Oscillations and
Mechanical Waves

Falling drops of water cause

a water surface to oscillate.
These oscillations are
associated with circular waves
moving away from the point at
which the drops fall. In Part 2
of the text, we will explore the
principles related to oscillations
and waves. (Marga Buschbell
Steeger/Photographer’s Choice/
Getty Images)

We begin this new part of the text by studying a special type of motion called
periodic motion, the repeating motion of an object in which it continues to return to a
given position after a fixed time interval. The repetitive movements of such an object are called
oscillations. We will focus our attention on a special case of periodic motion called simple harmonic
motion. All periodic motions can be modeled as combinations of simple harmonic motions.

Simple harmonic motion also forms the basis for our understanding of mechanical waves. Sound
waves, seismic waves, waves on stretched strings, and water waves are all produced by some source
of oscillation. As a sound wave travels through the air, elements of the air oscillate back and forth;
as a water wave travels across a pond, elements of the water oscillate up and down and backward
and forward. The motion of the elements of the medium bears a strong resemblance to the periodic
motion of an oscillating pendulum or an object attached to a spring.

To explain many other phenomena in nature, we must understand the concepts of oscillations
and waves. For instance, although skyscrapers and bridges appear to be rigid, they actually oscil-
late, something the architects and engineers who design and build them must take into account.
To understand how radio and television work, we must understand the origin and nature of elec-
tromagnetic waves and how they propagate through space. Finally, much of what scientists have
learned about atomic structure has come from information carried by waves. Therefore, we must
first study oscillations and waves if we are to understand the concepts and theories of atomic
physics. m
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The London Millennium Bridge
over the River Thames in London.
On opening day of the bridge,
pedestrians noticed a swinging
motion of the bridge, leading to its
being named the "Wobbly Bridge."
The bridge was closed after two
days and remained closed for two
years. Over 50 tuned mass dampers
were added to the bridge: the pairs
of spring-loaded structures on top
of the cross members (arrow).

We will study both oscillations

and damping of oscillations in this
chapter. (Monkey Business Images/
Shutterstock.com)
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Oscillatory Motion

Periodic motion is motion of an object that regularly returns to a given position after

a fixed time interval. With a little thought, we can identify several types of periodic motion
in everyday life. Your car returns to the driveway each afternoon. You return to the dinner
table each night to eat. A bumped chandelier swings back and forth, returning to the same
position at a reqular rate. The Earth returns to the same position in its orbit around the Sun
each year, resulting in the variation among the four seasons.

A special kind of periodic motion occurs in mechanical systems when the force acting on
an object is proportional to the position of the object relative to some equilibrium position.
If this force is always directed toward the equilibrium position, the motion is called simple
harmonic motion, which is the primary focus of this chapter.

Motion of an Object Attached to a Spring

As a model for simple harmonic motion, consider a block of mass m attached to the
end of a spring, with the block free to move on a frictionless, horizontal surface



15.1 Motion of an Object Attached to a Spring

(Fig. 15.1). When the spring is neither stretched nor compressed, the block is at rest
at the position called the equilibrium position of the system, which we identify as
x = 0 (Fig. 15.1b). We know from experience that such a system oscillates back and
forth if disturbed from its equilibrium position.

We can understand the oscillating motion of the block in Figure 15.1 qualita-
tively by first recalling that when the block is displaced to a position x, the spring
exerts on the block a force that is proportional to the position and given by Hooke’s
law (see Section 7.4):

F = —kx (15.1)

We call [, a restoring force because it is always directed toward the equilibrium
position and therefore opposite the displacement of the block from equilibrium.
That is, when the block is displaced to the right of x = 0 in Figure 15.1a, the posi-
tion is positive and the restoring force is directed to the left. When the block is
displaced to the left of x = 0 as in Figure 15.1c, the position is negative and the
restoring force is directed to the right.

When the block is displaced from the equilibrium point and released, it is a
particle under a net force and consequently undergoes an acceleration. Applying
the particle under a net force model to the motion of the block, with Equation 15.1
providing the net force in the x direction, we obtain

> F,=ma, > —kx= ma,

k
a,=——«x

x (15.2)
m

That is, the acceleration of the block is proportional to its position, and the direc-
tion of the acceleration is opposite the direction of the displacement of the block
from equilibrium. Systems that behave in this way are said to exhibit simple har-
monic motion. An object moves with simple harmonic motion whenever its accel-
eration is proportional to its position and is oppositely directed to the displacement
from equilibrium.

If the block in Figure 15.1 is displaced to a position x = A and released from
rest, its initial acceleration is —kA/m. When the block passes through the equilib-
rium position x = 0, its acceleration is zero. At this instant, its speed is a maxi-
mum because the acceleration changes sign. The block then continues to travel
to the left of equilibrium with a positive acceleration and finally reaches x = —A,
at which time its acceleration is +kA/m and its speed is again zero as discussed in
Sections 7.4 and 7.9. The block completes a full cycle of its motion by returning to
the original position, again passing through x = 0 with maximum speed. There-
fore, the block oscillates between the turning points x = =A. In the absence of

When the block is displaced
to the right of equilibrium,
the force exerted by the

X spring acts to the left.

When the block is at its
equilibrium position, the

force exerted by the spring
is zero.

I When the block is displaced
to the left of equilibrium,

X the force exerted by the

Y= spring acts to the right.
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<« Hooke's law

Pitfall Prevention 15.1

The Orientation of the Spring Fig-
ure 15.1 shows a horizontal spring,
with an attached block sliding on
a frictionless surface. Another
possibility is a block hanging from
a vertical spring. All the results we
discuss for the horizontal spring
are the same for the vertical
spring with one exception: when
the block is placed on the vertical
spring, its weight causes the spring
to extend. If the resting position
of the block is defined as x = 0,
the results of this chapter also
apply to this vertical system.

Figure 15.1 A block attached
to a spring moving on a friction-
less surface.
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Pitfall Prevention 15.2

A Nonconstant Acceleration The
acceleration of a particle in simple
harmonic motion is not constant.
Equation 15.3 shows that its accel-
eration varies with position x.
Therefore, we cannot apply the
kinematic equations of Chapter 2
in this situation.

Position versus time for »>
a particle in simple
harmonic motion

Pitfall Prevention 15.3

Where's the Triangle? Equation
15.6 includes a trigonometric
function, a mathematical function
that can be used whether it refers
to a triangle or not. In this case,
the cosine function happens to
have the correct behavior for
representing the position of a par-
ticle in simple harmonic motion.

Chapter 15  Oscillatory Motion

friction, this idealized motion will continue forever because the force exerted by
the spring is conservative. Real systems are generally subject to friction, so they do
not oscillate forever. We shall explore the details of the situation with friction in
Section 15.6.

uick Quiz 15.1 A block on the end of a spring is pulled to position x = A and
. released from rest. In one full cycle of its motion, through what total distance
o does it travel? (a) A/2 (b) A (c) 24 (d) 44

Analysis Model: Particle
in Simple Harmonic Motion

The motion described in the preceding section occurs so often that we identify the
particle in simple harmonic motion model to represent such situations. To develop
a mathematical representation for this model, we will generally choose x as the axis
along which the oscillation occurs; hence, we will drop the subscript-x notation in
this discussion. Recall that, by definition, a« = du/dt = d*x/d*, so we can express
Equation 15.2 as

d’x  k

— = —— 15.3
di? m” -3}

If we denote the ratio k/m with the symbol @? (we choose w? rather than w so as to
make the solution we develop below simpler in form), then

, k
' =— (15.4)
m
and Equation 15.3 can be written in the form
d®x
— 2
o= TwX 15.5
0 (15.5)

Let’s now find a mathematical solution to Equation 15.5, that is, a function x()
that satisfies this second-order differential equation and is a mathematical repre-
sentation of the position of the particle as a function of time. We seek a function
whose second derivative is the same as the original function with a negative sign
and multiplied by ©?. The trigonometric functions sine and cosine exhibit this
behavior, so we can build a solution around one or both of them. The following
cosine function is a solution to the differential equation:

x(t) = Acos (wt + ¢) (15.6)

where A, w, and ¢ are constants. To show explicitly that this solution satisfies Equa-
tion 15.5, notice that

dx

d
Z_al + $) = —wAsi + .
" A 7, <% (wt + ¢) wAsin (wt + ¢) (15.7)
d’x d . o
P = —wA 2 5in (wt+ ¢) = —w?A cos (wt + ¢) (15.8)

Comparing Equations 15.6 and 15.8, we see that d?x/di® = —w?x and Equation 15.5
is satisfied.

The parameters A, w, and ¢ are constants of the motion. To give physical signifi-
cance to these constants, it is convenient to form a graphical representation of the
motion by plotting x as a function of ¢as in Figure 15.2a. First, A, called the ampli-
tude of the motion, is simply the maximum value of the position of the particle in
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either the positive or negative x direction. The constant w is called the angular fre-
quency, and it has units' of radians per second. It is a measure of how rapidly the
oscillations are occurring; the more oscillations per unit time, the higher the value
of w. From Equation 15.4, the angular frequency is

(15.9)

The constant angle ¢ is called the phase constant (or initial phase angle) and,
along with the amplitude A, is determined uniquely by the position and velocity of
the particle at 1 = 0. If the particle is at its maximum position x = A at ¢ = 0, the
phase constant is ¢ = 0 and the graphical representation of the motion is as shown
in Figure 15.2b. The quantity (w¢ + ¢) is called the phase of the motion. Notice
that the function x(/) is periodic and its value is the same each time wt increases by
27 radians.

Equations 15.1, 15.5, and 15.6 form the basis of the mathematical representation
of the particle in simple harmonic motion model. If you are analyzing a situation
and find that the force on an object modeled as a particle is of the mathematical
form of Equation 15.1, you know the motion is that of a simple harmonic oscillator
and the position of the particle is described by Equation 15.6. If you analyze a sys-
tem and find that it is described by a differential equation of the form of Equation
15.5, the motion is that of a simple harmonic oscillator. If you analyze a situation
and find that the position of a particle is described by Equation 15.6, you know the
particle undergoes simple harmonic motion.

uick Quiz 15.2 Consider a graphical representation (Fig. 15.3) of simple har-
monic motion as described mathematically in Equation 15.6. When the particle
is at point ® on the graph, what can you say about its position and velocity?

(a) The position and velocity are both positive. (b) The position and velocity
are both negative. (c) The position is positive, and the velocity is zero. (d) The

. position is negative, and the velocity is zero. (e) The position is positive, and the
s velocity is negative. (f) The position is negative, and the velocity is positive.

Juick Quiz 15.3 Figure 15.4 shows two curves representing particles under-
going simple harmonic motion. The correct description of these two motions
is that the simple harmonic motion of particle B is (a) of larger angular
frequency and larger amplitude than that of particle A, (b) of larger angular
frequency and smaller amplitude than that of particle A, (c) of smaller angu-
lar frequency and larger amplitude than that of particle A, or (d) of smaller
4 angular frequency and smaller amplitude than that of particle A.

Let us investigate further the mathematical description of simple harmonic
motion. The period T of the motion is the time interval required for the particle
to go through one full cycle of its motion (Fig. 15.2a). That is, the values of x and v
for the particle at time ¢ equal the values of xand vat time ¢ + 7. Because the phase
increases by 27 radians in a time interval of 7,

[+ T) + ¢l — (wi + ¢) =27

'We have seen many examples in earlier chapters in which we evaluate a trigonometric function of an angle. The
argument of a trigonometric function, such as sine or cosine, must be a pure number. The radian is a pure number
because it is a ratio of lengths. Angles in degrees are pure numbers because the degree is an artificial “unit”; it is not
related to measurements of lengths. The argument of the trigonometric function in Equation 15.6 must be a pure
number. Therefore, w must be expressed in radians per second (and not, for example, in revolutions per second) if ¢
is expressed in seconds. Furthermore, other types of functions such as logarithms and exponential functions require
arguments that are pure numbers.

O <
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Figure 15.2 (a) An x—graph
for a particle undergoing simple
harmonic motion. The amplitude
of the motion is A, and the period
(defined in Eq. 15.10) is T (b) The
x—t graph for the special case in
which x = Aat = 0 and hence

¢ =0.

Figure 15.3 (Quick Quiz 15.2)
An x—t graph for a particle under-
going simple harmonic motion.
At a particular time, the particle’s
position is indicated by ® in the
graph.

%
L~ P .
NS N
Particle A
%
13
Particle B

Figure 15.4 (Quick Quiz 15.3)
Two x—t graphs for particles under-
going simple harmonic motion.
The amplitudes and frequencies
are different for the two particles.
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Pitfall Prevention 15.4

Two Kinds of Frequency We iden-
tify two kinds of frequency for

a simple harmonic oscillator: f,
called simply the frequency, is mea-
sured in hertz, and w, the angular
Jfrequency, is measured in radians
per second. Be sure you are clear
about which frequency is being
discussed or requested in a given
problem. Equations 15.11 and 15.12
show the relationship between the
two frequencies.

Period P

Frequency P>

Velocity of a particle in P>
simple harmonic motion

Acceleration of a particle in P>
simple harmonic motion

Maximum magnitudes of P>
velocity and acceleration in
simple harmonic motion

Chapter 15 Oscillatory Motion

Simplifying this expression gives T = 27, or

ea

T (15.10)

(0]

The inverse of the period is called the frequency fof the motion. Whereas the
period is the time interval per oscillation, the frequency represents the number of
oscillations the particle undergoes per unit time interval:

_ LA (15.11)
/=7 21 '
The units of fare cycles per second, or hertz (Hz). Rearranging Equation 15.11 gives
2
w = 2mf= 777 (15.12)

Equations 15.9 through 15.11 can be used to express the period and frequency
of the motion for the particle in simple harmonic motion in terms of the character-

istics m and k of the system as
T= i 217\/2
® k

_1_ 1 Jk
J T 2w\ m

That is, the period and frequency depend only on the mass of the particle and the
force constant of the spring and not on the parameters of the motion, such as A or
¢. As we might expect, the frequency is larger for a stiffer spring (larger value of k)
and decreases with increasing mass of the particle.

