bA nA

x=—— —, ... =— n=1,8b, ... (18.3)
444 4

Figure 18.7 Multiflash pho-
tograph of a standing wave on a
string. The time behavior of the
vertical displacement from equi-
librium of an individual element
of the string is given by cos wt.
That is, each element vibrates at
an angular frequency w.

Pitfall Prevention 18.2
Three Types of Amplitude We

need to distinguish carefully here
between the amplitude of the
individual waves, which is A, and
the amplitude of the simple har-
monic motion of the elements of
the medium, which is 2A sin kx. A
given element in a standing wave
vibrates within the constraints of
the envelope function 2A sin kx,
where xis that element’s position
in the medium. Such vibration is
in contrast to traveling sinusoidal
waves, in which all elements oscil-
late with the same amplitude and
the same frequency and the ampli-
tude A of the wave is the same

as the amplitude A of the simple
harmonic motion of the elements.
Furthermore, we can identify the
amplitude of the standing wave
as 2A.

<« Positions of nodes

<« Positions of antinodes
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Figure 18.8 Standing-wave
patterns produced at various times
by two waves of equal amplitude
traveling in opposite directions.
For the resultant wave y, the nodes
(N) are points of zero displace-
ment and the antinodes (A) are
points of maximum displacement.
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Two nodes and two antinodes are labeled in the standing wave in Figure 18.7.
The light blue curve labeled 24 sin kx in Figure 18.7 represents one wavelength of
the traveling waves that combine to form the standing wave. Figure 18.7 and Equa-
tions 18.2 and 18.3 provide the following important features of the locations of
nodes and antinodes:

The distance between adjacent antinodes is equal to A/2.
The distance between adjacent nodes is equal to A/2.
The distance between a node and an adjacent antinode is A/4.

Wave patterns of the elements of the medium produced at various times by two
transverse traveling waves moving in opposite directions are shown in Figure 18.8.
The blue and green curves are the wave patterns for the individual traveling waves,
and the red-brown curves are the wave patterns for the resultant standing wave. At
t = 0 (Fig. 18.8a), the two traveling waves are in phase, giving a wave pattern in
which each element of the medium is at rest and experiencing its maximum dis-
placement from equilibrium. One-quarter of a period later, at t = 7/4 (Fig. 18.8b),
the traveling waves have moved one-fourth of a wavelength (one to the right and
the other to the left). At this time, the traveling waves are out of phase, and each
element of the medium is passing through the equilibrium position in its simple
harmonic motion. The result is zero displacement for elements at all values of x;
that is, the wave pattern is a straight line. At ¢t = 7/2 (Fig. 18.8¢), the traveling
waves are again in phase, producing a wave pattern that is inverted relative to the
t = 0 pattern. In the standing wave, the elements of the medium alternate in time
between the extremes shown in Figures 18.8a and 18.8c.

. g
(Duick Quiz 18.2 Consider the waves in Figure 18.8 to be waves on a stretched

string. Define the velocity of elements of the string as positive if they are moving

upward in the figure. (i) At the moment the string has the shape shown by the

red-brown curve in Figure 18.8a, what is the instantaneous velocity of elements

along the string? (a) zero for all elements (b) positive for all elements (c) nega-

tive for all elements (d) varies with the position of the element (ii) From the same

choices, at the moment the string has the shape shown by the red-brown curve in
& Flgure 18.8b, what is the instantaneous velocity of elements along the string?

Example 18.2 Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

¥, = 4.0 sin (3.0x — 2.07)
¥, = 4.0 sin (3.0x + 2.01)

where xand yare measured in centimeters and ¢is in seconds.

(A) Find the amplitude of the simple harmonic motion of the element of the medium located at x = 2.3 cm.
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b 18.2

SOLUTION

Conceptualize The waves described by the given equations are identical except for their directions of travel, so they
indeed combine to form a standing wave as discussed in this section. We can represent the waves graphically by the
blue and green curves in Figure 18.8.

Categorize We will substitute values into equations developed in this section, so we categorize this example as a sub-
stitution problem.

From the equations for the waves, we see that A = 4.0 cm, y = (2Asin kx) cos wt = 8.0 sin 3.0x cos 2.0¢
k= 3.0rad/cm, and w = 2.0 rad/s. Use Equation 18.1 to
write an expression for the standing wave:

Find the amplitude of the simple harmonic motion of Vmax = (8.0 cm) sin 3.0x |, _ o5
the element at the position x = 2.3 cm by evaluating the

sine function at this position: = (8.0 cm) sin (6.9 rad) = '4.6 cm

(B) Find the positions of the nodes and antinodes if one end of the string is at x = 0.

SOLUTION

2 2
Find the wavelength of the traveling waves: k= )7\7 =30rad/cm — A= ;Z; cm
Use Equation 18.2 to find the locations of the nodes: = 7 A_ n(l) cm n=0,1.2 9%
2 3.0 % ¥ ’ ¢ il
Use Equation 18.3 to find the locations of the antinodes: x=n A_ n(i) em n=1.59.5.7
4 6.0 oo

Analysis Model: Waves Under
Boundary Conditions

Consider a string of length L. fixed at both ends as shown in Figure 18.9. We will use

this system as a model for a guitar string or piano string. Waves can travel in both L
directions on the string. Therefore, standing waves can be set up in the string by a
continuous superposition of waves incident on and reflected from the ends. Notice
that there is a boundary condition for the waves on the string: because the ends of
the string are fixed, they must necessarily have zero displacement and are there-
fore nodes by definition. The condition that both ends of the string must be nodes
fixes the wavelength of the standing wave on the string according to Equation 18.2,
which, in turn, determines the frequency of the wave. The boundary condition
results in the string having a number of discrete natural patterns of oscillation,
called normal modes, each of which has a characteristic frequency that is easily cal-
culated. This situation in which only certain frequencies of oscillation are allowed
is called quantization. Quantization is a common occurrence when waves are sub-
ject to boundary conditions and is a central feature in our discussions of quantum
physics in the extended version of this text. Notice in Figure 18.8 that there are
no boundary conditions, so standing waves of any frequency can be established;
there is no quantization without boundary conditions. Because boundary condi-
tions occur so often for waves, we identify an analysis model called waves under
boundary conditions for the discussion that follows.

The normal modes of oscillation for the string in Figure 18.9 can be described
by imposing the boundary conditions that the ends be nodes and that the nodes be
separated by one-half of a wavelength with antinodes halfway between the nodes.
The first normal mode that is consistent with these requirements, shown in Figure
18.10a (page 542), has nodes at its ends and one antinode in the middle. This normal

Figure 18.9 Astring of length L
fixed at both ends.
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Fundamental, or first harmonic Second harmonic Third harmonic
A N A N A N N A N A N A N
N N
A fo e
n=1 =gA n=2 L=Xy n=13 L=%)\3

Wavelengths of P>
normal modes

Natural frequencies of P>
normal modes as functions
of wave speed and length
of string

Natural frequencies of P>
normal modes as functions
of string tension and
linear mass density

Fundamental frequency
of a taut string P>

Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series.
The string vibrates between the extremes shown.

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength A, is equal to twice the
length of the string, or A; = 2L. The section of a standing wave from one node to
the next node is called a loop. In the first normal mode, the string is vibrating in
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two
loops. When the left half of the string is moving upward, the right half is moving
downward. In this case, the wavelength A, is equal to the length of the string, as
expressed by A, = L. The third normal mode (see Fig. 18.10c) corresponds to the
case in which A3 = 21./3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

_er

A, = n=123,... (18.4)

n

where the index n refers to the nth normal mode of oscillation. These modes are
possible. The actual modes that are excited on a string are discussed shortly.

The natural frequencies associated with the modes of oscillation are obtained
from the relationship f = v/A, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies f, of the normal
modes are

=T =n— n=123 (18.5)
j”—/\n nQL n ,2,3, ... .
These natural frequencies are also called the quantized frequencies associated with the
vibrating string fixed at both ends.
Because v = VT/u (see Eq. 16.18) for waves on a string, where 7'is the tension
in the string and u is its linear mass density, we can also express the natural fre-
quencies of a taut string as

T
fﬁ=£ﬁ n=1273... (18.6)

The lowest frequency f;, which corresponds to n = 1, is called either the fundamen-
tal or the fundamental frequency and is given by

_ 1T
fl—QL\/; (18.7)

The frequencies of the remaining normal modes are integer multiples of the
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such
an integer- multiple relationship form a harmonic series, and the normal modes
are called harmonics. The fundamental frequency f; is the frequency of the first
harmonic, the frequency f, = 2/, is that of the second harmonic, and the frequency
/, = nf; is that of the nth harmonic. Other oscillating systems, such as a drumhead,
exhibit normal modes, but the frequencies are not related as integer multiples of
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in

association with those types of systems.
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Let us examine further how the various harmonics are created in a string. To
excite only a single harmonic, the string would have to be distorted into a shape
that corresponds to that of the desired harmonic. After being released, the string
would vibrate at the frequency of that harmonic. This maneuver is difficult to
perform, however, and is not how a string of a musical instrument is excited. If
the string is distorted into a general, nonsinusoidal shape, the resulting vibration
includes a combination of various harmonics. Such a distortion occurs in musical
instruments when the string is plucked (as in a guitar), bowed (as in a cello), or
struck (as in a piano). When the string is distorted into a nonsinusoidal shape, only
waves that satisfy the boundary conditions can persist on the string. These waves
are the harmonics.

The frequency of a string that defines the musical note that it plays is that of the
fundamental, even though other harmonics are present. The string’s frequency can
be varied by changing the string’s tension or its length. For example, the tension
in guitar and violin strings is varied by a screw adjustment mechanism or by tun
ing pegs located on the neck of the instrument. As the tension is increased, the
frequency of the normal modes increases in accordance with Equation 18.6. Once
the instrument is “tuned,” players vary the frequency by moving their fingers along
the neck, thereby changing the length of the oscillating portion of the string. As the
length is shortened, the frequency increases because, as Equation 18.6 specifies, the
normal-mode frequencies are inversely proportional to string length.

(uick Quiz 18.3 When a standing wave is set up on a string fixed at both ends,
. which of the following statements is true? (a) The number of nodes is equal to
- the number of antinodes. (b) The wavelength is equal to the length of the string
divided by an integer. (c) The frequency is equal to the number of nodes times
the fundamental frequency. (d) The shape of the string at any instant shows a
symmetry about the midpoint of the string.

RGEWSTHY (I Waves Under Boundary Conditions

Imagine a wave that is not free Examples:
to travel throughout all space

as in the traveling wave model.

If the wave is subject to bound

ary conditions, such that cer

tain requirements must be met

at specific locations in space,

the wave is limited to a set of

normal modes with quantized wavelengths and quantized natural
frequencies.

