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Universal Gravitation

Before 1687, a large amount of data had been collected on the motions of the Moon and
the planets, but a clear understanding of the forces related to these motions was not available.
In that year, Isaac Newton provided the key that unlocked the secrets of the heavens. He knew,
from his first law, that a net force had to be acting on the Moon because without such a force
the Moon would move in a straight-line path rather than in its almost circular orbit. Newton
reasoned that this force was the gravitational attraction exerted by the Earth on the Moon. He
realized that the forces involved in the Earth-Moon attraction and in the Sun-planet attrac-
tion were not something special to those systems, but rather were particular cases of a general
and universal attraction between objects. In other words, Newton saw that the same force of
attraction that causes the Moon to follow its path around the Earth also causes an apple to
fall from a tree. It was the first time that “"earthly” and "heavenly” motions were unified.

In this chapter, we study the law of universal gravitation. We emphasize a description of
planetary motion because astronomical data provide an important test of this law's validity.
We then show that the laws of planetary motion developed by Johannes Kepler follow from
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the law of universal gravitation and the principle of conservation of angular momentum
for an isolated system. We conclude by deriving a general expression for the gravitational
potential energy of a system and examining the energetics of planetary and satellite motion.

IERE Newton’s Law of Universal Gravitation

You may have heard the legend that, while napping under a tree, Newton was struck
on the head by a falling apple. This alleged accident supposedly prompted him to
imagine that perhaps all objects in the Universe were attracted to each other in the
same way the apple was attracted to the Earth. Newton analyzed astronomical data
on the motion of the Moon around the Earth. From that analysis, he made the bold
assertion that the force law governing the motion of planets was the same as the
force law that attracted a falling apple to the Earth.

In 1687, Newton published his work on the law of gravity in his treatise Mathemati-
cal Principles of Natural Philosophy. Newton’s law of universal gravitation states that

every particle in the Universe attracts every other particle with a force that
is directly proportional to the product of their masses and inversely propor-
tional to the square of the distance between them.

If the particles have masses m; and m, and are separated by a distance 7, the magni-
tude of this gravitational force is

mymoy

1,2

F,=G (13.1)

where Gis a constant, called the universal gravitational constant. Its value in SI units is
G=6.674 X 107" N - m?/kg? (13.2)

The universal gravitational constant G was first evaluated in the late nineteenth
century, based on results of an important experiment by Sir Henry Cavendish (1731-
1810) in 1798. The law of universal gravitation was not expressed by Newton in the
form of Equation 13.1, and Newton did not mention a constant such as G. In fact,
even by the time of Cavendish, a unit of force had not yet been included in the exist-
ing system of units. Cavendish’s goal was to measure the density of the Earth. His
results were then used by other scientists 100 years later to generate a value for G.

Cavendish’s apparatus consists of two small spheres, each of mass m, fixed to the
ends of a light, horizontal rod suspended by a fine fiber or thin metal wire as illus-
trated in Figure 13.1. When two large spheres, each of mass M, are placed near the
smaller ones, the attractive force between smaller and larger spheres causes the rod
to rotate and twist the wire suspension to a new equilibrium orientation. The angle
of rotation is measured by the deflection of a light beam reflected from a mirror
attached to the vertical suspension.

The form of the force law given by Equation 13.1 is often referred to as an
inverse-square law because the magnitude of the force varies as the inverse square
of the separation of the particles.! We shall see other examples of this type of force
law in subsequent chapters. We can express this force in vector form by defining a
unit vector 1o (Fig. 13.2). Because this unit vector is directed from particle 1 toward
particle 2, the force exerted by particle 1 on particle 2 is

= mymy

Fl? = _GTrIQ (13-3)

!An inverse proportionality between two quantities x and y is one in which y = k/x, where k is a constant. A direct pro-
portion between xand y exists when y = kx.
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Consisteng with Ngwton’s
third law, Fo; = —F,.

=

AFly

= =
-

Fo -
/ - - my
-
-7
/(1‘12
m
Figure 13.2 The gravitational
force between two particles is
attractive. The unit vector 1y, is
directed from particle 1 toward
particle 2.
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Pitfall Prevention 13.1

Be Clear on g and G The symbol g
represents the magnitude of the
free-fall acceleration near a planet.
At the surface of the Earth, ghas
an average value of 9.80 m/s?.