We can obtain the velocity and acceleration? of a particle undergoing simple
harmonic motion from Equations 15.7 and 15.8:

(15.13)

(15.14)

d
v= j:= —wAsin (ot + ¢) (15.15)
d2
= ;;c = —w?A cos (wt + ¢) (15.16)

From Equation 15.15, we see that because the sine and cosine functions oscillate
between *1, the extreme values of the velocity vare *wA. Likewise, Equation 15.16
shows that the extreme values of the acceleration a are *w?A. Therefore, the maxi-
mum values of the magnitudes of the velocity and acceleration are

k

Uy = WA = \/7A (15.17)
m
..k

Qe = 02A = — A (15.18)
m

Figure 15.5a plots position versus time for an arbitrary value of the phase con-
stant. The associated velocity—time and acceleration—time curves are illustrated in
Figures 15.5b and 15.5¢, respectively. They show that the phase of the velocity dif-
fers from the phase of the position by 7/2 rad, or 90°. That is, when x is a maxi-
mum or a minimum, the velocity is zero. Likewise, when x is zero, the speed is a
maximum. Furthermore, notice that the phase of the acceleration differs from the
phase of the position by 7 radians, or 180°. For example, when x is a maximum, a
has a maximum magnitude in the opposite direction.

?Because the motion of a simple harmonic oscillator takes place in one dimension, we denote velocity as v and accel-
eration as a, with the direction indicated by a positive or negative sign as in Chapter 2.
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uick Quiz 15.4 An object of mass m is hung from a spring and set into oscilla-
tion. The period of the oscillation is measured and recorded as T. The object
of mass m is removed and replaced with an object of mass 2m. When this object
is set into oscillation, what is the period of the motion? (a) 27 (b) V2T (©T
s (@A) T/V2 (o) 172

Equation 15.6 describes simple harmonic motion of a particle in general. Let’s
now see how to evaluate the constants of the motion. The angular frequency w is
evaluated using Equation 15.9. The constants A and ¢ are evaluated from the ini-
tial conditions, that is, the state of the oscillator at ¢ = 0.

Suppose a block is set into motion by pulling it from equilibrium by a distance A
and releasing it from rest at ¢ = 0 as in Figure 15.6. We must then require our solu-
tions for x(f) and v(f) (Egs. 15.6 and 15.15) to obey the initial conditions that x(0) =
Aand v(0) = 0:

x(0) = Acosp = A
v(0) = —wAsinp =0

These conditions are met if ¢ = 0, giving x = A cos wtas our solution. To check this
solution, notice that it satisfies the condition that x(0) = A because cos 0 = 1.

The position, velocity, and acceleration of the block versus time are plotted in
Figure 15.7a for this special case. The acceleration reaches extreme values of Fw?A
when the position has extreme values of ZA. Furthermore, the velocity has extreme
values of ZwA, which both occur at x = 0. Hence, the quantitative solution agrees
with our qualitative description of this system.

Let’s consider another possibility. Suppose the system is oscillating and we define
¢t = 0 as the instant the block passes through the unstretched position of the spring
while moving to the right (Fig. 15.8). In this case, our solutions for x(¢#) and v(z)
must obey the initial conditions that x(0) = 0 and v(0) = v;

x(0) = Acos¢p =0
v(0) = —wAssin ¢ = v,

The first of these conditions tells us that ¢ = *7/2. With these choices for ¢, the
second condition tells us that A = Fv,/w. Because the initial velocity is positive and
the amplitude must be positive, we must have ¢ = —7/2. Hence, the solution is

X = —cos| wt— —
() 2

The graphs of position, velocity, and acceleration versus time for this choice of t = 0
are shown in Figure 15.7b. Notice that these curves are the same as those in Figure

Figure 15.7 (a) Position, velocity, and acceleration versus time for the block in Figure 15.6 under
the initial conditions that at £ = 0, x(0) = A, and v(0) = 0. (b) Position, velocity, and acceleration ver-
sus time for the block in Figure 15.8 under the initial conditions that at = 0, x(0) = 0, and v(0) = v,.
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Figure 15.5 Graphical repre-
sentation of simple harmonic
motion. (a) Position versus time.
(b) Velocity versus time. (c) Accel-
eration versus time. Notice that at
any specified time the velocity is
90° out of phase with the position
and the acceleration is 180° out of
phase with the position.

Figure 15.6 A block-spring
system that begins its motion from
rest with the blockat x = Aat ¢ = 0.

Figure 15.8 The block-spring
system is undergoing oscillation,
and ¢ = 0 is defined at an instant
when the block passes through the
equilibrium position x = 0 and is
moving to the right with speed v;.
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15.7a, but shifted to the right by one-fourth of a cycle. This shift is described math-
ematically by the phase constant ¢ = —m/2, which is one-fourth of a full cycle of 27r.

PUYELWSTHV OGNSR  Particle in Simple Harmonic Motion

Imagine an object that is subject to a force that is proportional to the negative of x
the object’s position, '= —kx. Such a force equation is known as Hooke’s law, and it “77"4’1
describes the force applied to an object attached to an ideal spring. The parameter ____7\ /\
kin Hooke’s law is called the spring constant or the force constant. The position of an ¢
object acted on by a force described by Hooke’s law is given by N }>\/ \/

x(f) = A cos (ot + @) (15.6)

where A is the amplitude of the motion, w is the angular frequency, and ¢ is the phase constant. The values of A and
¢ depend on the initial position and initial velocity of the particle.
The period of the oscillation of the particle is

=27 _ Qﬂﬁ (15.13)
w k

and the inverse of the period is the frequency.
Examples:

® a bungee jumper hangs from a bungee cord and oscillates up and down

® a guitar string vibrates back and forth in a standing wave, with each element of the string moving in simple har-
monic motion (Chapter 18)

® a piston in a gasoline engine oscillates up and down within the cylinder of the engine (Chapter 22)

® an atom in a diatomic molecule vibrates back and forth as if it is connected by a spring to the other atom in the
molecule (Chapter 43)

Example 15.1 A Block=Spring System

A 200-g block connected to a light spring for which the force constant is 5.00 N/m is free to oscillate on a frictionless,
horizontal surface. The block is displaced 5.00 cm from equilibrium and released from rest as in Figure 15.6.

(A) Find the period of its motion.

SOLUTION

Conceptualize Study Figure 15.6 and imagine the block moving back and forth in simple harmonic motion once it
is released. Set up an experimental model in the vertical direction by hanging a heavy object such as a stapler from a
strong rubber band.

Categorize The block is modeled as a particle in simple harmonic motion.

Analyze
Use Equation 15.9 to find th lar f; f th \/7 x w/75.00 / 5.00 rad/
. ; w = = = 5.00 rad/s
se Equation o find the angular frequency of the - 200 X 10~ kg

block-spring system:

2 2
Use Equation 15.13 to find the period of the system: 7="" u

=T _ 19
®  5.00rad/s 2ok

(B) Determine the maximum speed of the block.

SOLUTION

Use Equation 15.17 to find v, Vyax = @A = (5.00 rad/s)(5.00 X 1072 m) = 0.250 m/s

max

(C) Whatis the maximum acceleration of the block?
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b 15.1

SOLUTION

Use Equation 15.18 to find a,,,: Aoy = @?A = (5.00 rad/s)%(5.00 X 1072 m) = 1.25 m/s?

m.

(D) Express the position, velocity, and acceleration as functions of time in SI units.

SOLUTION

Find the phase constant from the initial condition that x(0) =Acosp=A — =0
x=Aatt=0:

Use Equation 15.6 to write an expression for x(i): x = Acos (wt + ) = 0.050 0 cos 5.00¢
Use Equation 15.15 to write an expression for v(f): v = —wAsin (vl + ¢) = —0.250 sin 5.00/
Use Equation 15.16 to write an expression for a(/): a= —w’Acos (wt + ¢d) = —1.25 cos 5.00¢

Finalize Consider part (a) of Figure 15.7, which shows the graphical representations of the motion of the block in this
problem. Make sure that the mathematical representations found above in part (D) are consistent with these graphi-
cal representations.

WEVARNES What if the block were released from the same initial position, x; = 5.00 cm, but with an initial velocity of
v, = —0.100 m/s? Which parts of the solution change, and what are the new answers for those that do change?

Answers Part (A) does not change because the period is independent of how the oscillator is set into motion. Parts
(B), (C), and (D) will change.

Write position and velocity expressions for the initial (I) x(0) = Acos ¢ = x,

conditions: .
(2) v(0) = —wAsin ¢ = v,

—wAsin¢d v
Divide Equation (2) by Equation (1) to find the phase — = —
Acos ¢ X;
constant:
v; —0.100 m/s
tan ¢ = — = — = 0.400
wx; (5.00 rad/s)(0.050 0 m)
¢ = tan"! (0.400) = 0.1217
; 0.050 0
Use Equation (1) to find A: A=—1 = o~ 0.0539m
cos¢  cos (0.1217)
Find the new maximum speed: Vpax = @A = (5.00 rad/s)(5.39 X 1072 m) = 0.269 m/s
Find the new magnitude of the maximum acceleration: @y, = ©*A = (5.00 rad/s)?(5.39 X 1072 m) = 1.35 m /s>
Find new expressions for position, velocity, and accelera- x = 0.0539 cos (5.00¢ + 0.121m)
tion in ST units: v = —0.269 sin (5.00¢ + 0.1217)

a= —1.35 cos (5.00¢ + 0.1217)

As we saw in Chapters 7 and 8, many problems are easier to solve using an energy approach rather than one based on
variables of motion. This particular What If? is easier to solve from an energy approach. Therefore, we shall investigate
the energy of the simple harmonic oscillator in the next section.

Example 15.2 Watch Out for Potholes!

A car with a mass of 1 300 kg is constructed so that its frame is supported by four springs. Each spring has a force con-
stant of 20 000 N/m. Two people riding in the car have a combined mass of 160 kg. Find the frequency of vibration of
the car after it is driven over a pothole in the road. continued
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b 15.2

SOLUTION

Conceptualize Think about your experiences with automobiles. When you sit in a car, it moves downward a small dis-
tance because your weight is compressing the springs further. If you push down on the front bumper and release it,
the front of the car oscillates a few times.

Categorize We imagine the car as being supported by a single spring and model the car as a particle in simple harmonic
motion.

Analyze First, let’s determine the effective spring constant of the four springs combined. For a given extension x of
the springs, the combined force on the car is the sum of the forces from the individual springs.

Find an expression for the total force on the car: Foiar = E (—kx) = — (E k) X

In this expression, x has been factored from the sum because it is the same for all four springs. The effective spring
constant for the combined springs is the sum of the individual spring constants.

Evaluate the effective spring constant: ke = >, k=4 > 20000 N/m = 80 000 N/m

. . . . 1 ke 1 /80000 N/m
Use Equation 15.14 to find the frequency of vibration: f= on\ 2 T 460ke 1.18 Hz
T T g

Finalize The mass we used here is that of the car plus the people because that is the total mass that is oscillating. Also
notice that we have explored only up-and-down motion of the car. If an oscillation is established in which the car rocks
back and forth such that the front end goes up when the back end goes down, the frequency will be different.

WEEPNEIES  Suppose the car stops on the side of the road and the two people exit the car. One of them pushes down-
ward on the car and releases it so that it oscillates vertically. Is the frequency of the oscillation the same as the value
we just calculated?

Answer The suspension system of the car is the same, but the mass that is oscillating is smaller: it no longer includes
the mass of the two people. Therefore, the frequency should be higher. Let’s calculate the new frequency, taking the

mass to be 1 300 kg:
1 L 1 80 000 N/m
= — ="~V ———— =125Hz
20 N m 27 1300 kg

As predicted, the new frequency is a bit higher.

Energy of the Simple Harmonic Oscillator

As we have done before, after studying the the motion of an object modeled as a
particle in a new situation and investigating the forces involved in influencing that
motion, we turn our attention to energy. Let us examine the mechanical energy
of a system in which a particle undergoes simple harmonic motion, such as the
block-spring system illustrated in Figure 15.1. Because the surface is frictionless,
the system is isolated and we expect the total mechanical energy of the system to
be constant. We assume a massless spring, so the kinetic energy of the system cor-
responds only to that of the block. We can use Equation 15.15 to express the kinetic
energy of the block as

Kinetic energy of a simple » K = ymv® = fmw?A* sin® (0t + ) (15.19)

harmonic oscillator . . . . . L
The elastic potential energy stored in the spring for any elongation x is given by

skx® (see Eq. 7.22). Using Equation 15.6 gives

Potential energy of a simple »> U= %kx2 = ékA2 cos® (wt + ¢) (15.20)
harmonic oscillator
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In either plot, notice that
K + U = constant.

U

K U=k
K, U

|
|
|
|
I
-A A

We see that Kand Uare always positive quantities or zero. Because w? = k/m, we can
express the total mechanical energy of the simple harmonic oscillator as

E= K+ U= A?[sin® (0t + ¢) + cos® (ot + ¢)]

From the identity sin 6 4+ cos? 6 = 1, we see that the quantity in square brackets is
unity. Therefore, this equation reduces to

E = 1kA® (15.21)
That is, the total mechanical energy of a simple harmonic oscillator is a constant of
the motion and is proportional to the square of the amplitude. The total mechani-
cal energy is equal to the maximum potential energy stored in the spring when x =
*Abecause v = 0 at these points and there is no kinetic energy. At the equilibrium
position, where U = 0 because x = 0, the total energy, all in the form of kinetic
energy, is again kA%

Plots of the kinetic and potential energies versus time appear in Figure 15.9a,
where we have taken ¢ = 0. At all times, the sum of the kinetic and potential ener-
gies is a constant equal to skA? the total energy of the system.