For waves on a string fixed at both ends, the natural frequencies are UL B G e T S
— (Chapter 41)

— - 1.92.3 (18.6) e the Fermi energy of metal is deter
mined by modeling electrons as wave-
where is the tension in the string and is its linear mass density. like particles in a box (Chapter 43)

® waves traveling back and forth on
a guitar string combine to form a
standing wave

* sound waves traveling back and forth
in a clarinet combine to form stand-
ing waves (Section 18.5)

® a microscopic particle confined to
small region of space is modeled as a

Example 18.3 Give Me a C Note! -

The middle C string on a piano has a fundamental frequency of 262 Hz, and the string for the first A above middle C
has a fundamental frequency of 440 Hz.

Calculate the frequencies of the next two harmonics of the C string.

conlinued
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) 18.3

SOLUTION

Conceptualize Remember that the harmonics of a vibrating string have frequencies that are related by integer mul-
tiples of the fundamental.

Categorize This first part of the example is a simple substitution problem.

Knowing that the fundamental frequency is /; = 262 Hz, Jo =2/ = 524 Hz
find th'e frequencies of the next harmonics by multiply- [, =3/ = 786 Hz
ing by integers: :

(B) If the A and C strings have the same linear mass density u and length L, determine the ratio of tensions in the
two strings.

SOLUTION

Categorize This part of the example is more of an analysis problem than is part (A) and uses the waves under boundary
conditions model.

. . . 1 Ty 1 T¢
Analyze Use Equation 18.7 to write expressions for the fia=27+/— and  fic =/ —
fundamental frequencies of the two strings: ® ®

/ 7 7 Sia\'_ [440)\?

Divide the first equation by the second and solve for the a2 = ‘LA =) = 282
. L fic Tc T fic 262

ratio of tensions:

Finalize If the frequencies of piano strings were determined solely by tension, this result suggests that the ratio of ten-
sions from the lowest string to the highest string on the piano would be enormous. Such large tensions would make it
difficult to design a frame to support the strings. In reality, the frequencies of piano strings vary due to additional param-
eters, including the mass per unit length and the length of the string. The What If? below explores a variation in length.

If you look inside a real piano, you'll see that the assumption made in part (B) is only partially true. The
strings are not likely to have the same length. The string densities for the given notes might be equal, but suppose the
length of the A string is only 64% of the length of the C string. What is the ratio of their tensions?

Answer Using Equation 18.7 again, we set up the ratio of frequencies:
o _Le [T T (La(A)
Se  Ia N Te Tc Le) \ e

T ; 0\?
A (0.64)2<£> =1.16
T, 9262

Notice that this result represents only a 16% increase in tension, compared with the 182% increase in part (B).

Example 18.4 Changing String Vibration with Water

One end of a horizontal string is attached to a vibrating blade, and the other end passes over a pulley as in Figure
18.11a. A sphere of mass 2.00 kg hangs on the end of the string. The string is vibrating in its second harmonic. A con-
tainer of water is raised under the sphere so that the sphere is completely submerged. In this configuration, the string
vibrates in its fifth harmonic as shown in Figure 18.11b. What is the radius of the sphere?

SOLUTION

Conceptualize Imagine what happens when the sphere is immersed in the water. The buoyant force acts upward on
the sphere, reducing the tension in the string. The change in tension causes a change in the speed of waves on the
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) 18.4

@)
Figure 18.11 (Example 18.4)
il _6_ (a) When the sphere hangs in air,

— —
I \‘ o

the string vibrates in its second

harmonic. (b) When the sphere

is immersed in water, the string

vibrates in its fifth harmonic.

string, which in turn causes a change in the wavelength. This altered wavelength results in the string vibrating in its
fifth normal mode rather than the second.

Categorize The hanging sphere is modeled as a particle in equilibrium. One of the forces acting on it is the buoyant
force from the water. We also apply the waves under boundary conditions model to the string.

Analyze Apply the particle in equilibrium model to the S F=T —mg=0

sphere in Figure 18.11a, identifying 7; as the tension in

the string as the sphere hangs in air: L= mg
Apply the particle in equilibrium model to the sphere in 1, +B—mg=0
Figure 18.11b, where T, is the tension in the string as the (1) B=mg— T,

sphere is immersed in water:

The desired quantity, the radius of the sphere, will appear in the expression for the buoyant force B. Before proceed-
ing in this direction, however, we must evaluate 7, from the information about the standing wave.

n T
Write the equation for the frequency of a standing wave = 2*}4 — n, [T,
on a string (Eq. 18.6) twice, once before the sphere is ~ - 1= P /?
immersed and once after. Notice that the frequency fis _ e | Ty : 2
the same in both cases because it is determined by the 2L N p
vibrating blade. In addition, the linear mass density p
and the length L of the vibrating portion of the string
are the same in both cases. Divide the equations:
Solve for 1} = (M) 1 = (MY
olve for 7: 2=, =G, mg
n\? ny\?
Substitute this result into Equation (1): @2) B=mg-— o) mg = mg 1 - -
2 2
Using Equation 14.5, express the buoyant force in terms B = puaier€VYsphere = Puater g(Gmr®)
of the radius of the sphere:
3B 1/3 3 m n, 2 1/3
Solve for the radius of the sphere and substitute from r= <ﬁ> = {47[1 - <17> } }
Equation (2) T Pyater8 TP ater 2
. 3(2.00 kg) 2\21) 3
Substitute numerical values: r= ~ 11—
47(1 000 kg/m”) 5

= 0.0737m = 7.37cm
Finalize Notice that only certain radii of the sphere will result in the string vibrating in a normal mode; the speed of
waves on the string must be changed to a value such that the length of the string is an integer multiple of half wave-
lengths. This limitation is a feature of the quantization that was introduced earlier in this chapter: the sphere radii that
cause the string to vibrate in a normal mode are quantized.
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When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.

Vibrating
blade

Figure 18.12 Standing waves are
set up in a string when one end is
connected to a vibrating blade.

LW Resonance

We have seen that a system such as a taut string is capable of oscillating in one or
more normal modes of oscillation. Suppose we drive such a string with a vibrating
blade as in Figure 18.12. We find that if a periodic force is applied to such a system,
the amplitude of the resulting motion of the string is greatest when the frequency
of the applied force is equal to one of the natural frequencies of the system. This
phenomenon, known as resonance, was discussed in Section 15.7 with regard to a
simple harmonic oscillator. Although a block-spring system or a simple pendulum
has only one natural frequency, standing-wave systems have a whole set of natural
frequencies, such as that given by Equation 18.6 for a string. Because an oscillat-
ing system exhibits a large amplitude when driven at any of its natural frequencies,
these frequencies are often referred to as resonance frequencies.

Consider the string in Figure 18.12 again. The fixed end is a node, and the end
connected to the blade is very nearly a node because the amplitude of the blade’s
motion is small compared with that of the elements of the string. As the blade oscil-
lates, transverse waves sent down the string are reflected from the fixed end. As
we learned in Section 18.3, the string has natural frequencies that are determined
by its length, tension, and linear mass density (see Eq. 18.6). When the frequency
of the blade equals one of the natural frequencies of the string, standing waves
are produced and the string oscillates with a large amplitude. In this resonance
case, the wave generated by the oscillating blade is in phase with the reflected wave
and the string absorbs energy from the blade. If the string is driven at a frequency
that is not one of its natural frequencies, the oscillations are of low amplitude and
exhibit no stable pattern.

Resonance is very important in the excitation of musical instruments based on
air columns. We shall discuss this application of resonance in Section 18.5.

Standing Waves in Air Columns

The waves under boundary conditions model can also be applied to sound waves in
a column of air such as that inside an organ pipe or a clarinet. Standing waves in
this case are the result of interference between longitudinal sound waves traveling
in opposite directions.

In a pipe closed at one end, the closed end is a displacement node because the
rigid barrier at this end does not allow longitudinal motion of the air. Because the
pressure wave is 90° out of phase with the displacement wave (see Section 17.1),
the closed end of an air column corresponds to a pressure antinode (that is, a
point of maximum pressure variation).

The open end of an air column is approximately a displacement antinode' and
a pressure node. We can understand why no pressure variation occurs at an open
end by noting that the end of the air column is open to the atmosphere; therefore,
the pressure at this end must remain constant at atmospheric pressure.

You may wonder how a sound wave can reflect from an open end because there
may not appear to be a change in the medium at this point: the medium through
which the sound wave moves is air both inside and outside the pipe. Sound can be
represented as a pressure wave, however, and a compression region of the sound
wave is constrained by the sides of the pipe as long as the region is inside the pipe.
As the compression region exits at the open end of the pipe, the constraint of the
pipe is removed and the compressed air is free to expand into the atmosphere.
Therefore, there is a change in the character of the medium between the inside

'Strictly speaking, the open end of an air column is not exactly a displacement antinode. A compression reaching
an open end does not reflect until it passes beyond the end. For a tube of circular cross section, an end correction
equal to approximately 0.6, where R is the tube’s radius, must be added to the length of the air column. Hence, the
effective length of the air column is longer than the true length L. We ignore this end correction in this discussion.
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In a pipe closed at one end, the
open end is a displacement
antinode and the closed end is

In a pipe open at both ends, the
ends are displacement antinodes
and the harmonic series contains
all integer multiples of the
fundamental.

a node. The harmonic series
contains only odd integer
multiples of the fundamental.

First harmonic First harmonic

Second harmonic Third harmonic

Third harmonic Fifth harmonic

of the pipe and the outside even though there is no change in the material of the
medium. This change in character is sufficient to allow some reflection.

With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed
at both ends. Therefore, the air column has quantized frequencies.

The first three normal modes of oscillation of a pipe open at both ends are
shown in Figure 18.13a. Notice that both ends are displacement antinodes (approx-
imately). In the first normal mode, the standing wave extends between two adjacent
antinodes, which is a distance of half a wavelength. Therefore, the wavelength is
twice the length of the pipe, and the fundamental frequency is /| = v/2L. As Figure
18.13a shows, the frequencies of the higher harmonics are 2f}, 3f;, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because all harmonics are present and because the fundamental frequency is given
by the same expression as that for a string (see Eq. 18.5), we can express the natural
frequencies of oscillation as

- v o

fh=n or n =

Despite the similarity between Equations 18.5 and 18.8, you must remember that v

in Equation 18.5 is the speed of waves on the string, whereas v in Equation 18.8 is
the speed of sound in air.

If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.13b). In this case, the standing wave for the fundamental
mode extends from an antinode to the adjacent node, which is one-fourth of a wave-
length. Hence, the wavelength for the first normal mode is 4L, and the fundamental

1,2,3,... (18.8)

547

Figure 18.13 Graphical
representations of the motion of
elements of air in standing lon-
gitudinal waves in (a) a column
open at both ends and (b) a col-
umn closed at one end.