On the other hand, Gis a uni-
versal constant that has the same
value everywhere in the Universe.

where the negative sign indicates that particle 2 is attracted to particle 1; hence,
the force on particle 2 must be directed toward particle 1. By Newton’s third law,
the force exerted by particle 2 on particle 1, designated Fy,, is equal in magni-
tude to Fjp and in the opposite direction. That is, these forces form an action-
reaction pair, and Fo = — Fp,.

Two features of Equation 13.3 deserve mention. First, the gravitational force is a
field force that always exists between two particles, regardless of the medium that
separates them. Second, because the force varies as the inverse square of the dis-
tance between the particles, it decreases rapidly with increasing separation.

Equation 13.3 can also be used to show that the gravitational force exerted by a
finite-size, spherically symmetric mass distribution on a particle outside the distri-
bution is the same as if the entire mass of the distribution were concentrated at the
center. For example, the magnitude of the force exerted by the Earth on a particle
of mass m near the Earth’s surface is

M
F = G2

i = O (13.4)

where M is the Earth’s mass and Rj its radius. This force is directed toward the
center of the Earth.

(D uick Quiz 13.1 A planet has two moons of equal mass. Moon 1 is in a circular
. orbit of radius . Moon 2 is in a circular orbit of radius 22 What is the magnitude
. of the gravitational force exerted by the planet on Moon 2? (a) four times as large
as that on Moon 1 (b) twice as large as that on Moon 1 (c) equal to that on Moon 1
¢ (d) half as large as that on Moon 1 (e) one-fourth as large as that on Moon 1

Example 13.1 Billiards, Anyone?

Three 0.300-kg billiard balls are placed on a table at the corners of a right triangle y

as shown in Figure 13.3. The sides of the triangle are of lengths ¢ = 0.400 m, b =
0.300 m, and ¢ = 0.500 m. Calculate the gravitational force vector on the cue ball
(designated m,) resulting from the other two balls as well as the magnitude and direc-

tion of this force.

SOLUTION

Conceptualize Notice in Figure 13.3 that the cue ball is

attracted to both other balls by the gravitational force. We Figure 13.3 (Example
can see graphically that the net force should point upward 13.1) The resultant gravita-
and toward the right. We locate our coordinate axes as
shown in Figure 13.3, placing our origin at the position of F, + By

the cue ball.

tional force acting on the
cue ball is the vector sum
- -

Categorize This problem involves evaluating the gravitational forces on the cue ball using Equation 13.3. Once these
forces are evaluated, it becomes a vector addition problem to find the net force.

(0.300 kg)(0.300 kg) ,

5

= (6.674 X 107" N - m*/kg® 3
( m?/kg?) (0.400 m)?
=375 X 107"jN
. - msmy 4
Find the force exerted by mg on the cue ball: F; =G 2 i

(0.300 kg)(0.300 kg) ;
(0.300 m)?

Il

(6.674 X 10" N - m?/kg?)

=6.67 X 10°1'iN
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b 13.1

Find the net gravitational force on the cue ball by add- ¥

ing these force vectors:
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F = Fy + Fy = (6.671+38.75]) x 107'N

Find the magnitude of this force: F= \/Fgl2 + Fyi” = V(6.67)2 + (3.75)2 X 107! N
= 7.66 X 107'N
: Ky 375 X 107N
Find the tangent of the angle 6 for the net force vector: tanf = —~=_——=—————+—=
F, F; 6.67X107°N
Evaluate the angle 6: 0 = tan™! (0.562) = 29.4°

Finalize The result for Fshows that the gravitational forces between everyday objects have extremely small magnitudes.