The variations of Kand U with the position «x of the block are plotted in Figure
15.9b. Energy is continuously being transformed between potential energy stored
in the spring and kinetic energy of the block.

Figure 15.10 on page 460 illustrates the position, velocity, acceleration, kinetic
energy, and potential energy of the block—spring system for one full period of the
motion. Most of the ideas discussed so far are incorporated in this important fig-
ure. Study it carefully.

Finally, we can obtain the velocity of the block at an arbitrary position by express-
ing the total energy of the system at some arbitrary position x as

E=K+ U= ymv? + ghx® = jkA?

v = iﬂ%(AQ— x?) = oV A — x?

When you check Equation 15.22 to see whether it agrees with known cases, you
find that it verifies that the speed is a maximum at x = 0 and is zero at the turning
points x = £A.

You may wonder why we are spending so much time studying simple harmonic
oscillators. We do so because they are good models of a wide variety of physical
phenomena. For example, recall the Lennard—Jones potential discussed in Exam-
ple 7.9. This complicated function describes the forces holding atoms together.
Figure 15.11a on page 460 shows that for small displacements from the equilibrium

(15.22)

459

Figure 15.9 (a) Kinetic energy
and potential energy versus time
for a simple harmonic oscillator
with ¢ = 0. (b) Kinetic energy and
potential energy versus position
for a simple harmonic oscillator.

4 Total energy of a simple
harmonic oscillator

< Velocity as a function
of position for a simple har-
monic oscillator
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Figure 15.10 (a) through (e) Several instants in the simple harmonic motion for a block-spring system. Energy bar graphs show the distri-
bution of the energy of the system at each instant. The parameters in the table at the right refer to the block—spring system, assuming at £ = 0,
x = A; hence, x = A cos wt. For these five special instants, one of the types of energy is zero. (f) An arbitrary point in the motion of the oscilla-
tor. The system possesses both kinetic energy and potential energy at this instant as shown in the bar graph.

Example 15.3

position, the potential energy curve for this function approximates a parabola,
which represents the potential energy function for a simple harmonic oscillator.
Therefore, we can model the complex atomic binding forces as being due to tiny
springs as depicted in Figure 15.11b.

The ideas presented in this chapter apply not only to block-spring systems and
atoms, but also to a wide range of situations that include bungee jumping, playing
a musical instrument, and viewing the light emitted by a laser. You will see more
examples of simple harmonic oscillators as you work through this book.

Figure 15.11 (a) If the atoms in a molecule U

do not move too far from their equilibrium § Nw§wé
. ‘ﬁ‘NW%;

positions, a graph of potential energy versus
to the graph of potential energy versus posi- \ i r
tion for a simple harmonic oscillator (dashed \ , §

separation distance between atoms is similar
black curve). (b) The forces between atoms

in a solid can be modeled by imagining
springs between neighboring atoms.

Oscillations on a Horizontal Surface

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, hori-

zontal air track.

(A) Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

SOLUTION

Conceptualize The system oscillates in exactly the same way as the block in Figure 15.10, so use that figure in your

mental image of the motion.
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p 15.3

Categorize The cartis modeled as a particle in simple harmonic motion.

Analyze Use Equation 15.21 to express the total energy E=§kA% = tmol,,
of the oscillator system and equate it to the kinetic
energy of the system when the cartis at x = 0:

. . . k 20.0 N/m
Solve for the maximum speed and substitute numerical Vpae =) — A =1/ ————(0.0300m) = 0.190 m/s
values: m 0.500 kg

(B) What is the velocity of the cart when the position is 2.00 cm?

SOLUTION

k 5
Use Equation 15.22 to evaluate the velocity: v==x Z(AQ — x?)

20.0 N/m ; .
=+, /=—/————[(0.030 0 m)*> — (0.020 0 m)?
\/ 0.500 kg [( m)* = (0.020 0. m)]

= %0.141 m/s

The positive and negative signs indicate that the cart could be moving to either the right or the left at this instant.

(C) Compute the kinetic and potential energies of the system when the position of the cart is 2.00 cm.

SOLUTION

Use the result of part (B) to evaluate the kinetic energy K = tmo? = 5(0.500 kg)(0.141 m/s)? = 5.00 X 107*]
at x = 0.020 0 m:

Evaluate the elastic potential energy at x = 0.020 0 m: U= tkx* = 5(20.0 N/m)(0.0200 m)? = 4.00 X 107%]

Finalize The sum of the kinetic and potential energies in part (C) is equal to the total energy, which can be found
from Equation 15.21. That must be true for any position of the cart.

WEENEIES  The cart in this example could have been set into motion by releasing the cart from rest at x = 3.00 cm.
What if the cart were released from the same position, but with an initial velocity of v = —0.100 m/s? What are the new
amplitude and maximum speed of the cart?

Answer This question is of the same type we asked at the end of Example 15.1, but here we apply an energy approach.

First calculate the total energy of the system at ¢t = 0: E= %mzﬂ + %ka
= 5(0.500 kg)(—0.100 m/s)* + 5(20.0 N/m)(0.030 0 m)*
=1.15X1072]

Equate this total energy to the potential energy of the E = 5kA®

system when the cart is at the endpoint of the motion:

Solve for th litude A A—MQE—WIQ(LIBXIO_?J)—00339
olve tor the amplitude A: = o 90.0 N/m = 0. m

Equate the total energy to the kinetic energy of the sys- E=§mvl,

tem when the cart is at the equilibrium position:

Solve for th i d —1/2E—1/2(1'15X10_2J)—0214
olve for the maximum speed: [ . 0.500 kg = 0. m/s

The amplitude and maximum velocity are larger than the previous values because the cart was given an initial velocity
at1=0.
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The back edge of ‘
the treadle goes up
and down as one’s
feet rock the treadle.

The ball rotates like
a particle in uniform
circular motion.

Lamp

y
s
4 (
“— Turntable
A
e Screen

The ball’s shadow moves
like a particle in simple
harmonic motion.

Figure 15.13 An experimen-
tal setup for demonstrating the

connection between a particle in

simple harmonic motion and a

corresponding particle in uniform

circular motion.

The oscillation of the treadle
causes circular motion of the
drive wheel, eventually
resulting in additional up
and down motion—of the
sewing needle.

John W. Jewett, Jr.

Figure 15.12 The bottom of a treadle-style sewing machine from the early twentieth century. The
treadle is the wide, flat foot pedal with the metal grillwork.

Comparing Simple Harmonic Motion
with Uniform Circular Motion

Some common devices in everyday life exhibit a relationship between oscillatory
motion and circular motion. For example, consider the drive mechanism for a non-
electric sewing machine in Figure 15.12. The operator of the machine places her
feet on the treadle and rocks them back and forth. This oscillatory motion causes
the large wheel at the right to undergo circular motion. The red drive belt seen in
the photograph transfers this circular motion to the sewing machine mechanism
(above the photo) and eventually results in the oscillatory motion of the sewing
needle. In this section, we explore this interesting relationship between these two
types of motion.

Figure 15.13 is a view of an experimental arrangement that shows this relation-
ship. A ball is attached to the rim of a turntable of radius A, which is illuminated
from above by a lamp. The ball casts a shadow on a screen. As the turntable rotates
with constant angular speed, the shadow of the ball moves back and forth in simple
harmonic motion.

Consider a particle located at point P on the circumference of a circle of radius
A as in Figure 15.14a, with the line OP making an angle ¢ with the x axis at ¢ =
0. We call this circle a reference circle for comparing simple harmonic motion with
uniform circular motion, and we choose the position of Pat ¢ = 0 as our reference
position. If the particle moves along the circle with constant angular speed o until
OPmakes an angle 6 with the xaxis as in Figure 15.14b, at some time /> 0 the angle
between OPand the x axis is & = wi + ¢. As the particle moves along the circle, the
projection of Pon the xaxis, labeled point Q, moves back and forth along the x axis
between the limits x = = A.

Notice that points P and (Q always have the same x coordinate. From the right
triangle OPQ, we see that this x coordinate is

x(t) = Acos (wt + ¢)

This expression is the same as Equation 15.6 and shows that the point Q moves
with simple harmonic motion along the x axis. Therefore, the motion of an object
described by the analysis model of a particle in simple harmonic motion along a
straight line can be represented by the projection of an object that can be modeled
as a particle in uniform circular motion along a diameter of a reference circle.
This geometric interpretation shows that the time interval for one complete rev-
olution of the point P on the reference circle is equal to the period of motion 7 for
simple harmonic motion between x = *A. Therefore, the angular speed w of Pis
the same as the angular frequency w of simple harmonic motion along the x axis

(15.23)
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At a later time ¢, the x
coordinates of points P
and @ are equal and are
given by Equation 15.23.

The x component of

the velocity of P equals

the velocity of Q.

The x component of the
acceleration of P equals
the acceleration of Q.
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Figure 15.14 Relationship between the uniform circular motion of a point Pand the simple harmonic motion of a point Q. A particle at P
moves in a circle of radius A with constant angular speed w.

(which is why we use the same symbol). The phase constant ¢ for simple harmonic
motion corresponds to the initial angle OP makes with the x axis. The radius A of

the reference circle equals the amplitude of the simple harmonic motion.

Because the relationship between linear and angular speed for circular motion
is v = rw (see Eq. 10.10), the particle moving on the reference circle of radius A has
a velocity of magnitude wA. From the geometry in Figure 15.14c, we see that the x
component of this velocity is —wA sin(wt¢ + ¢). By definition, point Q has a velocity
given by dx/dt. Differentiating Equation 15.23 with respect to time, we find that the

velocity of Q) is the same as the x component of the velocity of P.

The acceleration of P on the reference circle is directed radially inward toward
O and has a magnitude v?/A = w?A. From the geometry in Figure 15.14d, we see
that the x component of this acceleration is —w?A cos(w? + ¢). This value is also the
acceleration of the projected point Q along the x axis, as you can verify by taking

the second derivative of Equation 15.23.

@utck Quiz 15.5 Figure 15.15 shows the position of an object in uniform circular
motion at ¢ = 0. A light shines from above and projects a shadow of the object
on a screen below the circular motion. What are the correct values for the ampli-
tude and phase constant (relative to an x axis to the right) of the simple harmonic

motion of the shadow? (a) 0.50 m and 0 (b) 1.00 m and 0 (c) 0.50 m and 7

i () 1.00 m and 7

Example 15.4

Circular Motion with Constant Angular Speed

Lamp

H

Bdll Tul ntable

\ 05om/‘LJ

Screen

Figure 15.15 (Quick Quiz
15.5) An object moves in circular
motion, casting a shadow on the
screen below. Its position at an
instant of time is shown.

The ball in Figure 15.13 rotates counterclockwise in a circle of radius 3.00 m with a constant angular speed of

8.00 rad/s. At £ = 0, its shadow has an x coordinate of 2.00 m and is moving to the right.

(A) Determine the x coordinate of the shadow as a function of time in SI units.

SOLUTION

Conceptualize Be sure you understand the relationship between circular motion of the ball and simple harmonic
motion of its shadow as described in Figure 15.13. Notice that the shadow is notf at is maximum position at £ = 0.

Categorize The ball on the turntable is a particle in uniform circular motion. The shadow is modeled as a particle in simple

harmonic motion.

continued
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Analyze Use Equation 15.23 to write an expression for x = Acos (wt+ ¢)
the x coordinate of the rotating ball:

Solve for the phase constant: ¢ = cos™! (% - wl
. . L .. 1 (2.00m 5
Substitute numerical values for the initial conditions: ¢ = cos 3.00 — 0 = *£48.2° = +0.841 rad
.00 m

If we were to take ¢ = +0.841 rad as our answer, the shadow would be moving to the left at = 0. Because the shadow
is moving to the right at t = 0, we must choose ¢ = —0.841 rad.

Write the x coordinate as a function of time: x = 3.00 cos (8.00¢ — 0.841)

(B) Find the x components of the shadow’s velocity and acceleration at any time ¢.

SOLUTION

dx
Differentiate the x coordinate with respect to time to Uy == 2=
find the velocity at any time in m/s:
—24.0 sin (8.007 — 0.841)

(—3.00 m)(8.00 rad/s) sin (8.00¢ — 0.841)

dv,
di

= —192 cos (8.00¢ — 0.841)

Il

Differentiate the velocity with respect to time to find a, = (—24.0 m/s)(8.00 rad/s) cos (8.00¢ — 0.841)

the acceleration at any time in m/s?:

Finalize These results are equally valid for the ball moving in uniform circular motion and the shadow moving in
simple harmonic motion. Notice that the value of the phase constant puts the ball in the fourth quadrant of the xy
coordinate system of Figure 15.14, which is consistent with the shadow having a positive value for x and moving toward
the right.

When 6 is small, a simple 1 5.5 The Pen dUIum

pendulum's motion can be

ot sl il The simple pendulum is another mechanical system that exhibits periodic motion.

It consists of a particle-like bob of mass m suspended by a light string of length L
that is fixed at the upper end as shown in Figure 15.16. The motion occurs in the
vertical plane and is driven by the gravitational force. We shall show that, provided
\ | the angle 6 is small (less than about 10°), the motion is very close to that of a simple
harmonic oscillator. N

L= The forces acting on the bob are the force T exerted by the string and the gravi-
tational force mg. The tangential component mg sin 6 of the gravitational force
always acts toward 6 = 0, opposite the displacement of the bob from the lowest posi-
tion. Therefore, the tangential component is a restoring force, and we can apply
Newton’s second law for motion in the tangential direction:

motion about the equilibrium
position 6 = 0.