Pitfall Prevention 18.3

Sound Waves in Air Are Lon-
gitudinal, Not Transverse The
standing longitudinal waves are
drawn as transverse waves in Fig-
ure 18.13. Because they are in the
same direction as the propaga-
tion, it is difficult to draw longitu-
dinal displacements. Therefore, it
is best to interpret the red-brown
curves in Figure 18.13 as a graphi-
cal representation of the waves
(our diagrams of string waves are
pictorial representations), with
the vertical axis representing the
horizontal displacement s(x, ¢) of
the elements of the medium.

Natural frequencies of a pipe
< open at both ends
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frequency is f; = v/4L. As Figure 18.13b shows, the higher-frequency waves that sat-
isfy our conditions are those that have a node at the closed end and an antinode at
the open end; hence, the higher harmonics have frequencies 3/}, 5/, . . . .

In a pipe closed at one end, the natural frequencies of oscillation form a har-
monic series that includes only odd integral multiples of the fundamental
frequency.

We express this result mathematically as

v

Natural frequencies of P famn— m=1,3:5:.: (18.9)
a pipe closed at one end 4L

and open at the other It is interesting to investigate what happens to the frequencies of instruments

based on air columns and strings during a concert as the temperature rises. The
sound emitted by a flute, for example, becomes sharp (increases in frequency)
as the flute warms up because the speed of sound increases in the increasingly
warmer air inside the flute (consider Eq. 18.8). The sound produced by a violin
becomes flat (decreases in frequency) as the strings thermally expand because the
expansion causes their tension to decrease (see Eq. 18.6).

Musical instruments based on air columns are generally excited by resonance.
The air column is presented with a sound wave that is rich in many frequencies. The
air column then responds with a large-amplitude oscillation to the frequencies that
match the quantized frequencies in its set of harmonics. In many woodwind instru-
ments, the initial rich sound is provided by a vibrating reed. In brass instruments,
this excitation is provided by the sound coming from the vibration of the player’s
lips. In a flute, the initial excitation comes from blowing over an edge at the mouth-
piece of the instrument in a manner similar to blowing across the opening of a bot-
tle with a narrow neck. The sound of the air rushing across the bottle opening has
many frequencies, including one that sets the air cavity in the bottle into resonance.

@uick Quiz 18.4 A pipe open at both ends resonates at a fundamental frequency
: Jopen- When one end is covered and the pipe is again made to resonate, the
. fundamental frequency is f,..q. Which of the following expressions describes
. how these two resonant frequencies compare? (@) fiosea = fopen (P) fetosea = % Jopen

(C) fclosed = 2fopen (d) j;:losed = %ﬁ)pen

(M uick Quiz 18.5 Balboa Park in San Diego has an outdoor organ. When the air
. temperature increases, the fundamental frequency of one of the organ pipes
o (a) stays the same, (b) goes down, (c) goes up, or (d) is impossible to determine.

Example 18.5 Wind in a Culvert

A section of drainage culvert 1.23 m in length makes a howling noise when the wind blows across its open ends.

(A) Determine the frequencies of the first three harmonics of the culvert if it is cylindrical in shape and open at
both ends. Take v = 343 m/s as the speed of sound in air.

SOLUTION

Conceptualize The sound of the wind blowing across the end of the pipe contains many frequencies, and the culvert
responds to the sound by vibrating at the natural frequencies of the air column.
Categorize This example is a relatively simple substitution problem.

v 343 m/s

Find the frequency of the first harmonic of the culvert, fi = or = W = 139 Hz
20 M

modeling it as an air column open at both ends:

Find the next harmonics by multiplying by integers: fo=2fi= 279 Hz
f3=3f; = 418 Hz
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P 18.5
(B) What are the three lowest natural frequencies of the culvert if it is blocked at one end?

SOLUTION

Find the frequency of the first harmonic of the culvert, N
modeling it as an air column closed at one end:

v 343 m/s

=—=——"—""""= 697Hz
4L 4(1.23m)

Find the next two harmonics by multiplying by odd f3=3fi= 209 Hz
integers: =5/ = 349Hz

Example 18.6 Measuring the Frequency of a Tuning Fork

A simple apparatus for demonstrating resonance in an air col-

umn is depicted in Figure 18.14. A vertical pipe open at both

ends is partially submerged in water, and a tuning fork vibrat-
ing at an unknown frequency is placed near the top of the pipe.
The length L of the air column can be adjusted by moving the
pipe vertically. The sound waves generated by the fork are rein-
forced when L corresponds to one of the resonance frequen-
cies of the pipe. For a certain pipe, the smallest value of L for
which a peak occurs in the sound intensity is 9.00 cm.

T 5)/4

+ OOl

A4

First Second Third
resonance resonance  resonance

(A) Whatis the frequency of the tuning fork? (third (fifth
harmonic) harmonic)

SOLUTION b |

Conceptualize Sound waves from the tuning fork enter the Figure 18.14 (Example 18.6) (a) Apparatus for dem-
pipe at its upper end. Although the pipe is open at its lower onstrating the resonance of sound waves in a pipe closed

s . .Thel h L of the ai 1 i i /
end to allow the water to enter, the water’s surface acts like a ?;(igﬁ;?}?e pipee $:rgt;cally0w;1ifeailtrisa;;rlzglll; :zlr)ﬁirtge d
barrier. The waves reflect from the water surface and combine in water. (b) The first three normal modes of the system
with those moving downward to form a standing wave. shown in (a).

Categorize Because of the reflection of the sound waves from the water surface, we can model the pipe as open at
the upper end and closed at the lower end. Therefore, we can apply the waves under boundary conditions model to this
situation.

Analyze

343
Use Equation 18.9 to find the fundamental frequency = Lo WS e,

for I = 0.090 0 m: 4L 4(0.090 0 m)

Because the tuning fork causes the air column to resonate at this frequency, this frequency must also be that of the
tuning fork.

(B) What are the values of L for the next two resonance conditions?

SOLUTION

343
Use Equation 16.12 to find the wavelength of the sound A== 3WS  om
: /953 Hz
wave from the tuning fork:
Notice from Figure 18.14b that the length of the air col- L=3)A4= 0.270 m
umn for the second resonance is 3A/4:
Notice from Figure 18.14b that the length of the air col- L=5)A/4= 0450 m

umn for the third resonance is bA/4:

Finalize Consider how this problem differs from the preceding example. In the culvert, the length was fixed and the
air column was presented with a mixture of many frequencies. The pipe in this example is presented with one single
frequency from the tuning fork, and the length of the pipe is varied until resonance is achieved.
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Figure 18.15 Normal-mode
longitudinal vibrations of a rod
of length L (a) clamped at the
middle to produce the first nor-
mal mode and (b) clamped at

a distance /4 from one end to
produce the second normal mode.
Notice that the red-brown curves
are graphical representations of
oscillations parallel to the rod
(longitudinal waves).

Figure 18.16 Representation

of some of the normal modes
possible in a circular membrane
fixed at its perimeter. The pair of
numbers above each pattern cor-
responds to the number of radial
nodes and the number of circular
nodes, respectively. In each dia-
gram, elements of the membrane
on either side of a nodal line move
in opposite directions, as indicated
by the colors. (Adapted from T. D.
Rossing, The Science of Sound, 3rd
ed., Reading, Massachusetts, Addison-
Wesley Publishing Co., 2001)

Superposition and Standing Waves

Standing Waves in Rods and Membranes

Standing waves can also be set up in rods and membranes. A rod clamped in the
middle and stroked parallel to the rod at one end oscillates as depicted in Figure
18.15a. The oscillations of the elements of the rod are longitudinal, and so the red-
brown curves in Figure 18.15 represent longitudinal displacements of various parts
of the rod. For clarity, the displacements have been drawn in the transverse direc-
tion as they were for air columns. The midpoint is a displacement node because it
is fixed by the clamp, whereas the ends are displacement antinodes because they
are free to oscillate. The oscillations in this setup are analogous to those in a pipe
open at both ends. The red-brown lines in Figure 18.15a represent the first normal
mode, for which the wavelength is 2L and the frequency is f = v/2L, where v is the
speed of longitudinal waves in the rod. Other normal modes may be excited by
clamping the rod at different points. For example, the second normal mode (Fig.
18.15b) is excited by clamping the rod a distance L/4 away from one end.

It is also possible to set up transverse standing waves in rods. Musical instru-
ments that depend on transverse standing waves in rods or bars include triangles,
marimbas, xylophones, glockenspiels, chimes, and vibraphones. Other devices that
make sounds from vibrating bars include music boxes and wind chimes.

Two-dimensional oscillations can be set up in a flexible membrane stretched
over a circular hoop such as that in a drumhead. As the membrane is struck at
some point, waves that arrive at the fixed boundary are reflected many times. The
resulting sound is not harmonic because the standing waves have frequencies that
are not related by integer multiples. Without this relationship, the sound may be
more correctly described as noise rather than as music. The production of noise
is in contrast to the situation in wind and stringed instruments, which produce
sounds that we describe as musical.

Some possible normal modes of oscillation for a two-dimensional circular mem-
brane are shown in Figure 18.16. Whereas nodes are points in one-dimensional
standing waves on strings and in air columns, a two-dimensional oscillator has
curves along which there is no displacement of the elements of the medium. The
lowest normal mode, which has a frequency f;, contains only one nodal curve; this
curve runs around the outer edge of the membrane. The other possible normal
modes show additional nodal curves that are circles and straight lines across the
diameter of the membrane.

1WA Beats: Interference in Time

The interference phenomena we have studied so far involve the superposition of
two or more waves having the same frequency. Because the amplitude of the oscil-

01 11 21 02 31 12
Below each pattern
is a factor by which
the frequency of the
mode is larger than o - :
that of the 01 mode. | 1.59 2.14 2.30 2.65 2.92
Th(.? fre.quenmes of 929 03 51 39 61
oscillation do not
form a harmonic
series because these
factors are not

3.16 3.50 3.60 3.65 4.06 4.15

integers.

B Elements of the medium moving
out of the page at an instant of time.

M Elements of the medium moving
into the page at an instant of time.
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lation of elements of the medium varies with the position in space of the element
in such a wave, we refer to the phenomenon as spatial interference. Standing waves in
strings and pipes are common examples of spatial interference.

Now let’s consider another type of interference, one that results from the super-
position of two waves having slightly different frequencies. In this case, when the two
waves are observed at a point in space, they are periodically in and out of phase.
That is, there is a temporal (time) alternation between constructive and destructive
interference. As a consequence, we refer to this phenomenon as interference in time
or temporal interference. For example, if two tuning forks of slightly different frequen-
cies are struck, one hears a sound of periodically varying amplitude. This phenom-
enon is called beating.

Beating is the periodic variation in amplitude at a given point due to the
superposition of two waves having slightly different frequencies.