Free-Fall Acceleration and the
Gravitational Force

We have called the magnitude of the gravitational force on an object near the
Earth’s surface the weight of the object, where the weight is given by Equation 5.6.
Equation 13.4 is another expression for this force. Therefore, we can set Equations
5.6 and 13.4 equal to each other to obtain

MEm
mg= G—
Ry
M
G—5 13.5
§= Gy (13.5)

Equation 13.5 relates the free-fall acceleration g to physical parameters of the
Earth—its mass and radius—and explains the origin of the value of 9.80 m/s? that
we have used in earlier chapters. Now consider an object of mass m located a dis-
tance & above the Earth’s surface or a distance rfrom the Earth’s center, where r =
Ry + h. The magnitude of the gravitational force acting on this object is

Mpm Mgm
Fp=G6—-=6G 2
: r (RF + h)

The magnitude of the gravitational force acting on the object at this position is also

F, = mg, where gis the value of the free-fall acceleration at the altitude 4. Substitut-

ing this expression for F, into the last equation shows that gis given by

_GM;  GM,

(13.6)

Therefore, it follows that g decreases with increasing altitude. Values of g for the Earth
at various altitudes are listed in Table 13.1. Because an object’s weight is mg, we see
that as r— o, the weight of the object approaches zero.

@ uick Quiz 13.2 Superman stands on top of a very tall mountain and throws a

. baseball horizontally with a speed such that the baseball goes into a circular

. orbit around the Earth. While the baseball is in orbit, what is the magnitude of
. the acceleration of the ball? (a) It depends on how fast the baseball is thrown.

: : (b) Itis zero because the ball does not fall to the ground. (c) It is slightly less

& than 9.80 m/s?. (d) Itis equal to 9.80 m/s%

Table 13.1 Free-Fall

Acceleration g at

Various Altitudes Above

the Earth’s Surface

Altitude h (km) g (m/s?)
1000 7.33
2000 5.68
3000 4.53
4000 3.70
5000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9000 1.69
10 000 1.49
50 000 0.13

0 0

< Variation of g with altitude



392 Chapter 13 Universal Gravitation

The Density of the Earth

Using the known radius of the Earth and that g= 9.80 m/s? at the Earth’s surface, find the average density of the Earth.

SOLUTION

Conceptualize Assume the Earth is a perfect sphere. The density of material in the Earth varies, but let’s adopt a sim-
plified model in which we assume the density to be uniform throughout the Earth. The resulting density is the average
density of the Earth.

Categorize This example is a relatively simple substitution problem.

_ gRi’
G

Using Equation 13.5, solve for the mass My
of the Earth:

M, _gR/G _, g
Vi ixR? ‘7GR

Substitute this mass and the volume of Pr =
a sphere into the definition of density

(Eq. 1.1): . 9.80 m/s’ 5 N
=3 : = 550 X 10°k
L (6.674 X 107N - m?/kg?)(6.37 X 10°m) g/m

WS What if you were told that a typical density of granite at the Earth’s surface is 2.75 X 10% kg/m®? What
would you conclude about the density of the material in the Earth’s interior?

Answer Because this value is about half the density we calculated as an average for the entire Earth, we would con-
clude that the inner core of the Earth has a density much higher than the average value. It is most amazing that the
Cavendish experiment—which can be used to determine G and can be done today on a tabletop—combined with
simple free-fall measurements of g provides information about the core of the Earth!

Analysis Model: Particle in a Field (Gravitational)

When Newton published his theory of universal gravitation, it was considered a
success because it satisfactorily explained the motion of the planets. It represented
strong evidence that the same laws that describe phenomena on the Earth can be
used on large objects like planets and throughout the Universe. Since 1687, New-
ton’s theory has been used to account for the motions of comets, the deflection of
a Cavendish balance, the orbits of binary stars, and the rotation of galaxies. Nev-
ertheless, both Newton’s contemporaries and his successors found it difficult to
accept the concept of a force that acts at a distance. They asked how it was possible
for two objects such as the Sun and the Earth to interact when they were not in con-
tact with each other. Newton himself could not answer that question.