T

. d?s
F,=ma, — —mgsinf =m—
dt
L
g where the negative sign indicates that the tangential force acts toward the equilib-
Figure 15.16 A simple rium (vertical) position and sis the bob’s position measured along the arc. We have
pendulum. expressed the tangential acceleration as the second derivative of the position s.

Because s = L8 (Eq. 10.1a with » = L) and L is constant, this equation reduces to
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Considering 6 as the position, let us compare this equation with Equation 15.3.
Does it have the same mathematical form? No! The right side is proportional to
sin @ rather than to 6; hence, we would not expect simple harmonic motion because
this expression is not of the same mathematical form as Equation 15.3. If we
assume 0 is small (less than about 10° or 0.2 rad), however, we can use the small
angle approximation, in which sin 0 = 0, where 0 is measured in radians. Table 15.1
shows angles in degrees and radians and the sines of these angles. As long as 6 is
less than approximately 10°, the angle in radians and its sine are the same to within
an accuracy of less than 1.0%.

Therefore, for small angles, the equation of motion becomes

o g

i Z 0  (for small values of 0) (15.24)

Equation 15.24 has the same mathematical form as Equation 15.3, so we conclude
that the motion for small amplitudes of oscillation can be modeled as simple har-
monic motion. Therefore, the solution of Equation 15.24 is modeled after Equation
15.6 and is given by 0 = 0, cos(wt + ¢), where 0, is the maximum angular position
and the angular frequency w is

g g 2 (15.25)

=27 _ 277\/Z (15.26)
® g

In other words, the period and frequency of a simple pendulum depend only on the
length of the string and the acceleration due to gravity. Because the period is inde-
pendent of the mass, we conclude that all simple pendula that are of equal length
and are at the same location (so that gis constant) oscillate with the same period.

The simple pendulum can be used as a timekeeper because its period depends
only on its length and the local value of g It is also a convenient device for making
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location
of oil and other valuable underground resources.

The period of the motion is

Juick Quiz 15.6 A grandfather clock depends on the period of a pendulum to

. keep correct time. (i) Suppose a grandfather clock is calibrated correctly and

- then a mischievous child slides the bob of the pendulum downward on the oscil-
- lating rod. Does the grandfather clock run (a) slow, (b) fast, or (c) correctly?

. (ii) Suppose a grandfather clock is calibrated correctly at sea level and is then
taken to the top of a very tall mountain. Does the grandfather clock now run

é (a) slow, (b) fast, or (c) correctly?

IELIGSERE  Angles and Sines of Angles

Angle in Degrees Angle in Radians Sine of Angle Percent Difference
0° 0.000 0 0.0000 0.0%
1° 0.017 5 0.017 5 0.0%
2° 0.0349 0.0349 0.0%
3° 0.052 4 0.052 3 0.0%
5° 0.0873 0.087 2 0.1%
10° 0174 5 0.173 6 0.5%
15° 0.261 8 0.258 8 1.2%
20° 0.349 1 0.342 0 2.1%

30° 0.523 6 0.500 0 4.7%

Pitfall Prevention 15.5

Not True Simple Harmonic Motion
The pendulum does not exhibit
true simple harmonic motion for
any angle. If the angle is less than
about 10°, the motion is close

to and can be modeled as simple
harmonic.

<« Angular frequency for a
simple pendulum

<« Period of a simple pendulum
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A Connection Between Length and Time

Christian Huygens (1629-1695), the greatest clockmaker in history, suggested that an international unit of length
could be defined as the length of a simple pendulum having a period of exactly 1 s. How much shorter would our
length unit be if his suggestion had been followed?

SOLUTION

Conceptualize Imagine a pendulum that swings back and forth in exactly 1 second. Based on your experience in
observing swinging objects, can you make an estimate of the required length? Hang a small object from a string and
simulate the 1-s pendulum.

Categorize This example involves a simple pendulum, so we categorize it as a substitution problem that applies the
concepts introduced in this section.
~ T?g (1.005)%(9.80 m/s?)

C4m? 477°

Solve Equation 15.26 for the length and substitute the L
known values:

= 0.248 m

The meter’s length would be slightly less than one-fourth of its current length. Also, the number of significant digits
depends only on how precisely we know g because the time has been defined to be exactly 1 s.

What if Huygens had been born on another planet? What would the value for ghave to be on that planet
such that the meter based on Huygens’s pendulum would have the same value as our meter?
Answer Solve Equation 15.26 for g:

4m’L  47*(1.00 m)
T? (1.005)?

= 472 m/s*> = 39.5 m/s’

o=
S

No planet in our solar system has an acceleration due to gravity that large.

Physical Pendulum

0 Suppose you balance a wire coat hanger so that the hook is supported by your

| extended index finger. When you give the hanger a small angular displacement

0 with your other hand and then release it, it oscillates. If a hanging object oscillates

l about a fixed axis that does not pass through its center of mass and the object can-

I not be approximated as a point mass, we cannot treat the system as a simple pendu-
-~ = —-XCM lum. In this case, the system is called a physical pendulum.

Consider a rigid object pivoted at a point O that is a distance d from the center of

mass (Fig. 15.17). The gravitational force provides a torque about an axis through

0, and the magnitude of that torque is mgd sin 6, where 6 is as shown in Figure

15.17. We apply the rigid object under a net torque analysis model to the object and

use the rotational form of Newton’s second law, 3, 7... = I, where [is the moment

ext

mg of inertia of the object about the axis through O. The result is

Figure 15.17 A physical pendu- 420

lum pivoted at O. —mgdsin 0 = [th
The negative sign indicates that the torque about O tends to decrease 0. That is, the
gravitational force produces a restoring torque. If we again assume 0 is small, the
approximation sin 6 = 0 is valid and the equation of motion reduces to

%0 mgd .
— = —<g>9 = —w%0 (15.27)
di 1

Because this equation is of the same mathematical form as Equation 15.3, its solu-
tion is modeled after that of the simple harmonic oscillator. That is, the solution
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of Equation 15.27 is given by § = 0, cos(wl + ¢), where 6, is the maximum

angular position and
mgd
® =/
I

= 2m _ o0 L (15.28) < Period of a physical

0} mgd pendulum

The period is

This result can be used to measure the moment of inertia of a flat, rigid object.
If the location of the center of mass—and hence the value of d—is known, the
moment of inertia can be obtained by measuring the period. Finally, notice that
Equation 15.28 reduces to the period of a simple pendulum (Eq. 15.26) when 7 =
md?, that is, when all the mass is concentrated at the center of mass.

Example 15.6 A Swinging Rod

A uniform rod of mass M and length L is pivoted about one end and oscillates in a verti-
cal plane (Fig. 15.18). Find the period of oscillation if the amplitude of the motion is g
small. !
|
|
|
|
|
|
|
|
|
|
|

Conceptualize Imagine a rod swinging back and forth when L
pivoted at one end. Try it with a meterstick or a scrap piece
of wood.

Categorize Because the rod is not a point particle, we catego-
rize it as a physical pendulum.

Figure 15.18 (Example
15.6) A rigid rod oscillating
about a pivot through one
Analyze In Chapter 10, we found that the moment of inertia of ~ end is a physical pendulum

a uniform rod about an axis through one end is § ML The dis-  with d = L/2. Sy
tance d from the pivot to the center of mass of the rod is L/2.

1 2
Substitute these quantities into Equation 15.28 T=2 sML 2 2L
u 1tua uantit 1n uation . . = 27T R e —
1 1 \ Mg(L/2) \ 3¢

Finalize In one of the Moon landings, an astronaut walking on the Moon’s surface had a belt hanging from his space
suit, and the belt oscillated as a physical pendulum. A scientist on the Earth observed this motion on television and
used it to estimate the free-fall acceleration on the Moon. How did the scientist make this calculation?

SOLUTION /d
)l(

Torsional Pendulum

Figure 15.19 on page 468 shows a rigid object such as a disk suspended by a wire
attached at the top to a fixed support. When the object is twisted through some
angle 6, the twisted wire exerts on the object a restoring torque that is proportional
to the angular position. That is,

7= —kKb
where k (Greek letter kappa) is called the lorsion constant of the support wire and
is a rotational analog to the force constant k for a spring. The value of « can be

obtained by applying a known torque to twist the wire through a measurable angle
0. Applying Newton’s second law for rotational motion, we find that
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The object oscillates about the
line OP with an amplitude 6

Figure 15.19 A torsional
pendulum.

| E—

‘ 1
|
\ 7Ir

. )

Figure 15.20 One example of
a damped oscillator is an object
attached to a spring and sub-
mersed in a viscous liquid.

max*

Oscillatory Motion

d’0
2 rT=la > —k0 =1 5
dt
dh B (15.29)
dt? I )

Again, this result is the equation of motion for a simple harmonic oscillator, with

w = Vk/I and a period
I
T = 277\/; (15.30)

This system is called a forsional pendulum. There is no small-angle restriction in
this situation as long as the elastic limit of the wire is not exceeded.

Damped Oscillations

The oscillatory motions we have considered so far have been for ideal systems, that is,
systems that oscillate indefinitely under the action of only one force, a linear restoring
force. In many real systems, nonconservative forces such as friction or air resistance
also act and retard the motion of the system. Consequently, the mechanical energy of
the system diminishes in time, and the motion is said to be damped. The mechanical
energy of the system is transformed into internal energy in the object and the retard-
ing medium. Figure 15.20 depicts one such system: an object attached to a spring
and submersed in a viscous liquid. Another example is a simple pendulum oscillating
in air. After being set into motion, the pendulum eventually stops oscillating due to
air resistance. The opening photograph for this chapter depicts damped oscillations
in practice. The spring-loaded devices mounted below the bridge are dampers that
transform mechanical energy of the oscillating bridge into internal energy.

One common type of retarding force is that discussed in Section 6.4, where
the force is proportional to the speed of the moving object and acts in the direc-
tion opposite the velocity of the object with respect to the medium. This retarding
force is often observed when an object moves through air, for instance. Because
the retarding force can be expressed as R = —bV (where b is a constant called the
damping coefficient) and the restoring force of the system is —kx, we can write New-
ton’s second law as

> F,= —kx — bu,= ma,
dx d?x
—kx — b— = m—;
dt di?

(15.31)

The solution to this equation requires mathematics that may be unfamiliar to you;
we simply state it here without proof. When the retarding force is small compared
with the maximum restoring force—that is, when the damping coefficient & is
small—the solution to Equation 15.31 is

x = Ae W2l cos (ot + @) (15.32)
where the angular frequency of oscillation is

w=+]%_ ( b )2 (15.33)

m Im

This result can be verified by substituting Equation 15.32 into Equation 15.31. It
is convenient to express the angular frequency of a damped oscillator in the form

. b \?
o= o ()

where w, = Vk/m represents the angular frequency in the absence of a retarding
force (the undamped oscillator) and is called the natural frequency of the system.
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Figure 15.21 shows the position as a function of time for an object oscillating in
the presence of a retarding force. When the retarding force is small, the oscillatory
character of the motion is preserved but the amplitude decreases exponentially in
time, with the result that the motion ultimately becomes undetectable. Any system
that behaves in this way is known as a damped oscillator. The dashed black lines in
Figure 15.21, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 15.32. This envelope shows that the amplitude decays
exponentially with time. For motion with a given spring constant and object mass,
the oscillations dampen more rapidly for larger values of the retarding force.

When the magnitude of the retarding force is small such that 5/2m < w,, the
system is said to be underdamped. The resulting motion is represented by Figure
15.21 and the the blue curve in Figure 15.22. As the value of b increases, the ampli-
tude of the oscillations decreases more and more rapidly. When b reaches a critical
value b, such that b./2m = w,, the system does not oscillate and is said to be criti-
cally damped. In this case, the system, once released from rest at some nonequilib-
rium position, approaches but does not pass through the equilibrium position. The
graph of position versus time for this case is the red curve in Figure 15.22.

If the medium is so viscous that the retarding force is large compared with the
restoring force—that is, if 5/2m > w,—the system is overdamped. Again, the dis-
placed system, when free to move, does not oscillate but rather simply returns to its
equilibrium position. As the damping increases, the time interval required for the
system to approach equilibrium also increases as indicated by the black curve in
Figure 15.22. For critically damped and overdamped systems, there is no angular
frequency w and the solution in Equation 15.32 is not valid.

Forced Oscillations

We have seen that the mechanical energy of a damped oscillator decreases in
time as a result of the retarding force. It is possible to compensate for this energy
decrease by applying a periodic external force that does positive work on the sys-
tem. At any instant, energy can be transferred into the system by an applied force
that acts in the direction of motion of the oscillator. For example, a child on a
swing can be kept in motion by appropriately timed “pushes.” The amplitude of
motion remains constant if the energy input per cycle of motion exactly equals the
decrease in mechanical energy in each cycle that results from retarding forces.

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, such as I'(f) = I, sin wt, where I is a constant
and w is the angular frequency of the driving force. In general, the frequency w of
the driving force is variable, whereas the natural frequency w, of the oscillator is
fixed by the values of k and m. Modeling an oscillator with both retarding and driv-
ing forces as a particle under a net force, Newton’s second law in this situation gives

. dx d’x
EFx: ma, — Fysnmwt— b— —kx=m

p P (15.34)

Again, the solution of this equation is rather lengthy and will not be presented.
After the driving force on an initially stationary object begins to act, the ampli-
tude of the oscillation will increase. The system of the oscillator and the surround-
ing medium is a nonisolated system: work is done by the driving force, such that
the vibrational energy of the system (kinetic energy of the object, elastic potential
energy in the spring) and internal energy of the object and the medium increase.
After a sufficiently long period of time, when the energy input per cycle from the
driving force equals the amount of mechanical energy transformed to internal
energy for each cycle, a steady-state condition is reached in which the oscillations
proceed with constant amplitude. In this situation, the solution of Equation 15.34 is

x = A cos (wt + ¢) (15.35)

x The amplitude
decreases as Ae~ (/2L

Figure 15.21 Graph of posi-
tion versus time for a damped
oscillator.