The number of amplitude maxima one hears per second, or the beat frequency,
equals the difference in frequency between the two sources as we shall show below.
The maximum beat frequency that the human ear can detect is about 20 beats/s.
When the beat frequency exceeds this value, the beats blend indistinguishably with
the sounds producing them.

Consider two sound waves of equal amplitude and slightly different frequencies
/1 and f, traveling through a medium. We use equations similar to Equation 16.13 to
represent the wave functions for these two waves at a point that we identify as x = 0.
We also choose the phase angle in Equation 16.13 as ¢ = 7/2:

y; = Asin <;T - w1t> = Acos (27/11)

yo = Asin (;T - w2t> = Acos (27fyt)

Using the superposition principle, we find that the resultant wave function at this
point is
Y=y, + y9 = A (cos 2mfit + cos 27fyl)

The trigonometric identity

a— b a+ b
cosa+ cosb=2cos| —— | cos

2 2

allows us to write the expression for y as

y = {QA cos 2w<ﬁ;ﬁ>t] cos 2w<ﬁ;_fz>t (18.10)

Graphs of the individual waves and the resultant wave are shown in Figure 18.17.
From the factors in Equation 18.10, we see that the resultant wave has an effective

< Definition of beating

4 Resultant of two waves of
different frequencies but
equal amplitude

Figure 18.17 Beats are formed
by the combination of two waves
of slightly different frequencies.
(a) The individual waves. (b) The
combined wave. The envelope
wave (dashed line) represents the
beating of the combined sounds.
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frequency equal to the average frequency (f; + f)/2. This wave is multiplied by an
envelope wave given by the expression in the square brackets:

Yemvelope = 24 cos 27r<j1 ;f2>t (18.11)

That is, the amplitude and therefore the intensity of the resultant sound vary
in time. The dashed black line in Figure 18.17b is a graphical representation of
the envelope wave in Equation 18.11 and is a sine wave varying with frequency

(N = /)/2.

A maximum in the amplitude of the resultant sound wave is detected whenever
S~k
cos 277(2 t=*1

Hence, there are (wo maxima in each period of the envelope wave. Because the
amplitude varies with frequency as (f; — f,)/2, the number of beats per second, or
the beat frequency f, ., is twice this value. That is,

Beat frequency b Joew = | /i = Jo (18.12)

For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz
(the musical note A) and a beat frequency of 4 Hz. A listener would hear a 440-Hz
sound wave go through an intensity maximum four times every second.

The Mistuned Piano Strings

Two identical piano strings of length 0.750 m are each tuned exactly to 440 Hz. The tension in one of the strings is
then increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings?

SOLUTION

Conceptualize As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when
both strings are played, they will have different frequencies and beats will be heard.

Categorize We must combine our understanding of the waves under boundary conditions model for strings with our new
knowledge of beats.

S (vg/QL) U

Analyze Set up aratio of the fundamental frequencies ==
of the two strings using Equation 18.5: oo (w/2l) v

f2 V T,/ :U« / Tz
T,

Use Equation 16.18 to substitute for the wave speeds on —

the strings: fi VTi/p
L L Jo 1.0107;
Incorporate that the tension in one string is 1.0% larger P 1.005
than the other; that is, 7, = 1.0107}: N !
Solve for the frequency of the tightened string: /o = 1.005f; = 1.005(440 Hz) = 442 Hz
Find the beat frequency using Equation 18.12: Joea = 442 Hz — 440 Hz = 2 Hz

Finalize Notice that a 1.0% mistuning in tension leads to an easily audible beat frequency of 2 Hz. A piano tuner can
use beats to tune a stringed instrument by “beating” a note against a reference tone of known frequency. The tuner
can then adjust the string tension until the frequency of the sound it emits equals the frequency of the reference
tone. The tuner does so by tightening or loosening the string until the beats produced by it and the reference source
become too infrequent to notice.



18.8 Nonsinusoidal Wave Patterns

XM Nonsinusoidal Wave Patterns

It is relatively easy to distinguish the sounds coming from a violin and a saxophone
even when they are both playing the same note. On the other hand, a person
untrained in music may have difficulty distinguishing a note played on a clarinet
from the same note played on an oboe. We can use the pattern of the sound waves
from various sources to explain these effects.

When frequencies that are integer multiples of a fundamental frequency are
combined to make a sound, the result is a musical sound. A listener can assign a
pitch to the sound based on the fundamental frequency. Pitch is a psychological
reaction to a sound that allows the listener to place the sound on a scale from low to
high (bass to treble). Combinations of frequencies that are not integer multiples of
a fundamental result in a noise rather than a musical sound. It is much harder for a
listener to assign a pitch to a noise than to a musical sound.

The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive
response associated with various mixtures of harmonics is the quality or timbre of
the sound. For instance, the sound of the trumpet is perceived to have a “brassy”
quality (that is, we have learned to associate the adjective brassy with that sound);
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both
contain air columns excited by reeds; because of this similarity, they have similar
mixtures of frequencies and it is more difficult for the human ear to distinguish
them on the basis of their sound quality.

The sound wave patterns produced by the majority of musical instruments are
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument
has its own characteristic pattern. Notice, however, that despite the differences in
the patterns, each pattern is periodic. This point is important for our analysis of
these waves.

The problem of analyzing nonsinusoidal wave patterns appears at first sight to
be a formidable task. If the wave pattern is periodic, however, it can be represented
as closely as desired by the combination of a sufficiently large number of sinusoidal
waves that form a harmonic series. In fact, we can represent any periodic function
as a series of sine and cosine terms by using a mathematical technique based on
Fourier’s theorem.? The corresponding sum of terms that represents the periodic
wave pattern is called a Fourier series. Let y(¢) be any function that is periodic in
time with period T'such that y(¢ + T) = y(¢). Fourier’s theorem states that this func-
tion can be written as

y(@) =D (A, sin 2mf,t + B, cos 27f,1) (18.13)

where the lowest frequency is f; = 1/7. The higher frequencies are integer multiples
of the fundamental, f, = nf;, and the coefficients A, and B, represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one
of the terms in the series in Equation 18.13 up to n» = 9. Notice that a struck tuning
fork produces only one harmonic (the first), whereas the flute and clarinet produce
the first harmonic and many higher ones.

Notice the variation in relative intensity of the various harmonics for the flute
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency fplus other frequencies that are integer multiples of £, all having different
intensities.

2 Developed by Jean Baptiste Joseph Fourier (1786-1830).
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Pitfall Prevention 18.4

Pitch Versus Frequency Do not
confuse the term pitch with fre-
quency. Frequency is the physical
measurement of the number of
oscillations per second. Pitch is a
psychological reaction to sound
that enables a person to place the
sound on a scale from high to low
or from treble to bass. Therefore,
frequency is the stimulus and
pitch is the response. Although
pitch is related mostly (but not
completely) to frequency, they are
not the same. A phrase such as
“the pitch of the sound” is incor-
rect because pitch is not a physical
property of the sound.

Tuning fork

Flute

Clarinet

Figure 18.18 Sound wave pat-
terns produced by (a) a tuning
fork, (b) a flute, and (c¢) a clarinet,
each at approximately the same
frequency.

< Fourier's theorem
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Tuning
fork

Relative intensity

1 2 3 45 6
Harmonics

Figure 18.20 Fourier synthesis
of a square wave, represented by
the sum of odd multiples of the
first harmonic, which has fre-

quency f.

Clarinet
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Harmonics Harmonics

Figure 18.19 Harmonics of the wave patterns shown in Figure 18.18. Notice the variations in inten-
sity of the various harmonics. Parts (a), (b), and (c) correspond to those in Figure 18.18.

We have discussed the analysis of a wave pattern using Fourier’s theorem. The
analysis involves determining the coefficients of the harmonics in Equation 18.13
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis,
can also be performed. In this process, the various harmonics are added together
to form a resultant wave pattern. As an example of Fourier synthesis, consider the
building of a square wave as shown in Figure 18.20. The symmetry of the square
wave results in only odd multiples of the fundamental frequency combining in its
synthesis. In Figure 18.20a, the blue curve shows the combination of fand 3/ In
Figure 18.20b, we have added 5/to the combination and obtained the green curve.
Notice how the general shape of the square wave is approximated, even though the
upper and lower portions are not flat as they should be.

Figure 18.20c shows the result of adding odd frequencies up to 9/. This approxi-
mation (red-brown curve) to the square wave is better than the approximations
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite
frequency.

Using modern technology, musical sounds can be generated electronically by
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical
tones.

/
é § é § Waves of frequency fand
\\4 VAN \\4 VAN 3fare added to give the
3 w w blue curve.

One more odd harmonic
of frequency 5/is added
to give the green curve.

The synthesis curve

Square wave (red-brown) approaches
closer to the square wave
(black curve) when odd
frequencies up to 9f are
added.




Objective Questions 555

Summary
Concepts and Principles

The superposition principle speci- The phenomenon of beating is the periodic variation in intensity at
fies that when two or more waves move a given point due to the superposition of two waves having slightly dif-
through a medium, the value of the ferent frequencies. The beat frequency is
resultant wave function equals the alge- foea = |fi = fil (18.12)

braic sum of the values of the individual

. where f; and f, are the frequencies of the individual waves.
wave functions.

Standing waves are formed from the combination of two sinusoidal waves having the same frequency, amplitude,
and wavelength but traveling in opposite directions. The resultant standing wave is described by the wave function

y = (2A sin kx) cos wi (18.1)

Hence, the amplitude of the standing wave is 24, and the amplitude of the simple harmonic motion of any element
of the medium varies according to its position as 2A sin kx. The points of zero amplitude (called nodes) occur at
x=mnA/2 (n=0,1,2,3,...). The maximum amplitude points (called antinodes) occurat x = nA/4 (n =1,3,5,...).
Adjacent antinodes are separated by a distance A/2. Adjacent nodes also are separated by a distance A/2.