An approach to describing interactions between objects that are not in contact
came well after Newton’s death. This approach enables us to look at the gravita-
tional interaction in a different way, using the concept of a gravitational field that
exists at every point in space. When a particle is placed at a point where the gravita-
tional field exists, the particle experiences a gravitational force. In other words, we
imagine that the field exerts a force on the particle rather than consider a direct
interaction between two particles. The gravitational field g is defined as

—
K

m

i

Gravitational field P g (13.7)

That is, the gravitational field at a point in space equals the gravitational force fg
experienced by a test particle placed at that point divided by the mass m, of the test
particle. We call the object creating the field the source particle. (Although the Earth
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is not a particle, it is possible to show that we can model the Earth as a particle for
the purpose of finding the gravitational field that it creates.) Notice that the pres-
ence of the test particle is not necessary for the field to exist: the source particle
creates the gravitational field. We can detect the presence of the field and measure
its strength by placing a test particle in the field and noting the force exerted on it.
In essence, we are describing the “effect” that any object (in this case, the Earth)
has on the empty space around itself in terms of the force that would be present ifa
second object were somewhere in that space.?

The concept of a field is at the heart of the particle in a field analysis model.
In the general version of this model, a particle resides in an area of space in which
a field exists. Because of the existence of the field and a property of the particle,
the particle experiences a force. In the gravitational version of the particle in a
field model discussed here, the type of field is gravitational, and the property of
the particle that results in the force is the particle’s mass m. The mathematical
representation of the gravitational version of the particle in a field model is Equa-
tion 5.5:

-

F,= mg

B (5.5)
In future chapters, we will see two other versions of the particle in a field model. In
the electric version, the property of a particle that results in a force is electric charge:
when a charged particle is placed in an electric field, it experiences a force. The mag-
nitude of the force is the product of the electric charge and the field, in analogy
with the gravitational force in Equation 5.5. In the magnetic version of the particle
in a field model, a charged particle is placed in a magnetic field. One other property
of this particle is required for the particle to experience a force: the particle must
have a velocity at some nonzero angle to the magnetic field. The electric and mag-
netic versions of the particle in a field model are critical to the understanding of
the principles of electromagnetism, which we will study in Chapters 23-34.

Because the gravitational force acting on the object has a magnitude GMm/r?
(see Eq. 13.4), the gravitational field g at a distance rfrom the center of the Earth is

>
F, GM,

g=—"=-"5"% (13.8)
m r

where t is a unit vector pointing radially outward from the Earth and the negative
sign indicates that the field points toward the center of the Earth as illustrated
in Figure 13.4a. The field vectors at different points surrounding the Earth vary
in both direction and magnitude. In a small region near the Earth’s surface, the
downward field g is approximately constant and uniform as indicated in Figure
13.4b. Equation 13.8 is valid at all points outside the Earth’s surface, assuming the
Earth is spherical. At the Earth’s surface, where r = R;, g has a magnitude of
9.80 N/kg. (The unit N/kg is the same as m/s?.)

GBS GLEN  Particle in a Field (Gravitational)
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The field vectors point in the
direction of the acceleration a
particle would experience if it
were placed in the field. The
magnitude of the field vector at
any location is the magnitude
of the free-fall acceleration at
that location.
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Figure 13.4 (a) The gravitational
field vectors in the vicinity of a
uniform spherical mass such as the
Earth vary in both direction and
magnitude. (b) The gravitational
field vectors in a small region near
the Earth’s surface are uniform in
both direction and magnitude.

Imagine an object with mass that we call a source particle. The source particle establishes a gravita- 2

tional field g throughout space. The gravitational field is evaluated by measuring the force on a
test particle of mass m,, and then using Equation 13.7. Now imagine a particle of mass m is placed
in that field. The particle interacts with the gravitational field so that it experiences a gravitational

force given by
-
1. = mg

*We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of gravitation in
Chapter 39.

—

g

J m
¥
(5.5)

continued
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OBV GG  Particle in a Field (Gravitational) (continued)

Examples:

® an object of mass m near the surface of the Earth has a weight, which is the result of the gravitational field estab-
lished in space by the Earth

¢ a planet in the solar system is in orbit around the Sun, due to the gravitational force on the planet exerted by the
gravitational field established by the Sun

® an object near a black hole is drawn into the black hole, never to escape, due to the tremendous gravitational field
established by the black hole (Section 13.6)

¢ in the general theory of relativity, the gravitational field of a massive object is imagined to be described by a curva-
ture of space—time (Chapter 39)

e the gravitational field of a massive object is imagined to be mediated by particles called gravitons, which have
never been detected (Chapter 46)

Example 13.3 The Weight of the Space Station

The International Space Station operates at an altitude of 350 km. Plans for the final construction show that material
of weight 4.22 X 10° N, measured at the Earth’s surface, will have been lifted off the surface by various spacecraft dur-
ing the construction process. What is the weight of the space station when in orbit?