Figure 15.22 Graphs of posi-
tion versus time for an under-
damped oscillator (blue curve), a
critically damped oscillator (red
curve), and an overdamped oscil-
lator (black curve).
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Amplitude of a
driven oscillator

When the frequency w of

the driving force equals the
natural frequency w, of the
oscillator, resonance occurs.

b=0
Undamped

Small b

Large b

Figure 15.23 Graph of ampli-
tude versus frequency for a
damped oscillator when a peri-
odic driving force is present.
Notice that the shape of the reso-
nance curve depends on the size
of the damping coefficient b.

Figure 15.24 (a) In 1940,
turbulent winds set up torsional
vibrations in the Tacoma Nar-
rows Bridge, causing it to oscillate
at a frequency near one of the
natural frequencies of the bridge
structure. (b) Once established,
this resonance condition led to
the bridge’s collapse. (Mathemati-
cians and physicists are currently
challenging some aspects of this
interpretation.)
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where
Fy,/m

. o1 9 bow\?
\/(wz — woz)z + <m>

and where w, = Vk/m is the natural frequency of the undamped oscillator (b = 0).

Equations 15.35 and 15.36 show that the forced oscillator vibrates at the fre-
quency of the driving force and that the amplitude of the oscillator is constant for
a given driving force because it is being driven in steady-state by an external force.
For small damping, the amplitude is large when the frequency of the driving force
is near the natural frequency of oscillation, or when w = w,,. The dramatic increase
in amplitude near the natural frequency is called resonance, and the natural fre-
quency w is also called the resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that
energy is being transferred to the system under the most favorable conditions. We
can better understand this concept by taking the first time derivative of x in Equa-
tion 15.35, which gives an expression for the velocity of the oscillator. We find that
v is proportional to sin(wt? + ¢), which is the same trigonorgetric function as that
describing the driving force. Therefore, the applied force F is in phase with the
veloc1ty The rate at which work is done on the oscillator by ¥ equals the dot prod-
uct F - V; this rate is the power delivered to the oscillator. Because the product
F -V is a maximum when F and ¥V are in phase, we conclude that at resonance,
the applied force is in phase with the velocity and the power transferred to the
oscillator is 2 maximum.

Figure 15.23 is a graph of amplitude as a function of driving frequency for a
forced oscillator with and without damping. Notice that the amplitude increases with
decreasing damping (b — 0) and that the resonance curve broadens as the damping
increases. In the absence of a damping force (b = 0), we see from Equation 15.36 that
the steady-state amplitude approaches infinity as w approaches w,. In other words, if
there are no losses in the system and we continue to drive an initially motionless oscil-
lator with a periodic force that is in phase with the velocity, the amplitude of motion
builds without limit (see the red-brown curve in Fig. 15.23). This limitless building
does not occur in practice because some damping is always present in reality.

Later in this book we shall see that resonance appears in other areas of physics.
For example, certain electric circuits have natural frequencies and can be set into
strong resonance by a varying voltage applied at a given frequency. A bridge has
natural frequencies that can be set into resonance by an appropriate driving force.
A dramatic example of such resonance occurred in 1940 when the Tacoma Narrows
Bridge in the state of Washington was destroyed by resonant vibrations. Although
the winds were not particularly strong on that occasion, the “flapping” of the wind
across the roadway (think of the “flapping” of a flag in a strong wind) provided a
periodic driving force whose frequency matched that of the bridge. The resulting
oscillations of the bridge caused it to ultimately collapse (Fig. 15.24) because the
bridge design had inadequate built-in safety features.

A:

(15.36)

© Topham/The Image Works

AP Photos
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Many other examples of resonant vibrations can be cited. A resonant vibration
you may have experienced is the “singing” of telephone wires in the wind. Machines
often break if one vibrating part is in resonance with some other moving part. Sol-
diers marching in cadence across a bridge have been known to set up resonant
vibrations in the structure and thereby cause it to collapse. Whenever any real phys-
ical system is driven near its resonance frequency, you can expect oscillations of

very large amplitudes.

Concepts and Principles

The kinetic energy and potential
energy for an object of mass m oscillating
at the end of a spring of force constant k
vary with time and are given by

K = §mv* = ymw’A? sin? (wt + ¢) (15.19)
U= bkx® = }kA% cos’ (w1 + ¢)  (15.20)

The total energy of a simple harmonic
oscillator is a constant of the motion and
is given by

A simple pendulum of length L can be modeled to move in
simple harmonic motion for small angular displacements from the

vertical. Its period is
L
T= 277\/>
g

A physical pendulum is an extended object that, for small angular
displacements, can be modeled to move in simple harmonic motion
about a pivot that does not go through the center of mass. The
period of this motion is

(15.26)

1
T=2m\|—— (15.28)

(15.21) mgd
where /is the moment of inertia of the object about an axis through
the pivot and dis the distance from the pivot to the center of mass
of the object.

E = §kA®

If an oscillator is subject to a sinu-
soidal driving force that is described
by F(/) = F, sin wt, it exhibits reso-
(15.32) nance, in which the amplitude is
where largest when the driving frequency

% b \2 o matches the natural frequency
@ ===
- (a)

w, = Vk/m of the oscillator.
Analysis Model for Problem Solving

N
If an oscillator experiences a damping force R = —b¥, its position for

small damping is described by

x = Ae”2Mlcos (wt + )

(15.33)

Particle in Simple Harmonic Motion If a particle is subject to a force of the form
of Hooke’s law I' = —kx, the particle exhibits simple harmonic motion. Its position is
described by

_____ ——
JANVAY

_A \/ \/
where A is the amplitude of the motion, w is the angular frequency, and ¢ is the
phase constant. The value of ¢ depends on the initial position and initial velocity of the particle.
The period of the oscillation of the particle is

=27 _ QWﬁ (15.13)
) k

x(l) = A cos (@l + $) (15.6)

and the inverse of the period is the frequency.



472

Chapter 15 Oscillatory Motion

Objective Questions

. If a simple pendulum oscillates with small amplitude
and its length is doubled, what happens to the fre-
quency of its motion? (a) It doubles. (b) It becomes
V2 times as large. (c) It becomes half as large. (d) It
becomes 1/V2 times as large. (e) It remains the same.

. You attach a block to the bottom end of a spring hang-
ing vertically. You slowly let the block move down and
find that it hangs at rest with the spring stretched by
15.0 cm. Next, you lift the block back up to the ini-
tial position and release it from rest with the spring
unstretched. What maximum distance does it move
down? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm
(e) The distance cannot be determined without know-
ing the mass and spring constant.

. A block-spring system vibrating on a frictionless,
horizontal surface with an amplitude of 6.0 cm has an
energy of 12 J. If the block is replaced by one whose
mass is twice the mass of the original block and the
amplitude of the motion is again 6.0 cm, what is the
energy of the system? (a) 12 ] (b) 24 ] (c) 6] (d) 48]
(e) none of those answers

. An object—spring system moving with simple harmonic
motion has an amplitude A. When the kinetic energy
of the object equals twice the potential energy stored
in the spring, what is the position x of the object? (a) A
(b) %A (¢) A/V3 (d) 0 (e) none of those answers

. An object of mass 0.40 kg, hanging from a spring with
a spring constant of 8.0 N/m, is set into an up-and-
down simple harmonic motion. What is the magnitude
of the acceleration of the object when it is at its maxi-
mum displacement of 0.10 m? (a) zero (b) 0.45 m/s?
(c) 1.0 m/s? (d) 2.0 m/s? (e) 2.4 m/s?

. A runaway railroad car, with mass 3.0 X 10° kg, coasts
across a level track at 2.0 m/s when it collides elastically
with a spring-loaded bumper at the end of the track.
If the spring constant of the bumper is 2.0 X 105 N/m,
what is the maximum compression of the spring dur-
ing the collision? (a) 0.77 m (b) 0.58 m (c) 0.34 m
(d) 1.07m (e) 1.24 m

. The position of an object moving with simple harmonic
motion is given by x = 4 cos (67¢), where xis in meters
and /is in seconds. What is the period of the oscillat-
ing system? (a) 4 s (b) s (c) s (d) 67 s (e) impossible
to determine from the information given

. If an object of mass m attached to a light spring is
replaced by one of mass 9m, the frequency of the vibrat-
ing system changes by what factor? (a) ¢ (b) § (c) 3.0
(d) 9.0 (e) 6.0

. You stand on the end of a diving board and bounce to
set it into oscillation. You find a maximum response in
terms of the amplitude of oscillation of the end of the
board when you bounce at frequency /. You now move
to the middle of the board and repeat the experiment.
Is the resonance frequency for forced oscillations at
this point (a) higher, (b) lower, or (c) the same as /?

10.

11.

denotes answer available in Student Solutions Manual/Study Guide

A mass-spring system moves with simple harmonic
motion along the x axis between turning points at x; =
20 cm and x, = 60 cm. For parts (i) through (iii),
choose from the same five possibilities. (i) At which
position does the particle have the greatest magnitude
of momentum? (a) 20 cm (b) 30 cm (c) 40 cm (d) some
other position (e) The greatest value occurs at multiple
points. (ii) At which position does the particle have
greatest kinetic energy? (iii) At which position does the
particle-spring system have the greatest total energy?

A block with mass m = 0.1 kg oscillates with amplitude
A = 0.1 m at the end of a spring with force constant
k = 10 N/m on a frictionless, horizontal surface. Rank
the periods of the following situations from greatest to
smallest. If any periods are equal, show their equality
in your ranking. (a) The system is as described above.
(b) The system is as described in situation (a) except
the amplitude is 0.2 m. (c) The situation is as described
in situation (a) except the mass is 0.2 kg. (d) The situ-
ation is as described in situation (a) except the spring
has force constant 20 N/m. (e) A small resistive force
makes the motion underdamped.

For a simple harmonic oscillator, answer yes or no to the

13.

14.

following questions. (a) Can the quantities position and
velocity have the same sign? (b) Can velocity and
acceleration have the same sign? (c) Can position and
acceleration have the same sign?

The top end of a spring
is held fixed. A block
is hung on the bot
tom end as in Figure
0OQ15.13a, and the fre-
quency f of the oscil-
lation of the system is
measured. The block, a
second identical block,
and the spring are car-
ried up in a space shuttle
to Earth orbit. The two blocks are attached to the ends
of the spring. The spring is compressed without making
adjacent coils touch (Fig. OQ15.13b), and the system is
released to oscillate while floating within the shuttle
cabin (Fig. OQl15.13¢c). What is the frequency of oscil-
lation for this system in terms of /? (a) //2 (b) f/ V2
©f V2 (&2

Which of the following statements is not true regarding
a mass—spring system that moves with simple harmonic
motion in the absence of friction? (a) The total energy
of the system remains constant. (b) The energy of the
system is continually transformed between kinetic and
potential energy. (c) The total energy of the system is
proportional to the square of the amplitude. (d) The
potential energy stored in the system is greatest when
the mass passes through the equilibrium position.
(e) The velocity of the oscillating mass has its maxi-
mum value when the mass passes through the equilib-
rium position.

Figure 0Q15.13



15. A simple pendulum has a period of 2.5 s. (i) What

16.

Conceptual Questions

1.

is its period if its length is made four times larger?
(@) 1.25s (b) 1.77 s (c) 2.5 s (d) 3.54 s (e) 5 s (ii) What
is its period if the length is held constant at its initial
value and the mass of the suspended bob is made four
times larger? Choose from the same possibilities.

A simple pendulum is suspended from the ceiling of
a stationary elevator, and the period is determined.
(i) When the elevator accelerates upward, is the period
(a) greater, (b) smaller, or (c) unchanged? (ii) When
the elevator has a downward acceleration, is the period
(a) greater, (b) smaller, or (c) unchanged? (iii) When
the elevator moves with constant upward velocity, is

You are looking at a small, leafy tree. You do not notice
any breeze, and most of the leaves on the tree are
motionless. One leaf, however, is fluttering back and
forth wildly. After a while, that leaf stops moving and
you notice a different leaf moving much more than all
the others. Explain what could cause the large motion
of one particular leaf.

. The equations listed together on page 38 give position

as a function of time, velocity as a function of time, and
velocity as a function of position for an object moving
in a straight line with constant acceleration. The quan-
tity v,; appears in every equation. (a) Do any of these
equations apply to an object moving in a straight line
with simple harmonic motion? (b) Using a similar for-
mat, make a table of equations describing simple har-
monic motion. Include equations giving acceleration
as a function of time and acceleration as a function of
position. State the equations in such a form that they
apply equally to a block-spring system, to a pendu-
lum, and to other vibrating systems. (c) What quantity
appears in every equation?

(a) If the coordinate of a particle varies as x = —A cos w/,

what is the phase constant in Equation 15.6? (b) At
what position is the particle at ¢ = 0?

. A pendulum bob is made from a sphere filled with

water. What would happen to the frequency of vibra-
tion of this pendulum if there were a hole in the sphere
that allowed the water to leak out slowly?

. Figure CQ15.5 shows graphs of the potential energy of

four different systems versus the position of a particle
U U

Figure CQ15.5

17.

6.
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Conceptual Questions

the period of the pendulum (a) greater, (b) smaller, or
(c) unchanged?

A particle on a spring moves in simple harmonic
motion along the x axis between turning points at x; =
100 cm and x, = 140 cm. (i) At which of the following
positions does the particle have maximum speed?
(a) 100 cm (b) 110 cm (c) 120 cm (d) at none of those
positions (ii) At which position does it have maximum
acceleration? Choose from the same possibilities as in
part (i). (iii) At which position is the greatest net force
exerted on the particle? Choose from the same possi-
bilities as in part (i).

denotes answer available in Student Solutions Manual/Study Guide

in each system. Each particle is set into motion with a
push at an arbitrarily chosen location. Describe its sub-
sequent motion in each case (a), (b), (c), and (d).