Analysis Models for Problem Solving

I+ Y2 Waves Under Boundary P
N Conditions. When a wave is
subject to boundary condi-
. tions, only certain natural n=2
Yo Constructive .
MET g iierderenee frequencies are allowed; we ‘
A say that the frequencies are ' ¥ n=3
) quantized.
Destructive For waves on a string
interference . .
fixed at both ends, the natural frequencies are
Waves in Interference. When two travel- n |T
ing waves having equal frequencies super- = oL\ n=12,3, (18.6)

impose, the resultant wave is described by
the principle of superposition and has an
amplitude that depends on the phase angle
¢ between the two waves. Constructive

where 7'is the tension in the string and g is its linear mass density.
For sound waves with speed v in an air column of length L open
at both ends, the natural frequencies are

v
interference occurs when the two waves fo= nor P= 1,2,3,... (18.8)
are in phase, corresponding to ¢ = 0, 27, . .
© e gtod If an air column is open at one end and closed at the other,
44, . . . rad. Destructive interference occurs Iv odd h . ¢ and th cural £ .
el 10 (7 s w10 @i 6 I, only o armonics are present and the natural frequencies are
. v
corresponding to ¢ = 7, 3, b, . . . rad. fo = nE n=1,3,5,... (18.9)
Objective Questions denotes answer available in Student Solutions Manual/Study Guide
1. In Figure OQI8.1 (page 556), a sound wave of wave- Rank the following situations according to the intensity
length 0.8 m divides into two equal parts that recombine of sound at the receiver from the highest to the lowest.
to interfere constructively, with the original difference Assume the tube walls absorb no sound energy. Give

between their path lengths being |r, — r| = 0.8 m. equal ranks to situations in which the intensity is equal.
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(a) From its original Sliding section
position, the sliding
section is moved out by
0.1 m. (b) Next it slides
out an additional 0.1 m.
(¢) It slides out still
another 0.1 m. (d) It

slides out 0.1 m more.

. A string of length L,
mass per unit length u,
and tension T is vibrat-
ing at its fundamental
frequency. (i) If the
length of the string is
doubled, with all other
factors held constant, what is the effect on the funda-
mental frequency? (a) It becomes two times larger. (b) It
becomes V2 times larger. (c) It is unchanged. (d) It
becomes 1/V2 times as large. (e) It becomes one-half
as large. (ii) If the mass per unit length is doubled,
with all other factors held constant, what is the effect
on the fundamental frequency? Choose from the same
possibilities as in part (i). (iii) If the tension is doubled,
with all other factors held constant, what is the effect
on the fundamental frequency? Choose from the same
possibilities as in part (i).

Speaker \LZooooaa
Figure 0Q18.1 Objective
Question 1 and Problem 6.

. In Example 18.1, we investigated an oscillatorat 1.3 kHz
driving two identical side-by-side speakers. We found
that a listener at point O hears sound with maximum
intensity, whereas a listener at point P hears a mini-
mum. What is the intensity at P? (a) less than but close
to the intensity at O (b) half the intensity at O (c) very
low but not zero (d) zero (e) indeterminate

. A series of pulses, each of amplitude 0.1 m, is sent down
a string that is attached to a post at one end. The pulses
are reflected at the post and travel back along the string
without loss of amplitude. (i) What is the net displace-
ment at a point on the string where two pulses are cross-
ing? Assume the string is rigidly attached to the post.
(@ 04 m (b) 0.3 m (c) 0.2m (d) 0.1 m (e) O (ii) Next
assume the end at which reflection occurs is free to slide
up and down. Now what is the net displacement ata point
on the string where two pulses are crossing? Choose your
answer from the same possibilities as in part (i).

. A flute has a length of 58.0 cm. If the speed of sound
in air is 343 m/s, what is the fundamental frequency of
the flute, assuming it is a tube closed at one end and
open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz
(d) 591 Hz (e) none of those answers

. When two tuning forks are sounded at the same time,
a beat frequency of 5 Hz occurs. If one of the tuning

Conceptual Questions

1. A crude model of the human throat is that of a pipe

open at both ends with a vibrating source to introduce
the sound into the pipe at one end. Assuming the
vibrating source produces a range of frequencies, dis-
cuss the effect of changing the pipe’s length.

Superposition and Standing Waves

10.

11.

forks has a frequency of 245 Hz, what is the frequency
of the other tuning fork? (a) 240 Hz (b) 242.5 Hz
(c) 247.5 Hz (d) 250 Hz (e¢) More than one answer
could be correct.

. A tuning fork is known to vibrate with frequency

262 Hz. When it is sounded along with a mandolin
string, four beats are heard every second. Next, a bit of
tape is put onto each tine of the tuning fork, and the
tuning fork now produces five beats per second with
the same mandolin string. What is the frequency of
the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz
(e) 267 Hz

. An archer shoots an arrow horizontally from the center

of the string of a bow held vertically. After the arrow
leaves it, the string of the bow will vibrate as a superpo-
sition of what standing-wave harmonics? (a) It vibrates
only in harmonic number 1, the fundamental. (b) It
vibrates only in the second harmonic. (c) It vibrates
only in the odd-numbered harmonics 1, 3, 5, 7,....
(d) It vibrates only in the even-numbered harmonics 2,
4,6,8,.... (e) It vibrates in all harmonics.

. As oppositely moving pulses of the same shape (one

upward, one downward) on a string pass through each
other, at one particular instant the string shows no dis-
placement from the equilibrium position at any point.
What has happened to the energy carried by the pulses
at this instant of time? (a) It was used up in producing
the previous motion. (b) It is all potential energy. (c) It
is all internal energy. (d) Itis all kinetic energy. (e) The
positive energy of one pulse adds to zero with the nega-
tive energy of the other pulse.

A standing wave having three nodes is set up in a string
fixed at both ends. If the frequency of the wave is dou-
bled, how many antinodes will there be? (a) 2 (b) 3
(©)4(d)5(e)6

Suppose all six equal-length strings of an acoustic
guitar are played without fingering, that is, without
being pressed down at any frets. What quantities are
the same for all six strings? Choose all correct answers.
(a) the fundamental frequency (b) the fundamental
wavelength of the string wave (c) the fundamental
wavelength of the sound emitted (d) the speed of the
string wave (e) the speed of the sound emitted

Assume two identical sinusoidal waves are moving

through the same medium in the same direction.
Under what condition will the amplitude of the resul-
tant wave be greater than either of the two original
waves? (a) in all cases (b) only if the waves have no dif-
ference in phase (c) only if the phase difference is less
than 90° (d) only if the phase difference is less than
120° (e) only if the phase difference is less than 180°

denotes answer available in Student Solutions Manual/Study Guide

When two waves interfere constructively or destruc-

3.

tively, is there any gain or loss in energy in the system
of the waves? Explain.

Explain how a musical instrument such as a piano may
be tuned by using the phenomenon of beats.



4. What limits the amplitude of motion of a real vibrating
system that is driven at one of its resonant frequencies?

5. A tuning fork by itself produces a faint sound. Explain
how each of the following methods can be used to
obtain a louder sound from it. Explain also any effect
on the time interval for which the fork vibrates audibly.
(a) holding the edge of a sheet of paper against one
vibrating tine (b) pressing the handle of the tuning
fork against a chalkboard or a tabletop (c) holding the
tuning fork above a column of air of properly chosen
length as in Example 18.6 (d) holding the tuning fork
close to an open slot cut in a sheet of foam plastic or
cardboard (with the slot similar in size and shape to
one tine of the fork and the motion of the tines per-
pendicular to the sheet)

Problems 557

An airplane mechanic notices that the sound from a

8.

twin-engine aircraft rapidly varies in loudness when
both engines are running. What could be causing this
variation from loud to soft?

. Despite a reasonably steady hand, a person often spills

his coffee when carrying it to his seat. Discuss reso-
nance as a possible cause of this difficulty and devise a
means for preventing the spills.

A soft-drink bottle resonates as air is blown across its
top. What happens to the resonance frequency as the
level of fluid in the bottle decreases?

Does the phenomenon of wave interference apply only

to sinusoidal waves?

Py _ The problems found in this Analysis Model tutorial available in
WebASSIgN 12 nter may be assigned Enhanced WebAssign
online in Enhanced WebAssign [Td Guided Problem
1. straightforward; 2. intermediate; Y1 Master It tutorial available in Enhanced
3. challenging WebAssign
full solution available in the Student Watch It video solution available in
Solutions Manual/Study Guide Enhanced WebAssign

Note: Unless otherwise specified, assume the speed of
sound in air is 343 m/s, its value at an air temperature
0f 20.0°C. At any other Celsius temperature 7, the
speed of sound in air is described by

I

= 331./1 +
v 973

where visin m/s and T'is in °C.

Section 18.1 Analysis Model: Waves in Interference

1. Two waves are traveling in the same direction along a

stretched string. The waves are 90.0° out of phase. Each
wave has an amplitude of 4.00 cm. Find the amplitude
of the resultant wave.

2. Two wave pulses A and B are moving in opposite direc-
tions, each with a speed v = 2.00 cm/s. The amplitude
of A is twice the amplitude of B. The pulses are shown
in Figure P18.2 at ¢ = 0. Sketch the resultant wave at t =
1.00s,1.5055,2.00s,2.50s, and 3.00s.

y (cm)

v
——
4 —v
9 A
V\
L L 1 | L 1 L |
2 4 6 8 10 12 14 16 18 20
Figure P18.2

x (cm)

3.

Two waves on one string are described by the wave

functions

y; = 3.0 cos (4.0x — 1.61) Yo = 4.0 sin (5.0x — 2.07)

where x and y are in centimeters and ¢ is in seconds.
Find the superposition of the waves y, + y, at the points
(@) x=1.00, ¢=1.00; (b) x=1.00, t= 0.500; and (c) x =
0.500, ¢t = 0. Note: Remember that the arguments of the
trigonometric functions are in radians.

. Two pulses of different amplitudes approach each

other, each having a speed of v = 1.00 m/s. Figure
P18.4 shows the positions of the pulses at time ¢ = 0.
(a) Sketch the resultant wave at + = 2.00 s, 4.00 s,
5.00 s, and 6.00 s. (b) What If? If the pulse on the
right is inverted so that it is upright, how would your
sketches of the resultant wave change?

y(m)
——
1.0
0.5
12 14
Il Il Il Il x(m>
2 4 6 8 10 16
—-0.5 -
D ——
—v
Figure P18.4

5. A tuning fork generates sound waves with a frequency

of 246 Hz. The waves travel in opposite directions along
a hallway, are reflected by end walls, and return. The
hallway is 47.0 m long and the tuning fork is located
14.0 m from one end. What is the phase difference
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between the reflected waves when they meet at the tun-
ing fork? The speed of sound in air is 343 m/s.

. The acoustical system shown in Figure OQI8.1 is

driven by a speaker emitting sound of frequency
756 Hz. (a) If constructive interference occurs at a
particular location of the sliding section, by what mini-
mum amount should the sliding section be moved
upward so that destructive interference occurs instead?
(b) What minimum distance from the original posi-
tion of the sliding section will again result in construc-
tive interference?

Two pulses traveling on the same string are described

8.

by
5 -5
T GBx—4+2 7 (Bxt+4—6)2 +2
(@) In which direction does each pulse travel? (b) At

what instant do the two cancel everywhere? (c) At what
point do the two pulses always cancel?

Y1

Two identical loudspeakers are placed on a wall 2.00 m

AV apart. A listener stands 3.00 m from the wall directly

in front of one of the speakers. A single oscillator is
driving the speakers at a frequency of 300 Hz. (a) What
is the phase difference in radians between the waves
from the speakers when they reach the observer?
(b) What If? What is the frequency closest to 300 Hz
to which the oscillator may be adjusted such that the
observer hears minimal sound?