SOLUTION

Conceptualize The mass of the space station is fixed,; it is independent of its location. Based on the discussions in this
section and Section 13.2, we realize that the value of gwill be reduced at the height of the space station’s orbit. There-
fore, the weight of the Space Station will be smaller than that at the surface of the Earth.

Categorize We model the Space Station as a particle in a gravitational field.

f 422 X 10°N

Analyze From the particle in a field model, = .80 ;— = 4.31 X 10°kg

find the mass of the space station from its g B0 m/s

weight at the surface of the Earth:

. . . GMj

Use Equation 13.6 with # = 350 km to find 8= 7 T v

the magnitude of the gravitational field at (Ry + 1) )

the orbital location: (6.674 X 107" N - m?/kg?)(5.97 X 10* kg) ,
= 5 Y =8.82m/s

(6.87 X 10°m + 0.350 X 10°m)
Use the particle in a field model again to F,= mg = (4.31 X 10° kg)(8.82 m/s?*) = 3.80 X 10°N

find the space station’s weight in orbit:

Finalize Notice that the weight of the Space Station is less when it is in orbit, as we expected. It has about 10% less
weight than it has when on the Earth’s surface, representing a 10% decrease in the magnitude of the gravitational field.

Kepler’s Laws and the Motion of Planets

Humans have observed the movements of the planets, stars, and other celestial
objects for thousands of years. In early history, these observations led scientists to
regard the Earth as the center of the Universe. This geocentric model was elaborated
and formalized by the Greek astronomer Claudius Ptolemy (c. 100—c. 170) in the
second century and was accepted for the next 1400 years. In 1543, Polish astrono-
mer Nicolaus Copernicus (1473-1543) suggested that the Earth and the other plan-
ets revolved in circular orbits around the Sun (the heliocentric model).

Danish astronomer Tycho Brahe (1546-1601) wanted to determine how the
heavens were constructed and pursued a project to determine the positions of both
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stars and planets. Those observations of the planets and 777 stars visible to the
naked eye were carried out with only a large sextant and a compass. (The telescope
had not yet been invented.)

German astronomer Johannes Kepler was Brahe’s assistant for a short while
before Brahe’s death, whereupon he acquired his mentor’s astronomical data and
spent 16 years trying to deduce a mathematical model for the motion of the plan-
ets. Such data are difficult to sort out because the moving planets are observed
from a moving Earth. After many laborious calculations, Kepler found that Brahe’s
data on the revolution of Mars around the Sun led to a successful model.

Kepler’s complete analysis of planetary motion is summarized in three state-
ments known as Kepler’s laws:

1. All planets move in elliptical orbits with the Sun at one focus.

2. The radius vector drawn from the Sun to a planet sweeps out equal areas
in equal time intervals.

3. The square of the orbital period of any planet is proportional to the cube
of the semimajor axis of the elliptical orbit.

Kepler’s First Law

The geocentric and original heliocentric models of the solar system both suggested
circular orbits for heavenly bodies. Kepler’s first law indicates that the circular orbit
is a very special case and elliptical orbits are the general situation. This notion was
difficult for scientists of the time to accept because they believed that perfect circu-
lar orbits of the planets reflected the perfection of heaven.

Figure 13.5 shows the geometry of an ellipse, which serves as our model for the
elliptical orbit of a planet. An ellipse is mathematically defined by choosing two
points F} and F,, each of which is a called a focus, and then drawing a curve through
points for which the sum of the distances r; and 7, from F} and F,, respectively, is a
constant. The longest distance through the center between points on the ellipse (and
passing through each focus) is called the major axis, and this distance is 2a. In Fig-
ure 13.5, the major axis is drawn along the x direction. The distance « is called the
semimajor axis. Similarly, the shortest distance through the center between points
on the ellipse is called the minor axis of length 25, where the distance b is the semi-
minor axis. Either focus of the ellipse is located at a distance ¢from the center of the
ellipse, where a® = b* + ¢2. In the elliptical orbit of a planet around the Sun, the Sun
is at one focus of the ellipse. There is nothing at the other focus.