Astudent thinks that any real vibration must be damped.
Is the student correct? If so, give convincing reasoning.
If not, give an example of a real vibration that keeps con-
stant amplitude forever if the system is isolated.

. The mechanical energy of an undamped block—spring

system is constant as kinetic energy transforms to elastic
potential energy and vice versa. For comparison, explain
what happens to the energy of a damped oscillator in
terms of the mechanical, potential, and kinetic energies.

Is it possible to have damped oscillations when a sys-

9.

10.

11.

12.

13.

tem is at resonance? Explain.

Will damped oscillations occur for any values of b and
k? Explain.

If a pendulum clock keeps perfect time at the base of
a mountain, will it also keep perfect time when it is
moved to the top of the mountain? Explain.

Is a bouncing ball an example of simple harmonic
motion? Is the daily movement of a student from home
to school and back simple harmonic motion? Why or
why not?

A simple pendulum can be modeled as exhibiting
simple harmonic motion when 6 is small. Is the motion
periodic when 0 is large?

Consider the simplified single-piston engine in Figure
CQl15.13. Assuming the wheel rotates with constant
angular speed, explain why the piston rod oscillates in
simple harmonic motion.

2\

Piston

Figure CQ15.13
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The problems found in this
chapter may be assigned

online in Enhanced WebAssign m Guided Problem

1. straightforward; 2. intermediate;
3. challenging

full solution available in the Student
Solutions Manual/Study Guide

WebAssign

Note: Ignore the mass of every spring, except in Prob-
lems 76 and 87.

Section 15.1 Motion of an Object Attached to a Spring
Problems 17, 18, 19, 22, and 59 in Chapter 7 can also be

assigned with this section.

1. A 0.60-kg block attached to a spring with force con-
stant 130 N/m is free to move on a frictionless, hori-
zontal surface as in Figure 15.1. The block is released
from rest when the spring is stretched 0.13 m. At the
instant the block is released, find (a) the force on the
block and (b) its acceleration.

2. When a 4.25-kg object is placed on top of a vertical
spring, the spring compresses a distance of 2.62 cm.
What is the force constant of the spring?

Section 15.2 Analysis Model: Particle
in Simple Harmonic Motion

3. A vertical spring stretches 3.9 cm when a 10-g object

M is hung from it. The object is replaced with a block of

mass 25 g that oscillates up and down in simple har-
monic motion. Calculate the period of motion.

4. In an engine, a piston oscillates with simple harmonic
[ motion so that its position varies according to the
expression

x = 5.00 cos (Qt + z)
6
where x is in centimeters and /is in seconds. At { = 0,
find (a) the position of the particle, (b) its velocity, and
(c) its acceleration. Find (d) the period and (e) the
amplitude of the motion.

The position of a particle is given by the expression

I x = 4.00 cos (3.007t + ), where x is in meters and ¢ is
in seconds. Determine (a) the frequency and (b) period
of the motion, (c) the amplitude of the motion, (d) the
phase constant, and (e) the position of the particle at
1= 0.250s.

6. A piston in a gasoline engine is in simple har-
monic motion. The engine is running at the rate of
3 600 rev/min. Taking the extremes of its position rela-
tive to its center point as *5.00 cm, find the magni-
tudes of the (a) maximum velocity and (b) maximum
acceleration of the piston.

7. A 1.00-kg object is attached to a horizontal spring. The
spring is initially stretched by 0.100 m, and the object

Analysis Model tutorial available in
Enhanced WebAssign

Il Master It tutorial available in Enhanced

Watch It video solution available in
Enhanced WebAssign

is released from rest there. It proceeds to move without
friction. The next time the speed of the object is zero is
0.500 s later. What is the maximum speed of the object?

8. A simple harmonic oscillator takes 12.0 s to undergo

M five complete vibrations. Find (a) the period of its
motion, (b) the frequency in hertz, and (c) the angular
frequency in radians per second.

A 7.00-kg object is hung from the bottom end of a verti-

[XYi cal spring fastened to an overhead beam. The object is

M set into vertical oscillations having a period of 2.60 s.
Find the force constant of the spring.

10. At an outdoor market, a bunch of bananas attached

IM to the bottom of a vertical spring of force constant
16.0 N/m is set into oscillatory motion with an ampli-
tude of 20.0 cm. It is observed that the maximum
speed of the bunch of bananas is 40.0 cm/s. What is
the weight of the bananas in newtons?

11. A vibration sensor, used in testing a washing machine,
consists of a cube of aluminum 1.50 cm on edge
mounted on one end of a strip of spring steel (like
a hacksaw blade) that lies in a vertical plane. The
strip’s mass is small compared with that of the cube,
but the strip’s length is large compared with the size
of the cube. The other end of the strip is clamped to
the frame of the washing machine that is not operat-
ing. A horizontal force of 1.43 N applied to the cube
is required to hold it 2.75 cm away from its equilib-
rium position. If it is released, what is its frequency of
vibration?

(a) A hanging spring stretches by 35.0 cm when an
object of mass 450 g is hung on it at rest. In this sit-
uation, we define its position as x = 0. The object is
pulled down an additional 18.0 cm and released from
rest to oscillate without friction. What is its position x
at a moment 84.4 s later? (b) Find the distance traveled
by the vibrating object in part (a). (c) What If? Another
hanging spring stretches by 35.5 cm when an object of
mass 440 g is hung on it at rest. We define this new
position as x = 0. This object is also pulled down an
additional 18.0 cm and released from rest to oscillate
without friction. Find its position 84.4 s later. (d) Find
the distance traveled by the object in part (c). (e) Why
are the answers to parts (a) and (c) so different when
the initial data in parts (a) and (c) are so similar and
the answers to parts (b) and (d) are relatively close?
Does this circumstance reveal a fundamental difficulty
in calculating the future?



13.

14.

Review. A particle moves along the x axis. It is initially
at the position 0.270 m, moving with velocity 0.140 m/s
and acceleration —0.320 m/s?. Suppose it moves as a
particle under constant acceleration for 4.50 s. Find
(a) its position and (b) its velocity at the end of this
time interval. Next, assume it moves as a particle in
simple harmonic motion for 4.50 s and x = 0 is its equi-
librium position. Find (c) its position and (d) its veloc-
ity at the end of this time interval.

A ball dropped from a height of 4.00 m makes an elas-
tic collision with the ground. Assuming no mechani-
cal energy is lost due to air resistance, (a) show that
the ensuing motion is periodic and (b) determine the
period of the motion. (c) Is the motion simple har-
monic? Explain.

A particle moving along the x axis in simple harmonic

16.

17.

18.

motion starts from its equilibrium position, the ori-
gin, at £ = 0 and moves to the right. The amplitude
of its motion is 2.00 cm, and the frequency is 1.50 Hz.
(a) Find an expression for the position of the particle
as a function of time. Determine (b) the maximum
speed of the particle and (c) the earliest time (1 > 0)
at which the particle has this speed. Find (d) the maxi-
mum positive acceleration of the particle and (e) the
earliest time (¢ > 0) at which the particle has this accel-
eration. (f) Find the total distance traveled by the par-
ticle between t = 0 and ¢t = 1.00 s.

The initial position, velocity, and acceleration of
an object moving in simple harmonic motion are x;,
v;, and a;; the angular frequency of oscillation is .
(a) Show that the position and velocity of the object for
all time can be written as

vl .

x(1) = x;cos ot + (7) sin wl
®

u(f) = —x;w sin wt + v; cos wt

(b) Using A to represent the amplitude of the motion,
show that

v —ax=v? — ax; = 0?A?

A particle moves in simple harmonic motion with a
frequency of 3.00 Hz and an amplitude of 5.00 cm.
(a) Through what total distance does the particle move
during one cycle of its motion? (b) What is its maxi-
mum speed? Where does this maximum speed occur?
(c) Find the maximum acceleration of the particle.
Where in the motion does the maximum acceleration
occur?

A 1.00-kg glider attached to a spring with a force con-

[ stant of 25.0 N/m oscillates on a frictionless, horizon-

tal air track. At ¢ = 0, the glider is released from rest
at x = —3.00 cm (that is, the spring is compressed by
3.00 cm). Find (a) the period of the glider’s motion,
(b) the maximum values of its speed and acceleration,
and (c) the position, velocity, and acceleration as func-
tions of time.

A 0.500-kg object attached to a spring with a force con-
7} stant of 8.00 N/m vibrates in simple harmonic motion

with an amplitude of 10.0 cm. Calculate the maximum

20.
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Problems

value of'its (a) speed and (b) acceleration, (c) the speed
and (d) the acceleration when the object is 6.00 cm
from the equilibrium position, and (e) the time inter-
val required for the object to move from x = 0 to x =
8.00 cm.

You attach an object to the bottom end of a hang-
ing vertical spring. It hangs at rest after extending
the spring 18.3 cm. You then set the object vibrating.
(a) Do you have enough information to find its period?
(b) Explain your answer and state whatever you can
about its period.

Section 15.3 Energy of the Simple Harmonic Oscillator

To test the resiliency of its bumper during low-speed
collisions, a 1 000-kg automobile is driven into a brick
[ wall. The car’s bumper behaves like a spring with a

22.

23.

24.

25.

26.

27.

force constant 5.00 X 10° N/m and compresses 3.16 cm
as the car is brought to rest. What was the speed of the
car before impact, assuming no mechanical energy is
transformed or transferred away during impact with
the wall?

A 200-g block is attached to a horizontal spring and
executes simple harmonic motion with a period of
0.250 s. The total energy of the system is 2.00 J. Find
(a) the force constant of the spring and (b) the ampli-
tude of the motion.

A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
block is halfway between its equilibrium position and
the end point, its speed is measured to be 30.0 cm/s.
Calculate (a) the mass of the block, (b) the period of
the motion, and (c) the maximum acceleration of the
block.

A block-spring system oscillates with an amplitude of
3.50 cm. The spring constant is 250 N/m and the mass
of the block is 0.500 kg. Determine (a) the mechanical
energy of the system, (b) the maximum speed of the
block, and (c) the maximum acceleration.

A particle executes simple harmonic motion with an
amplitude of 3.00 cm. At what position does its speed
equal half of its maximum speed?

The amplitude of a system moving in simple harmonic
motion is doubled. Determine the change in (a) the
total energy, (b) the maximum speed, (c) the maxi-
mum acceleration, and (d) the period.

A 50.0-g object connected to a spring with a force

[ constant of 35.0 N/m oscillates with an amplitude of

28.

4.00 cm on a frictionless, horizontal surface. Find
(a) the total energy of the system and (b) the speed
of the object when its position is 1.00 cm. Find (c) the
kinetic energy and (d) the potential energy when its
position is 3.00 cm.

A 2.00-kg object is attached to a spring and placed on
a frictionless, horizontal surface. A horizontal force
of 20.0 N is required to hold the object at rest when
it is pulled 0.200 m from its equilibrium position
(the origin of the x axis). The object is now released
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from rest from this stretched position, and it subse-
quently undergoes simple harmonic oscillations. Find
(a) the force constant of the spring, (b) the frequency
of the oscillations, and (c) the maximum speed of the
object. (d) Where does this maximum speed occur?
(e) Find the maximum acceleration of the object.
(f) Where does the maximum acceleration occur?
(g) Find the total energy of the oscillating system.
Find (h) the speed and (i) the acceleration of the
object when its position is equal to one-third the max-
imum value.

A simple harmonic oscillator of amplitude A has a

31.

total energy E. Determine (a) the kinetic energy and
(b) the potential energy when the position is one-third
the amplitude. (c) For what values of the position does
the kinetic energy equal one-half the potential energy?
(d) Are there any values of the position where the
kinetic energy is greater than the maximum potential
energy? Explain.

Review. A 65.0-kg bungee jumper steps off a bridge
with a light bungee cord tied to her body and to the
bridge. The unstretched length of the cord is 11.0 m.
The jumper reaches the bottom of her motion 36.0 m
below the bridge before bouncing back. We wish to
find the time interval between her leaving the bridge
and her arriving at the bottom of her motion.
Her overall motion can be separated into an 11.0-m
free fall and a 25.0-m section of simple harmonic
oscillation. (a) For the free-fall part, what is the
appropriate analysis model to describe her motion?
(b) For what time interval is she in free fall? (c) For
the simple harmonic oscillation part of the plunge, is
the system of the bungee jumper, the spring, and the
Earth isolated or non- isolated? (d) From your
response in part (c) find the spring constant of the
bungee cord. (e) What is the location of the equilib-
rium point where the spring force balances the gravi-
tational force exerted on the jumper? (f) What is the
angular frequency of the oscillation? (g) What time
interval is required for the cord to stretch by 25.0 m?
(h) What is the total time interval for the entire
36.0-m drop?

Review. A 0.250-kg block resting on a frictionless,
horizontal surface is attached to a spring whose force
constant i_s)8?>.8 N/m as in Figure P15.31. A horizon-
tal force F causes the spring to stretch a distance of
5.46 cm from_i)ts equilibrium position. (a) Find the
magnitude of F. (b) What is the total energy stored in
the system when the spring is stretched? (c) Find the
magnitude of the acceleration of the block just after
the applied force is removed. (d) Find the speed of the
block when it first reaches the equilibrium position.
(e) If the surface is not frictionless but the block still
reaches the equilibrium position, would your answer
to part (d) be larger or smaller? (f) What other infor-
mation would you need
to know to find the actual
answer to part (d) in this
case? (g) What is the largest
value of the coefficient of

Figure P15.31

friction that would allow the block to reach the equi-
librium position?