Two traveling sinusoidal waves are described by the
7] wave functions

10.

y, = 5.00 sin [7(4.00x — 1 2000)]
¥ = 5.00 sin [7(4.00x — 1 200¢ — 0.250)]

where x, y;, and y, are in meters and ¢ is in seconds.
(a) What is the amplitude of the resultant wave func-
tion y; + y,? (b) What is the frequency of the resultant
wave function?

Why is the following situation impossible? Two identical
loudspeakers are driven by the same oscillator at fre-
quency 200 Hz. They are located on the ground a dis-
tance d = 4.00 m from each other. Starting far from
the speakers, a man walks straight toward the right-
hand speaker as shown in Figure P18.10. After passing
through three minima in sound intensity, he walks to
the next maximum and stops. Ignore any sound reflec-
tion from the ground.

[ d

A A

>

Figure P18.10
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Two sinusoidal waves in a string are defined by the
7] wave functions

y, = 2.00 sin (20.0x — 32.07)

12.

13.

¥y = 2.00 sin (25.0x — 40.07)

where x, y;, and y, are in centimeters and / is in sec-
onds. (a) What is the phase difference between these
two waves at the point x = 5.00 cm at ( = 2.00 s?
(b) What is the positive x value closest to the origin for
which the two phases differ by =7 at ¢ = 2.00 s? (At
that location, the two waves add to zero.)

Two identical sinusoidal waves with wavelengths of
3.00 m travel in the same direction at a speed of
2.00 m/s. The second wave originates from the same
point as the first, but at a later time. The amplitude
of the resultant wave is the same as that of each of the
two initial waves. Determine the minimum possible
time interval between the starting moments of the two
waves.

Two identical loudspeakers 10.0 m apart are driven
by the same oscillator with a frequency of f= 21.5 Hz
(Fig. P18.13) in an area where the speed of sound is
344 m/s. (a) Show that a receiver at point A records
a minimum in sound intensity from the two speak-
ers. (b) If the receiver is moved in the plane of the
speakers, show that the path it should take so that the
intensity remains at a minimum is along the hyperbola
9x% — 16y? = 144 (shown in red-brown in Fig. P18.13).
(c) Can the receiver remain at a minimum and move
very far away from the two sources? If so, determine the
limiting form of the path it must take. If not, explain
how far it can go.

y
(%)
A
—0 00—
| | |
| | |
fe—9.00 m ——— |
| |
! 10.0 m :

Figure P18.13

Section 18.2 Standing Waves

14.

Two waves simultaneously present on a long string have
a phase difference ¢ between them so that a standing
wave formed from their combination is described by

y(x,t) = 2A sin (kx + %) cos (wt — %)

(a) Despite the presence of the phase angle ¢, is it still
true that the nodes are one-half wavelength apart?
Explain. (b) Are the nodes different in any way from
the way they would be if ¢ were zero? Explain.

15. Two sinusoidal waves traveling in opposite directions
M interfere to produce a standing wave with the wave

function
y = 1.50 sin (0.400x) cos (200¢)



where x and y are in meters and /is in seconds. Deter-
mine (a) the wavelength, (b) the frequency, and (c) the
speed of the interfering waves.

16. Verify by direct substitution that the wave function for
a standing wave given in Equation 18.1,

y = (2Asin kx) cos wt

is a solution of the general linear wave equation, Equa-
tion 16.27:

Gy _1 o

ax?  o? e’
17.|Two transverse sinusoidal waves combining in a
7] medium are described by the wave functions

y; = 3.00 sin 7 (x + 0.600¢) Yo = 3.00 sin 7(x — 0.600¢)

where x, y;, and y, are in centimeters and ¢ is in sec-
onds. Determine the maximum transverse position of
an element of the medium at (a) x = 0.250 cm, (b) x =
0.500 cm, and (¢) x = 1.50 cm. (d) Find the three small-
est values of x corresponding to antinodes.

18. A standing wave is described by the wave function

y = 6sin (gx) cos (100r¢)

where x and y are in meters and ¢ is in seconds.
(a) Prepare graphs showing y as a function of x for
five instants: { = 0, 5 ms, 10 ms, 15 ms, and 20 ms.
(b) From the graph, identify the wavelength of the wave
and explain how to do so. (c) From the graph, identify
the frequency of the wave and explain how to do so.
(d) From the equation, directly identify the wavelength
of the wave and explain how to do so. (e) From the
equation, directly identify the frequency and explain
how to do so.

19.|Two identical loudspeakers are driven in phase by a

7] common oscillator at 800 Hz and face each other at
a distance of 1.25 m. Locate the points along the line
joining the two speakers where relative minima of
sound pressure amplitude would be expected.

Section 18.3 Analysis Model: Waves
Under Boundary Conditions

20. A standing wave is established in a 120-cm-long string
fixed at both ends. The string vibrates in four segments
when driven at 120 Hz. (a) Determine the wavelength.
(b) What is the fundamental frequency of the string?

47(14>(
5

21. A string with a mass m = 8.00 g
and a length . = 5.00 m has
one end attached to a wall;
the other end is draped over a
small, fixed pulley a distance
d = 4.00 m from the wall and
attached to a hanging object
with a mass M = 4.00 kg as in
Figure P18.21. If the horizon-
tal part of the string is plucked, what is the fundamen-
tal frequency of its vibration?

M|

Figure P18.21

22. The 64.0-cm-long string of a guitar has a fundamen-
tal frequency of 330 Hz when it vibrates freely along its
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Problems

entire length. A fret is provided for limiting vibration to
just the lower two-thirds of the string. (a) If the string is
pressed down at this fret and plucked, what is the new
fundamental frequency? (b) What If? The guitarist can
play a “natural harmonic” by gently touching the string
at the location of this fret and plucking the string at
about one-sixth of the way along its length from the
other end. What frequency will be heard then?

23.|The A string on a cello vibrates in its first normal mode

[ with a frequency of 220 Hz. The vibrating segment
is 70.0 cm long and has a mass of 1.20 g. (a) Find the
tension in the string. (b) Determine the frequency of
vibration when the string vibrates in three segments.

24. A taut string has a length of 2.60 m and is fixed at
both ends. (a) Find the wavelength of the fundamental
mode of vibration of the string. (b) Can you find the
frequency of this mode? Explain why or why not.

25. A certain vibrating string on a piano has a length of
74.0 cm and forms a standing wave having two anti-
nodes. (a) Which harmonic does this wave represent?
(b) Determine the wavelength of this wave. (c¢) How
many nodes are there in the wave pattern?

A string that is 30.0 cm long and has a mass per unit
length of 9.00 X 1073 kg/m is stretched to a tension
of 20.0 N. Find (a) the fundamental frequency and
(b) the next three frequencies that could cause stand-
ing-wave patterns on the string.

27. In the arrangement shown in Figure P18.27, an object

can be hung from a string (with linear mass density u =

[ 0.002 00 kg/m) that passes over a light pulley. The
string is connected to a vibrator (of constant frequency
f), and the length of the string between point Pand the
pulley is L. = 2.00 m. When the mass m of the object is
either 16.0 kg or 25.0 kg, standing waves are observed;
no standing waves are observed with any mass between
these values, however. (a) What is the frequency of the
vibrator? Note: The greater the tension in the string,
the smaller the number of nodes in the standing wave.
(b) What is the largest object mass for which standing
waves could be observed?

Vibrator | L |
- &
"

Figure P18.27 Problems 27 and 28.

28. In the arrangement shown in Figure P18.27, an object

M of mass m = 5.00 kg hangs from a cord around a light
pulley. The length of the cord between point P and the
pulley is L. = 2.00 m. (a) When the vibrator is set to a
frequency of 150 Hz, a standing wave with six loops is
formed. What must be the linear mass density of the
cord? (b) How many loops (if any) will result if m is
changed to 45.0 kg? (c) How many loops (if any) will
result if m is changed to 10.0 kg?
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29.

30.

31.

32.

33.

Review. A sphere of mass M =
1.00 kg is supported by a
string that passes over a pul-
ley at the end of a horizontal
rod of length L = 0.300 m
(Fig. P18.29). The string
makes an angle 6 = 35.0° with
the rod. The fundamental
frequency of standing waves Figure P18.29

in the portion of the string Problems 29 and 30.
above the rod is /= 60.0 Hz.

Find the mass of the portion of the string above the rod.

Review. A sphere of mass M is supported by a string
that passes over a pulley at the end of a horizontal rod
of length L (Fig. P18.29). The string makes an angle 0
with the rod. The fundamental frequency of standing
waves in the portion of the string above the rod is f.
Find the mass of the portion of the string above the
rod.

A violin string has a length of 0.350 m and is tuned to
concert G, with f; = 392 Hz. (a) How far from the end
of the string must the violinist place her finger to play
concert A, with f, = 440 Hz? (b) If this position is to
remain correct to one-half the width of a finger (that
is, to within 0.600 cm), what is the maximum allowable
percentage change in the string tension?

Review. A solid copper object hangs at the bottom of a
steel wire of negligible mass. The top end of the wire
is fixed. When the wire is struck, it emits sound with a
fundamental frequency of 300 Hz. The copper object
is then submerged in water so that half its volume is
below the water line. Determine the new fundamental
frequency.

A standing-wave pattern is observed in a thin wire with
alength of 3.00 m. The wave function is

y=0.002 00 sin (7x) cos (1007r¢)

where x and y are in meters and ¢ is in seconds.
(a) How many loops does this pattern exhibit? (b) What
is the fundamental frequency of vibration of the wire?
(c) What If? If the original frequency is held constant
and the tension in the wire is increased by a factor of 9,
how many loops are present in the new pattern?

Section 18.4 Resonance

34.

35.

The Bay of Fundy, Nova Scotia, has the highest tides
in the world. Assume in midocean and at the mouth
of the bay the Moon’s gravity gradient and the Earth’s
rotation make the water surface oscillate with an ampli-
tude of a few centimeters and a period of 12 h 24 min.
At the head of the bay, the amplitude is several meters.
Assume the bay has a length of 210 km and a uniform
depth of 36.1 m. The speed of long-wavelength water
waves is given by v = \/?d, where dis the water’s depth.
Argue for or against the proposition that the tide is
magnified by standing-wave resonance.

An earthquake can produce a seiche in a lake in which
the water sloshes back and forth from end to end with
remarkably large amplitude and long period. Con-

Chapter 18  Superposition and Standing Waves

sider a seiche produced in a farm pond. Suppose the
pond is 9.15 m long and assume it has a uniform width
and depth. You measure that a pulse produced at one
end reaches the other end in 2.50 s. (a) What is the
wave speed? (b) What should be the frequency of the
ground motion during the earthquake to produce a
seiche that is a standing wave with antinodes at each
end of the pond and one node at the center?