32. A 326-g object is attached to a spring and executes sim-
ple harmonic motion with a period of 0.250 s. If the

total energy of the system is 5.83 J, find (a) the maxi-
mum speed of the object, (b) the force constant of the
spring, and (c) the amplitude of the motion.

Section 15.4 Comparing Simple Harmonic Motion
with Uniform Circular Motion

33

. While driving behind a car travel-

ing at 3.00 m/s, you notice that one
of the car’s tires has a small hemi-
spherical bump on its rim as shown
in Figure P15.33. (a) Explain why the
bump, from your viewpoint behind
the car, executes simple harmonic
motion. (b) If the radii of the car’s
tires are 0.300 m, what is the bump’s
period of oscillation?

Bump

Figure P15.33

Section 15.5 The Pendulum

Problem 68 in Chapter 1 can also be assigned with this
section.

34. A “seconds pendulum” is one that moves through its

35.

equilibrium position once each second. (The period of
the pendulum is precisely 2 s.) The length of a seconds
pendulum is 0.992 7 m at Tokyo, Japan, and 0.994 2 m
at Cambridge, England. What is the ratio of the free-
fall accelerations at these two locations?

A simple pendulum makes 120 complete oscillations in
3.00 min at a location where g = 9.80 m/s% Find (a) the
period of the pendulum and (b) its length.

[36]A particle of mass m slides without friction inside a

hemispherical bowl of radius R. Show that if the par-
ticle starts from rest with a small displacement from
equilibrium, it moves in simple harmonic motion with
an angular frequency equal to that of a simple pendu-
lum of length R. Thatis, o = Vg/R.

A physical pendulum in the form of a planar object
[l moves in simple harmonic motion with a frequency of

38.

39.

40.

0.450 Hz. The pendulum has a mass of 2.20 kg, and the
pivot is located 0.350 m from the center of mass. Deter-
mine the moment of inertia of the pendulum about
the pivot point.

A physical pendulum in the form of a planar object
moves in simple harmonic motion with a frequency f.
The pendulum has a mass m, and the pivot is located
a distance d from the center of mass. Determine the
moment of inertia of the pendulum about the pivot
point.

The angular position of a pendulum is represented by
the equation 6 = 0.032 0 cos wt, where 0 is in radians
and w = 4.43 rad/s. Determine the period and length
of the pendulum.

Consider the physical pendulum of Figure 15.17. (a) Rep-
resent its moment of inertia about an axis passing



through its center of mass and parallel to the axis pass-
ing through its pivot point as /,;. Show that its period is

Iy + ma?
T=9m "M "7
mgd

where dis the distance between the pivot point and the
center of mass. (b) Show that the period has a mini-
mum value when d satisfies md? = Iy,

A simple pendulum has a mass of 0.250 kg and a length

42.

43.

of 1.00 m. It is displaced through an angle of 15.0° and
then released. Using the analysis model of a particle in
simple harmonic motion, what are (a) the maximum
speed of the bob, (b) its maximum angular accelera-
tion, and (c) the maximum restoring force on the bob?
(d) What If? Solve parts (a) through (c) again by using
analysis models introduced in earlier chapters. (e) Com-
pare the answers.

Avery light rigid rod of length 0.500 m

extends straight out from one end of 3
a meterstick. The combination is sus- (500 |
pended from a pivot at the upper end \
of the rod as shown in Figure P15.42.

The combination is then pulled out by

a small angle and released. (a) Deter-

mine the period of oscillation of the

system. (b) By what percentage does

the period differ from the period of a

simple pendulum 1.00 m long? Figure P15.42

Review. A simple pendulum is 5.00 m long. What is

M the period of small oscillations for this pendulum if

44.

45.

it is located in an elevator (a) accelerating upward at
5.00 m/s?? (b) Accelerating downward at 5.00 m/s%?
(c) What is the period of this pendulum if it is placed
in a truck that is accelerating horizontally at 5.00 m/s??

A small object is attached to the end of a string to form
asimple pendulum. The period of its harmonic motion
is measured for small angular displacements and three
lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m,
total time intervals for 50 oscillations of 99.8 s, 86.6 s,
and 71.1 s are measured with a stopwatch. (a) Deter-
mine the period of motion for each length. (b) Deter-
mine the mean value of g obtained from these three
independent measurements and compare it with the
accepted value. (c) Plot 7% versus L and obtain a value
for gfrom the slope of your best-fit straight-line graph.
(d) Compare the value

found in part (c) with Balance wheel

that obtained in part (b).

A watch balance wheel
(Fig. P15.45) has a period
of oscillation of 0.250 s.
The wheel is constructed
so that its mass of 20.0 g
is concentrated around a
rim of radius 0.500 cm.
What are (a) the wheel’s
moment of inertia and
(b) the torsion constant
of the attached spring? Figure P15.45
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Section 15.6 Damped Oscillations

46. A pendulum with a length of 1.00 m is released from

an initial angle of 15.0°. After 1 000 s, its amplitude has
been reduced by friction to 5.50°. What is the value of
b/2m?

47. A 10.6-kg object oscillates at the end of a vertical
spring that has a spring constant of 2.05 X 10* N/m.
The effect of air resistance is represented by the damp-
ing coefficient b = 3.00 N - s/m. (a) Calculate the
frequency of the damped oscillation. (b) By what per-
centage does the amplitude of the oscillation decrease
in each cycle? (¢) Find the time interval that elapses
while the energy of the system drops to 5.00% of its
initial value.

48. Show that the time rate of change of mechanical
energy for a damped, undriven oscillator is given by
dE/dt = —bv? and hence is always negative. To do so,
differentiate the expression for the mechanical energy
of an oscillator, E = ymv? + $kx?, and use Equation
15.31.

49. Show that Equation 15.32 is a solution of Equation
15.31 provided that 6% < 4mk.

Section 15.7 Forced Oscillations

50. A baby bounces up and down in her crib. Her mass is
12.5 kg, and the crib mattress can be modeled as a light
spring with force constant 700 N/m. (a) The baby soon
learns to bounce with maximum amplitude and mini-
mum effort by bending her knees at what frequency?
(b) If she were to use the mattress as a trampoline—
losing contact with it for part of each cycle—what mini-
mum amplitude of oscillation does she require?

51. As you enter a fine restaurant, you realize that you
have accidentally brought a small electronic timer from
home instead of your cell phone. In frustration, you
drop the timer into a side pocket of your suit coat, not
realizing that the timer is operating. The arm of your
chair presses the light cloth of your coat against your
body at one spot. Fabric with a length L hangs freely
below that spot, with the timer at the bottom. At one
point during your dinner, the timer goes off and a
buzzer and a vibrator turn on and off with a frequency
of 1.50 Hz. It makes the hanging part of your coat swing
back and forth with remarkably large amplitude, draw-
ing everyone’s attention. Find the value of L.

52. A block weighing 40.0 N is suspended from a spring
that has a force constant of 200 N/m. The system is
undamped (b = 0) and is subjected to a harmonic driv-
ing force of frequency 10.0 Hz, resulting in a forced-
motion amplitude of 2.00 cm. Determine the maximum
value of the driving force.

53. A 2.00-kg object attached to a spring moves without
friction (b = 0) and is driven by an external force
given by the expression I'= 3.00 sin (27r7), where I'is in
newtons and ¢ is in seconds. The force constant of the
spring is 20.0 N/m. Find (a) the resonance angular fre-
quency of the system, (b) the angular frequency of the
driven system, and (c) the amplitude of the motion.
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Considering an undamped, forced oscillator (b = 0),
show that Equation 15.35 is a solution of Equation
15.34, with an amplitude given by Equation 15.36.

[55.]Damping is negligible for a 0.150-kg object hanging
from a light, 6.30-N/m spring. A sinusoidal force with
g pring

an amplitude of 1.70 N drives the system. At what fre-
quency will the force make the object vibrate with an
amplitude of 0.440 m?

Additional Problems

56.

57.

58.

The mass of the deuterium molecule (D,) is twice that
of the hydrogen molecule (H,). If the vibrational fre-
quency of H, is 1.30 X 10 Hz, what is the vibrational
frequency of D,? Assume the “spring constant” of
attracting forces is the same for the two molecules.

An object of mass m moves in simple harmonic motion
with amplitude 12.0 cm on a light spring. Its maxi-
mum acceleration is 108 cm/s?. Regard m as a vari-
able. (a) Find the period T of the object. (b) Find its
frequency /. (c) Find the maximum speed v,  of the
object. (d) Find the total energy E of the object-spring
system. (e) Find the force constant k of the spring.
(f) Describe the pattern of dependence of each of the
quantities 7; f, v, E,and kon m.

max’
Review. This problem extends the reasoning of Prob-
lem 75 in Chapter 9. Two gliders are set in motion on
an air track. Glider 1 has mass m; = 0.240 kg and
moves to the right with speed 0.740 m/s. It will have a
rear-end collision with glider 2, of mass m, = 0.360 kg,
which initially moves to the right with speed 0.120 m/s.
Alight spring of force constant 45.0 N/m is attached to
the back end of glider 2 as shown in Figure P9.75.
When glider 1 touches the spring, superglue instantly
and permanently makes it stick to its end of the spring.
(a) Find the common speed the two gliders have when
the spring is at maximum compression. (b) Find the
maximum spring compression distance. The motion
after the gliders become attached consists of a combi-
nation of (1) the constant-velocity motion of the center
of mass of the two-glider system found in part (a) and
(2) simple harmonic motion of the gliders relative to
the center of mass. (c) Find the energy of the center-of-
mass motion. (d) Find the energy of the oscillation.

A small ball of mass M is attached

[Mto the end of a uniform rod of

60.

Pivot
equal mass M and length L that
is pivoted at the top (Fig. P15.59).
Determine the tensions in the rod L
(a) at the pivot and (b) at the point y
P when the system is stationary.
(c) Calculate the period of oscilla-
tion for small displacements from
equilibrium and (d) determine this
period for L = 2.00 m.

Pe—

y=20
M
Figure P15.59

Review. A rock rests on a concrete sidewalk. An earth-
quake strikes, making the ground move vertically in
simple harmonic motion with a constant frequency
of 2.40 Hz and with gradually increasing amplitude.
(a) With what amplitude does the ground vibrate when

61.

62.

63.

the rock begins to lose contact with the sidewalk?
Another rock is sitting on the concrete bottom of a
swimming pool full of water. The earthquake produces
only vertical motion, so the water does not slosh from
side to side. (b) Present a convincing argument that
when the ground vibrates with the amplitude found in
part (a), the submerged rock also barely loses contact
with the floor of the swimming pool.

Four people, each with a mass of 72.4 kg, are in a car
with a mass of 1 130 kg. An earthquake strikes. The
vertical oscillations of the ground surface make the
car bounce up and down on its suspension springs,
but the driver manages to pull off the road and stop.
When the frequency of the shaking is 1.80 Hz, the
car exhibits a maximum amplitude of vibration. The
earthquake ends, and the four people leave the car
as fast as they can. By what distance does the car’s
undamaged suspension lift the car’s body as the peo-
ple get out?

To account for the walking speed of a bipedal or qua-
drupedal animal, model a leg that is not contacting
the ground as a uniform rod of length ¢, swinging as a
physical pendulum through one half of a cycle, in reso-
nance. Let 0, represent its amplitude. (a) Show that
the animal’s speed is given by the expression

6g€ Sin emux

w

v =

if 0, is sufficiently small that the motion is nearly sim-
ple harmonic. An empirical relationship that is based

on the same model and applies over a wider range of

angles is
\V/ 6g¢€ cos (0,4/2) sin 0,

v =

a
(b) Evaluate the walking speed of a human with leg
length 0.850 m and leg-swing amplitude 28.0°. (c) What
leg length would give twice the speed for the same
angular amplitude?

The free-fall acceleration on Mars is 3.7 m/s%. (a) What

[ length of pendulum has a period of 1.0 s on Earth?

64.

(b) What length of pendulum would have a 1.0-s
period on Mars? An object is suspended from a spring
with force constant 10 N/m. Find the mass suspended
from this spring that would result in a period of 1.0 s
(c) on Earth and (d) on Mars.

An object attached to a spring vibrates with simple har-
monic motion as described by Figure P15.64. For this
motion, find (a) the amplitude, (b) the period, (c) the

x (cm)
2.00 -

1.00

-1.00

-2.00

Figure P15.64



angular frequency, (d) the maximum speed, (e) the
maximum acceleration, and (f) an equation for its posi-
tion x as a function of time.

65./|Review. A large block P attached to a light spring

66.

executes horizontal, simple harmonic motion as it
slides across a frictionless surface with a frequency /=
1.50 Hz. Block B rests
on it as shown in Figure
P15.65, and the coef-
ficient of static friction
between the two is u, =
0.600. What maximum
amplitude of oscillation
can the system have if
block B is not to slip?

Figure P15.65
Problems 65 and 66.

Review. A large block P attached to a light spring exe-
cutes horizontal, simple harmonic motion as it slides
across a frictionless surface with a frequency /. Block B
rests on it as shown in Figure P15.65, and the coeffi-
cient of static friction between the two is u,. What max-
imum amplitude of oscillation can the system have if
block Bis not to slip?

A pendulum of length L and mass

68.

69.

M has a spring of force constant
k connected to it at a distance h
below its point of suspension (Fig.

P15.67). Find the frequency of h

vibration of the system for small L |

values of the amplitude (small 6). 0

Assume the vertical suspension s
WY

rod of length L is rigid, but A

ignore its mass.