36. High-frequency sound can ]
be used to produce stand- L
ing-wave vibrations in a
wine glass. A standing-wave
vibration in a wine glass is
observed to have four nodes
and four antinodes equally
spaced around the 20.0-cm
circumference of the rim
of the glass. If transverse
waves move around the glass
at 900 m/s, an opera singer
would have to produce a
high harmonic with what frequency to shatter the glass
with a resonant vibration as shown in Figure P18.36?

Steve Bronstein/Stone/Getty Images
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Figure P18.36

Section 18.5 Standing Waves in Air Columns

37. The windpipe of one typical whooping crane is 5.00 feet
long. What is the fundamental resonant frequency of
the bird’s trachea, modeled as a narrow pipe closed at
one end? Assume a temperature of 37°C.

38. If a human ear canal can be thought of as resembling
an organ pipe, closed at one end, that resonates at a
fundamental frequency of 3 000 Hz, what is the length
of the canal? Use a normal body temperature of
37°C for your determination of the speed of sound in
the canal.

Calculate the length of a pipe that has a fundamental
frequency of 240 Hz assuming the pipe is (a) closed at
one end and (b) open at both ends.

40. The overall length of a piccolo is 32.0 cm. The reso-

M nating air column is open at both ends. (a) Find the
frequency of the lowest note a piccolo can sound.
(b) Opening holes in the side of a piccolo effectively
shortens the length of the resonant column. Assume
the highest note a piccolo can sound is 4 000 Hz. Find
the distance between adjacent antinodes for this mode
of vibration.

41. The fundamental frequency of an open organ pipe
corresponds to middle C (261.6 Hz on the chromatic
musical scale). The third resonance of a closed organ
pipe has the same frequency. What is the length of
(a) the open pipe and (b) the closed pipe?

42. The longest pipe on a certain organ is 4.88 m. What
is the fundamental frequency (at 0.00°C) if the pipe
is (a) closed at one end and (b) open at each end?
(c) What will be the frequencies at 20.0°C?

An air column in a glass tube is open at one end and
closed at the other by a movable piston. The air in the
tube is warmed above room temperature, and a 384-Hz
tuning fork is held at the open end. Resonance is heard



44.

45.

when the piston is at a distance d; = 22.8 cm from the
open end and again when it is at a distance d, = 68.3 cm
from the open end. (a) What speed of sound is implied
by these data? (b) How far from the open end will the
piston be when the next resonance is heard?

A tuning fork with a frequency —
of f= 512 Hz is placed near the g
top of the tube shown in Figure ==

P18.44. The water level is low-
ered so that the length L slowly
increases from an initial value
of 20.0 cm. Determine the next
two values of L that correspond
to resonant modes.

!
|

With a particular fingering, Valve
a flute produces a note with
frequency 880 Hz at 20.0°C.
The flute is open at both ends.
(a) Find the air column length.
(b) At the beginning of the
halftime performance at a late-
season football game, the ambient temperature is
—5.00°C and the flutist has not had a chance to warm
up her instrument. Find the frequency the flute pro-
duces under these conditions.

Figure P18.44

A shower stall has dimensions 86.0 cm X 86.0 cm X

47.

48.

49.

50.

210 cm. Assume the stall acts as a pipe closed at both
ends, with nodes at opposite sides. Assume singing
voices range from 130 Hz to 2 000 Hz and let the speed
of sound in the hot air be 355 m/s. For someone sing-
ing in this shower, which frequencies would sound the
richest (because of resonance)?

A glass tube (open at both ends) of length L is posi-
tioned near an audio speaker of frequency f= 680 Hz.
For what values of L will the tube resonate with the
speaker?

A tunnel under a river is 2.00 km long. (a) At what fre-
quencies can the air in the tunnel resonate? (b) Explain
whether it would be good to make a rule against blow-
ing your car horn when you are in the tunnel.

As shown in Figure P18.49,

water is pumped into a tall, =
vertical cylinder at a volume g‘f
flow rate R = 1.00 L/min. T
The radius of the cylinder is

r = 5.00 cm, and at the open

top of the cylinder a tuning |

fork is vibrating with a fre- -
quency [/ = 512 Hz. As the
water rises, what time interval
elapses between successive
resonances?

As shown in Figure P18.49,
water is pumped into a tall,
vertical cylinder at a volume
flow rate R. The radius of the cylinder is », and at the
open top of the cylinder a tuning fork is vibrating with
a frequency f As the water rises, what time interval
elapses between successive resonances?

\ =R

Figure P18.49
Problems 49 and 50.
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Two adjacent natural frequencies of an organ pipe are
determined to be 550 Hz and 650 Hz. Calculate (a) the
[7] fundamental frequency and (b) the length of this pipe.

52.

53.

Why is the following situation impossible? A student is lis-
tening to the sounds from an air column that is 0.730 m
long. He doesn’t know if the column is open at both
ends or open at only one end. He hears resonance
from the air column at frequencies 235 Hz and 587 Hz.

A student uses an audio oscillator of adjustable fre-
quency to measure the depth of a water well. The
student reports hearing two successive resonances at
51.87 Hz and 59.85 Hz. (a) How deep is the well?
(b) How many antinodes are in the standing wave at
51.87 Hz?

Section 18.6 Standing Waves in Rods and Membranes

54. An aluminum rod is clamped one-fourth of the way

along its length and set into longitudinal vibration by
a variable-frequency driving source. The lowest fre-
quency that produces resonance is 4 400 Hz. The speed
of sound in an aluminum rod is 5 100 m/s. Determine
the length of the rod.

An aluminum rod 1.60 m long is held at its center. It

is stroked with a rosin-coated cloth to set up a longi-
tudinal vibration. The speed of sound in a thin rod
of aluminum is 5 100 m/s. (a) What is the fundamen-
tal frequency of the waves established in the rod?
(b) What harmonics are set up in the rod held in this
manner? (c) What If? What would be the fundamental
frequency if the rod were copper, in which the speed of
sound is 3 560 m/s?

Section 18.7 Beats: Interference in Time

56.

While attempting to tune the note C at 523 Hz, a piano

tuner hears 2.00 beats/s between a reference oscillator

and the string. (a) What are the possible frequencies
of the string? (b) When she tightens the string slightly,
she hears 3.00 beats/s. What is the frequency of the
string now? (c) By what percentage should the piano
tuner now change the tension in the string to bring it
into tune?

In certain ranges of a piano keyboard, more than one
7] string is tuned to the same note to provide extra loud-

58.

ness. For example, the note at 110 Hz has two strings
at this frequency. If one string slips from its nor-
mal tension of 600 N to 540 N, what beat frequency
is heard when the hammer strikes the two strings
simultaneously?

Review. Jane waits on a railroad platform while two
trains approach from the same direction at equal
speeds of 8.00 m/s. Both trains are blowing their whis-
tles (which have the same frequency), and one train is
some distance behind the other. After the first train
passes Jane but before the second train passes her,
she hears beats of frequency 4.00 Hz. What is the fre-
quency of the train whistles?

59.|Review. A student holds a tuning fork oscillating at
71256 Hz. He walks toward a wall at a constant speed

of 1.33 m/s. (a) What beat frequency does he observe
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between the tuning fork and its echo? (b) How fast
must he walk away from the wall to observe a beat fre-
quency of 5.00 Hz?

Section 18.8 Nonsinusoidal Wave Patterns

60. An A-major chord consists of the notes called A, C#,
and E. It can be played on a piano by simultaneously
striking strings with fundamental frequencies of
440.00 Hz, 554.37 Hz, and 659.26 Hz. The rich con-
sonance of the chord is associated with near equality
of the frequencies of some of the higher harmonics of
the three tones. Consider the first five harmonics of
each string and determine which harmonics show near
equality.

Suppose a flutist plays a 523-Hz C note with first har-
monic displacement amplitude A; = 100 nm. From Fig-
ure 18.19b read, by proportion, the displacement ampli-
tudes of harmonics 2 through 7. Take these as the values
A, through A; in the Fourier analysis of the sound and
assume By = B, = -+ = B, = 0. Construct a graph of
the waveform of the sound. Your waveform will not look
exactly like the flute waveform in Figure 18.18b because
you simplify by ignoring cosine terms; nevertheless, it
produces the same sensation to human hearing.

Additional Problems

62. A pipe open at both ends has a fundamental frequency

I o£300 Hz when the temperature is 0°C. (a) What is the
length of the pipe? (b) What is the fundamental fre-
quency at a temperature of 30.0°C?

63. A string is 0.400 m long and has a mass per unit length
of 9.00 X 103 kg/m. What must be the tension in the
string if its second harmonic has the same frequency as
the second resonance mode of a 1.75-m-long pipe open
at one end?

64. Two strings are vibrating at the same frequency of
150 Hz. After the tension in one of the strings is
decreased, an observer hears four beats each second
when the strings vibrate together. Find the new fre-
quency in the adjusted string.

65. The ship in Figure P18.65 travels along a straight line
parallel to the shore and a distance d = 600 m from
it. The ship’s radio receives simultaneous signals of the
same frequency from antennas A and B, separated by
a distance L = 800 m. The signals interfere construc-
tively at point C, which is equidistant from A and B.
The signal goes through the first minimum at point D,
which is directly outward from the shore from point B.
Determine the wavelength of the radio waves.
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Figure P18.65

66.

67.

68.

69.

A 2.00-m-long wire having a mass of 0.100 kg is fixed
at both ends. The tension in the wire is maintained at
20.0 N. (a) What are the frequencies of the first three
allowed modes of vibration? (b) If a node is observed at
a point 0.400 m from one end, in what mode and with
what frequency is it vibrating?

The fret closest to the bridge on a guitar is 21.4 cm
from the bridge as shown in Figure P18.67. When the
thinnest string is pressed down at this first fret, the
string produces the highest frequency that can be
played on that guitar, 2 349 Hz. The next lower note
that is produced on the string has frequency 2 217 Hz.
How far away from the first fret should the next fret
be?

Bridge

Figure P18.67

A string fixed at both ends and having a mass of 4.80 g,
a length of 2.00 m, and a tension of 48.0 N vibrates in
its second (n = 2) normal mode. (a) Is the wavelength
in air of the sound emitted by this vibrating string
larger or smaller than the wavelength of the wave on
the string? (b) What is the ratio of the wavelength in
air of the sound emitted by this vibrating string and
the wavelength of the wave on the string?

A quartz watch contains a crystal oscillator in the form
of a block of quartz that vibrates by contracting and
expanding. An electric circuit feeds in energy to main-
tain the oscillation and also counts the voltage pulses
to keep time. Two opposite faces of the block, 7.05 mm
apart, are antinodes, moving alternately toward each
other and away from each other. The plane halfway
between these two faces is a node of the vibration. The
speed of sound in quartz is equal to 3.70 X 10° m/s.
Find the frequency of the vibration.