A block of mass m is connected
to two springs of force constants
ky and k, in two ways as shown in
Figure P15.68. In both cases, the block moves on a fric-
tionless table after it is displaced from equilibrium and
released. Show that in the two cases the block exhibits
simple harmonic motion with periods

Figure P15.67

(@ T =2 mk k) e (b) T =9 w
a = —— an =
77 ok ™k, + ky

k k
- |

ky ke
W H VWV

Figure P15.68

A horizontal plank of mass 5.00 kg and length 2.00 m
is pivoted at one end. The plank’s other end is supported
by a spring of force constant 100 N/m (Fig. P15.69).
The plank is displaced by a small angle 6 from its
horizontal equilibrium position and released. Find the

70.

71.
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angular  frequency
with which the plank
moves with simple
harmonic motion.

A horizontal plank of
mass m and length L
is pivoted at one end.
The plank’s other
end is supported by
a spring of force con-
stant k (Fig. P15.69).
The plank is displaced by a small angle 0 from its hori-
zontal equilibrium position and released. Find the
angular frequency with which the plank moves with
simple harmonic motion.

Figure P15.69
Problems 69 and 70.

Review. A particle of mass 4.00 kg is attached to a
spring with a force constant of 100 N/m. It is oscillating
on a frictionless, horizontal surface with an amplitude
of 2.00 m. A 6.00-kg object is dropped vertically on top
of the 4.00-kg object as it passes through its equilib-
rium point. The two objects stick together. (a) What
is the new amplitude of the vibrating system after the
collision? (b) By what factor has the period of the sys-
tem changed? (c) By how much does the energy of the
system change as a result of the collision? (d) Account
for the change in energy.

A ball of mass m is connected to two rubber bands of

73.

length L, each under tension 7" as shown in Figure
P15.72. The ball is displaced by a small distance y per-
pendicular to the length of the rubber bands. Assum-
ing the tension does not change, show that (a) the
restoring force is —(27/L)yand (b) the system exhibits
simple harmonic motion with an angular frequency
w = V2T/mL.

L)

Figure P15.72

Review. One end of a light spring with force constant
k =100 N/m is attached to a vertical wall. A light string
is tied to the other end of the horizontal spring. As
shown in Figure P15.73, the string changes from hori-
zontal to vertical as it passes over a pulley of mass M
in the shape of a solid disk of radius R = 2.00 cm. The
pulley is free to turn on a fixed, smooth axle. The ver-
tical section of the string supports an object of mass
m = 200 g. The string does not slip at its contact with
the pulley. The object is

| lr

pulled downward a small k
distance and released. ?NWMWMYF @
/’ M

(a) What is the angular
]

frequency w of oscillation
Figure P15.73

of the object in terms of
the mass M? (b) What
is the highest possible
value of the angular fre-
quency of oscillation of
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the object? (c) What is the highest possible value of
the angular frequency of oscillation of the object if the
pulley radius is doubled to R = 4.00 cm?

People who ride motorcycles and bicycles learn to look
out for bumps in the road and especially for wash-
boarding, a condition in which many equally spaced
ridges are worn into the road. What is so bad about
washboarding? A motorcycle has several springs and
shock absorbers in its suspension, but you can model
it as a single spring supporting a block. You can esti-
mate the force constant by thinking about how far the
spring compresses when a heavy rider sits on the seat.
A motorcyclist traveling at highway speed must be par-
ticularly careful of washboard bumps that are a certain
distance apart. What is the order of magnitude of their
separation distance?

A simple pendulum with a length of 2.23 m and a mass
Y0 of 6.74 kg is given an initial speed of 2.06 m/s at its
equilibrium position. Assume it undergoes simple har-

76.

77.

monic motion. Determine (a) its period, (b) its total
energy, and (c) its maximum angular displacement.

When a block of mass M, connected to the end of a
spring of mass m, = 7.40 g and force constant k, is set
into simple harmonic motion, the period of its motion is

M+ (m,/3)
k

A two-part experiment is conducted
with the use of blocks of various
masses suspended vertically from the
spring as shown in Figure P15.76.
(a) Static extensions of 17.0, 29.3,
35.3, 41.3, 471, and 49.3 cm are
measured for M values of 20.0, 40.0, 4
50.0, 60.0, 70.0, and 80.0 g, respec- .

tively. Construct a graph of Mg versus Figure P15.76
x and perform a linear least-squares fit to the data.
(b) From the slope of your graph, determine a value
for k for this spring. (c) The system is now set into sim-
ple harmonic motion, and periods are measured with
a stopwatch. With M = 80.0 g, the total time interval
required for ten oscillations is measured to be 13.41 s.
The experiment is repeated with M values of 70.0,
60.0, 50.0, 40.0, and 20.0 g, with corresponding time
intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62,
and 7.03 s. Make a table of these masses and times.
(d) Compute the experimental value for T from each
of these measurements. (€) Plot a graph of T2 versus
M and (f) determine a value for k from the slope of
the linear least-squares fit through the data points.
(g) Compare this value of k with that obtained in part
(b). (h) Obtain a value for m, from your graph and
compare it with the given value of 7.40 g.

T =2

4

ER

Review. A light balloon filled with helium of density
0.179 kg/m? is tied to a light string of length L =
3.00 m. The string is tied to the ground forming an
“inverted” simple pendulum (Fig. 15.77a). If the bal-
loon is displaced slightly from equilibrium as in Fig-
ure P15.77b and released, (a) show that the motion
is simple harmonic and (b) determine the period of

78.

79.

80.

the motion. Take the density of air to be 1.20 kg/ms.
Hint: Use an analogy with the simple pendulum and
see Chapter 14. Assume the air applies a buoyant
force on the balloon but does not otherwise affect its

motion.
H
9 0

Air Air

- |

= w3
=73

Figure P15.77

Consider the damped oscillator illustrated in Fig-
ure 15.20. The mass of the object is 375 g, the spring
constant is 100 N/m, and b = 0.100 N - s/m. (a) Over
what time interval does the amplitude drop to half its
initial value? (b) What If? Over what time interval does
the mechanical energy drop to half its initial value?
(c) Show that, in general, the fractional rate at which
the amplitude decreases in a damped harmonic
oscillator is one-half the fractional rate at which the
mechanical energy decreases.

A particle with a mass of 0.500 kg is attached to a hori-
zontal spring with a force constant of 50.0 N/m. At the
moment ¢ = 0, the particle has its maximum speed
of 20.0 m/s and is moving to the left. (a) Determine
the particle’s equation of motion, specifying its posi-
tion as a function of time. (b) Where in the motion
is the potential energy three times the kinetic energy?
(c) Find the minimum time interval required for the
particle to move from x = 0 to x = 1.00 m. (d) Find the
length of a simple pendulum with the same period.

Your thumb squeaks on a plate you have just washed.
Your sneakers squeak on the gym floor. Car tires
squeal when you start or stop abruptly. You can make
a goblet sing by wiping your moistened finger around
its rim. When chalk squeaks on a blackboard, you can
see that it makes a row of regularly spaced dashes. As
these examples suggest, vibration commonly results
when friction acts on a moving elastic object. The
oscillation is not simple harmonic motion, but is
called stick-and-slip. This problem models stick-and-
slip motion.

A block of mass m is attached to a fixed support by a
horizontal spring with force constant k and negligible
mass (Fig. P15.80). Hooke’s law describes the spring

Figure P15.80
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both in extension and in compression. The block sits
on a long horizontal board, with which it has coeffi-
cient of static friction w, and a smaller coefficient of
kinetic friction w, The board moves to the right at
constant speed v. Assume the block spends most of its
time sticking to the board and moving to the right with
it, so the speed v is small in comparison to the aver-
age speed the block has as it slips back toward the left.
(@) Show that the maximum extension of the spring
from its unstressed position is very nearly given by
w,mg/k. (b) Show that the block oscillates around an
equilibrium position at which the spring is stretched
by u,mg/k. (c) Graph the block’s position versus time.
(d) Show that the amplitude of the block’s motion is

(s — ) mg
k

(e) Show that the period of the block’s motion is

ﬁ
m
k

It is the excess of static over kinetic friction that is
important for the vibration. “The squeaky wheel gets
the grease” because even a viscous fluid cannot exert a
force of static friction.

A=

2w, — n
B = i) mg N
vk

T =

Review. A lobsterman’s buoy is a solid wooden cylinder
of radius rand mass M. Itis weighted at one end so that
it floats upright in calm seawater, having density p. A
passing shark tugs on the slack rope mooring the buoy
to a lobster trap, pulling the buoy down a distance x
from its equilibrium position and releasing it. (a) Show
that the buoy will execute simple harmonic motion if
the resistive effects of the water are ignored. (b) Deter-
mine the period of the oscillations.

Why is the following situation impossible? Your job involves
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building very small damped oscillators. One of your
designs involves a spring—object oscillator with a spring
of force constant £ = 10.0 N/m and an object of mass
m = 1.00 g. Your design objective is that the oscilla-
tor undergo many oscillations as its amplitude falls
to 25.0% of its initial value in a certain time interval.
Measurements on your latest design show that the
amplitude falls to the 25.0% value in 23.1 ms. This time
interval is too long for what is needed in your project.
To shorten the time interval, you double the damping
constant b for the oscillator. This doubling allows you
to reach your design objective.

Two identical steel balls, each of mass 67.4 g, are mov-
ing in opposite directions at 5.00 m/s. They collide
head-on and bounce apart elastically. By squeezing
one of the balls in a vise while precise measurements
are made of the resulting amount of compression, you
find that Hooke’s law is a good model of the ball’s elas-
tic behavior. A force of 16.0 kN exerted by each jaw of
the vise reduces the diameter by 0.200 mm. Model the
motion of each ball, while the balls are in contact, as
one-half of a cycle of simple harmonic motion. Com-
pute the time interval for which the balls are in con-
tact. (If you solved Problem 57 in Chapter 7, compare
your results from this problem with your results from
that one.)
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Problems

Challenge Problems

A smaller disk of radius rand

85.

86.

mass m is attached rigidly to
the face of a second larger
disk of radius R and mass M
as shown in Figure P15.84.
The center of the small disk
is located at the edge of the
large disk. The large disk is
mounted at its center on a v
frictionless axle. The assem-

bly is rotated through a

small angle 6 from its equi-
librium position and released. (a) Show that the speed
of the center of the small disk as it passes through the
equilibrium position is

_2{ Rg(l — cos9) ]1/2
U (Mym) + (/R + 2
(b) Show that the period of the motion is
{(]VI+ 2m)R* + mr(')}l/z
T=2xw
2mgR

Figure P15.84

An object of mass m; = 9.00 kg is in equilibrium when
connected to a light spring of constant £ = 100 N/m
that is fastened to a wall as shown in Figure P15.85a.
A second object, my = 7.00 kg, is slowly pushed up
against m;, compressing the spring by the amount A =
0.200 m (see Fig. P15.85b). The system is then released,
and both objects start moving to the right on the fric-
tionless surface. (a) When m, reaches the equilibrium
point, m, loses contact with m,; (see Fig. P15.85c) and
moves to the right with speed v. Determine the value of
v. (b) How far apart are the objects when the spring is
fully stretched for the first time (the distance D in Fig.
P15.85d)?
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Figure P15.85

Review. Why is the following situation impossible? You are
in the high-speed package delivery business. Your com-
petitor in the next building gains the right-of-way to
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build an evacuated tunnel just above the ground all
the way around the Earth. By firing packages into this
tunnel at just the right speed, your competitor is able
to send the packages into orbit around the Earth in
this tunnel so that they arrive on the exact opposite
side of the Earth in a very short time interval. You
come up with a competing idea. Figuring that the dis-
tance through the Earth is shorter than the distance
around the Earth, you obtain permits to build an evac-
uated tunnel through the center of the Earth (Fig.
P15.86). By simply dropping packages into this tunnel,
they fall downward and arrive at the other end of your
tunnel, which is in a building right next to the other
end of your competitor’s tunnel. Because your pack-
ages arrive on the other side of the Earth in a shorter
time interval, you win the competition and your busi-
ness flourishes. Note: An object at a distance rfrom the
center of the Earth is pulled toward the center of the

Earth only by the mass within the sphere of radius r

(the reddish region in Fig. P15.86). Assume the Earth
has uniform density.

Earth
m e,

S
N/
p \Tunnel

Figure P15.86

87. A block of mass M is connected to a spring of mass m

and oscillates in simple harmonic motion on a fric-
tionless, horizontal track (Fig. P15.87). The force con-
stant of the spring is k, and the equilibrium length is
€. Assume all portions of the spring oscillate in phase
and the velocity of a segment of the spring of length dx

Figure P15.87

88.

89.

is proportional to the distance x from the fixed end;
that is, v, = (x/€)v. Also, notice that the mass of a seg-
ment of the spring is dm = (m/€)dx. Find (a) the kinetic
energy of the system when the block has a speed vand
(b) the period of oscillation.

Review. A system consists of a spring with force con-
stant k = 1 250 N/m, length L = 1.50 m, and an object
of mass m = 5.00 kg attached to the end (Fig. P15.88).
The object is placed at the level of the point of attach-
ment with the spring unstretched, at position y, = L,
and then it is released so that it swings like a pendu-
lum. (a) Find the y position of the object at the lowest
point. (b) Will the pendulum’s period be greater or
less than the period of a simple pendulum with the
same mass m and length L? Explain.
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Figure P15.88

A light, cubical container of volume «® is initially filled

with a liquid of mass density p as shown in Figure
P15.89a. The cube is initially supported by a light string
to form a simple pendulum of length L, measured
from the center of mass of the filled container, where
L; >> a. The liquid is allowed to flow from the bottom
of the container at a constant rate (dM/dt). At any time
t, the level of the liquid in the container is 4 and the
length of the pendulum

is L (measured relative

to the instantaneous cen- T T
ter of mass) as shown in

Figure P15.89b. (a) Find
the period of the pendu-
lum as a function of time.
(b) What is the period of
the pendulum after the
liquid completely runs
out of the container?

i
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Figure P15.89