Review. For the arrangement shown in Figure P18.70,
the inclined plane and the small pulley are frictionless;
the string supports the object of mass M at the bottom
of the plane; and the string has mass m. The system
is in equilibrium, and the vertical part of the string
has a length /. We wish to study standing waves set up
in the vertical section of the string. (a) What analysis
model describes the object of mass M? (b) What analy-
sis model describes the waves on the vertical part of the

N

Figure P18.70
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72.

73.

74.

string? (c) Find the tension in the string. (d) Model the
shape of the string as one leg and the hypotenuse of
a right triangle. Find the whole length of the string.
(e) Find the mass per unit length of the string. (f) Find
the speed of waves on the string. (g) Find the lowest
frequency for a standing wave on the vertical section
of the string. (h) Evaluate this result for M = 1.50 kg,
m = 0.750 g, h = 0.500 m, and 6 = 30.0°. (i) Find the
numerical value for the lowest frequency for a standing
wave on the sloped section of the string.

A 0.010 0-kg wire, 2.00 m long, is fixed at both ends and
vibrates in its simplest mode under a tension of 200 N.
When a vibrating tuning fork is placed near the wire, a
beat frequency of 5.00 Hz is heard. (a) What could be
the frequency of the tuning fork? (b) What should the
tension in the wire be if the beats are to disappear?

Two speakers are driven by the same oscillator of fre-
quency f. They are located a distance d from each
other on a vertical pole. A man walks straight toward
the lower speaker in a direction perpendicular to the
pole as shown in Figure P18.72. (a) How many times
will he hear a minimum in sound intensity? (b) How
far is he from the pole at these moments? Let v repre-
sent the speed of sound and assume that the ground
does not reflect sound. The man’s ears are at the same

level as the lower speaker.
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Figure P18.72
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Review. Consider the apparatus shown in Figure 18.11
and described in Example 18.4. Suppose the number
of antinodes in Figure 18.11b is an arbitrary value n.
(a) Find an expression for the radius of the sphere in
the water as a function of only n. (b) What is the mini-
mum allowed value of » for a sphere of nonzero size?
(c) What is the radius of the largest sphere that will
produce a standing wave on the string? (d) What hap-
pens if a larger sphere is used?

Review. The top end of a yo-yo string is held stationary.
The yo-yo itself is much more massive than the string. It
starts from rest and moves down with constant accelera-
tion 0.800 m/s? as it unwinds from the string. The rub-
bing of the string against the edge of the yo-yo excites
transverse standing-wave vibrations in the string. Both
ends of the string are nodes even as the length of the
string increases. Consider the instant 1.20 s after the
motion begins from rest. (a) Show that the rate of change
with time of the wavelength of the fundamental mode of
oscillation is 1.92 m/s. (b) What if? Is the rate of change
of the wavelength of the second harmonic also 1.92 m/s

75.

76.

563

Problems

at this moment? Explain your answer. (c) What if? The
experiment is repeated after more mass has been added
to the yo-yo body. The mass distribution is kept the same
so that the yo-yo still moves with downward acceleration
0.800 m/s?. At the 1.20-s point in this case, is the rate
of change of the fundamental wavelength of the string
vibration still equal to 1.92 m/s? Explain. (d) Is the rate
of change of the second harmonic wavelength the same
as in part (b)? Explain.

On a marimba (Fig. P18.75), the wooden bar that
sounds a tone when struck vibrates in a transverse
standing wave having three antinodes and two nodes.
The lowest-frequency note is 87.0 Hz, produced by a
bar 40.0 cm long. (a) Find the speed of transverse
waves on the bar. (b) A resonant pipe suspended verti-
cally below the center of the bar enhances the loudness
of the emitted sound. If the pipe is open at the top end
only, what length of the pipe is required to resonate
with the bar in part (a)?

© ArenaPal/Topham/The Image Works.

Reproduced by permission.

Figure P18.75

A nylon string has mass 5.50 g and —©
length L = 86.0 cm. The lower end
is tied to the floor, and the upper
end is tied to a small set of wheels
through a slot in a track on which L
the wheels move (Fig. P18.76). The
wheels have a mass that is negli-
gible compared with that of the
string, and they roll without fric-
tion on the track so that the upper
end of the string is essentially free.
At equilibrium, the string is vertical
and motionless. When it is carrying a small-amplitude
wave, you may assume the string is always under uni-
form tension 1.30 N. (a) Find the speed of transverse
waves on the string. (b) The string’s vibration pos-
sibilities are a set of standing-wave states, each with
a node at the fixed bottom end and an antinode at
the free top end. Find the node-antinode distances
for each of the three simplest states. (c) Find the fre-
quency of each of these states.

Figure P18.76

Two train whistles have identical frequencies of

[/ 180 Hz. When one train is at rest in the station and

the other is moving nearby, a commuter standing on
the station platform hears beats with a frequency of
2.00 beats/s when the whistles operate together. What
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79.

are the two possible speeds and directions the moving
train can have?

- Review. A loudspeaker at the front of a room and an

identical loudspeaker at the rear of the room are being
driven by the same oscillator at 456 Hz. A student
walks at a uniform rate of 1.50 m/s along the length
of the room. She hears a single tone repeatedly becom-
ing louder and softer. (a) Model these variations as
beats between the Doppler-shifted sounds the student
receives. Calculate the number of beats the student
hears each second. (b) Model the two speakers as pro-
ducing a standing wave in the room and the student as
walking between antinodes. Calculate the number of
intensity maxima the student hears each second.

Review. Consider the copper object hanging from
the steel wire in Problem 32. The top end of the wire
is fixed. When the wire is struck, it emits sound with a
fundamental frequency of 300 Hz. The copper object is
then submerged in water. If the object can be positioned
with any desired fraction of its volume submerged, what
is the lowest possible new fundamental frequency?

Two wires are welded together end to end. The wires
[/} are made of the same material, but the diameter of one

81.

is twice that of the other. They are subjected to a ten-
sion of 4.60 N. The thin wire has a length of 40.0 cm
and a linear mass density of 2.00 g/m. The combina-
tion is fixed at both ends and vibrated in such a way
that two antinodes are present, with the node between
them being right at the weld. (a) What is the frequency
of vibration? (b) What is the length of the thick wire?

A string of linear density 1.60 g/m is stretched between
clamps 48.0 cm apart. The string does not stretch
appreciably as the tension in it is steadily raised from
15.0 N at ¢t = 0 to 25.0 N at ¢t = 3.50 s. Therefore, the
tension as a function of time is given by the expression
T = 15.0 + 10.0¢/3.50, where T'is in newtons and ¢ is
in seconds. The string is vibrating in its fundamental
mode throughout this process. Find the number of
oscillations it completes during the 3.50-s interval.

A standing wave is set up in a string of variable length

83.

and tension by a vibrator of variable frequency. Both
ends of the string are fixed. When the vibrator has a
frequency f, in a string of length I and under tension
T, n antinodes are set up in the string. (a) If the length
of the string is doubled, by what factor should the fre-
quency be changed so that the same number of anti-
nodes is produced? (b) If the frequency and length are
held constant, what tension will produce » + 1 anti-
nodes? (c) If the frequency is tripled and the length of
the string is halved, by what factor should the tension be
changed so that twice as many antinodes are produced?

Two waves are described by the wave functions
¥ (x, #) = 5.00 sin (2.00x — 10.0¢)
Yo(x, £) = 10.0 cos (2.00x — 10.0¢)

where x, y;, and y, are in meters and ¢ is in seconds.
(a) Show that the wave resulting from their super-
position can be expressed as a single sine function.
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84.

85.

86.

(b) Determine the amplitude and phase angle for this
sinusoidal wave.

A flute is designed so that it produces a frequency of
261.6 Hz, middle C, when all the holes are covered and
the temperature is 20.0°C. (a) Consider the flute as a
pipe that is open at both ends. Find the length of the
flute, assuming middle Cis the fundamental. (b) A sec-
ond player, nearby in a colder room, also attempts to
play middle C on an identical flute. A beat frequency
of 3.00 Hz is heard when both flutes are playing. What
is the temperature of the second room?

Review. A 12.0-kg object hangs in equilibrium from a
string with a total length of L = 5.00 m and a linear mass
density of w = 0.001 00 kg/m. The string is wrapped
around two light, frictionless pulleys that are separated
by a distance of d = 2.00 m (Fig. P18.85a). (a) Deter-
mine the tension in the string. (b) At what frequency
must the string between the pulleys vibrate to form the
standing-wave pattern shown in Figure P18.85b?

— =

Figure P18.85 Problems 85 and 86.

Review. An object of mass m hangs in equilibrium
from a string with a total length L and a linear mass
density u. The string is wrapped around two light,
frictionless pulleys that are separated by a distance d
(Fig. P18.85a). (a) Determine the tension in the string.
(b) At what frequency must the string between the pul-
leys vibrate to form the standing-wave pattern shown in
Figure P18.85b?

Challenge Problems

87.

Review. Consider the apparatus shown in Figure
P18.87a, where the hanging object has mass M and the
string is vibrating in its second harmonic. The vibrat-
ing blade at the left maintains a constant frequency.
The wind begins to blow to the right, applying a con-

Figure P18.87
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stant horizontal force F on the hanging object. What
is the magnitude of the force the wind must apply to
the hanging object so that the string vibrates in its first
harmonic as shown in Figure 18.87b?

In Figures 18.20a and 18.20b, notice that the ampli-
tude of the component wave for frequency fis large,
that for 3fis smaller, and that for 5fsmaller still. How
do we know exactly how much amplitude to assign to
each frequency component to build a square wave?
This problem helps us find the answer to that question.
Let the square wave in Figure 18.20c have an ampli-
tude A and let = 0 be at the extreme left of the figure.
So, one period 7 of the square wave is described by

T
A 0<i<—
2

y(1) = .
—A §<t<T
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Express Equation 18.13 with angular frequencies:

y(t) = E(A,, sin nwt + B, cos nwt)
Now proceed as follows. (a) Multiply both sides of Equa-
tion 18.13 by sin mwt and integrate both sides over one
period T. Show that the left-hand side of the resulting
equation is equal to 0 if mis even and is equal to 4A/mw
if m is odd. (b) Using trigonometric identities, show
that all terms on the right-hand side involving B, are
equal to zero. (c) Using trigonometric identities, show
that all terms on the right-hand side involving A, are
equal to zero except for the one case of m = n. (d) Show
that the entire right-hand side of the equation reduces
to %AmT. (e) Show that the Fourier series expansion for
a square wave is
4A
y(1) = E o S nwt

n