The eccentricity of an ellipse is defined as ¢ = ¢/a, and it describes the general
shape of the ellipse. For a circle, ¢ = 0, and the eccentricity is therefore zero. The
smaller b is compared with a, the shorter the ellipse is along the y direction com-
pared with its extent in the x direction in Figure 13.5. As b decreases, ¢ increases
and the eccentricity ¢increases. Therefore, higher values of eccentricity correspond
to longer and thinner ellipses. The range of values of the eccentricity for an ellipse
is0<e<l.

Eccentricities for planetary orbits vary widely in the solar system. The eccentricity
of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand, the
eccentricity of Mercury’s orbit is 0.21, the highest of the eight planets. Figure 13.6a
on page 396 shows an ellipse with an eccentricity equal to that of Mercury’s orbit.
Notice that even this highest-eccentricity orbit is difficult to distinguish from a circle,
which is one reason Kepler’s first law is an admirable accomplishment. The eccen-
tricity of the orbit of Comet Halley is 0.97, describing an orbit whose major axis is
much longer than its minor axis, as shown in Figure 13.6b. As a result, Comet Halley
spends much of its 76-year period far from the Sun and invisible from the Earth. Itis
only visible to the naked eye during a small part of its orbit when it is near the Sun.

Now imagine a planet in an elliptical orbit such as that shown in Figure 13.5, with
the Sun at focus F,. When the planet is at the far left in the diagram, the distance

<« Kepler's laws
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Johannes Kepler

German astronomer (1571-1630)
Kepler is best known for developing the
laws of planetary motion based on the
careful observations of Tycho Brahe.

The semimajor axis has
length a, and the semiminor
axis has length &.

%

Each focus is located at a
distance ¢ from the center.

Figure 13.5 Plot of an ellipse.

Pitfall Prevention 13.2

Where Is the Sun? The Sun is
located at one focus of the ellip-
tical orbit of a planet. It is not
located at the center of the ellipse.
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Figure 13.6 (a) The shape of
the orbit of Mercury, which has
the highest eccentricity (e = 0.21)
among the eight planets in the
solar system. (b) The shape of the
orbit of Comet Halley. The shape

The Sun is located at a focus of the ellipse. There is
nothing physical located at the center (the black dot) or
the other focus (the blue dot).
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Figure 13.7 (a) The gravita-
tional force acting on a planet

is directed toward the Sun.
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between the planet and the Sun is @ + ¢. At this point, called the aphelion, the
planet is at its maximum distance from the Sun. (For an object in orbit around the
Earth, this point is called the apogee.) Conversely, when the planet is at the right end
of the ellipse, the distance between the planet and the Sun is @ — ¢. At this point,
called the perihelion (for an Earth orbit, the perigee), the planet is at its minimum
distance from the Sun.

Kepler’s first law is a direct result of the inverse-square nature of the gravita-
tional force. Circular and elliptical orbits correspond to objects that are bound to
the gravitational force center. These objects include planets, asteroids, and comets
that move repeatedly around the Sun as well as moons orbiting a planet. There
are also unbound objects, such as a meteoroid from deep space that might pass by
the Sun once and then never return. The gravitational force between the Sun and
these objects also varies as the inverse square of the separation distance, and the
allowed paths for these objects include parabolas (¢ = 1) and hyperbolas (¢ > 1).

Kepler’s Second Law

Kepler’s second law can be shown to be a result of the isolated system model for
angular momentum. Consider a planet of mass M, moving about the Sun in an
elliptical orbit (Fig. 13.7a). Let’s consider the planet as a system. We model the Sun
to be so much more massive than the planet that the Sun does not move. The gravi-
tational force exerted by the Sun on the planet is a central force, always along the
radius vector, directed toward the Sun (Fig. 13.7a). The torque on the planet due to
this central force about an axis through the Sun is zero because F, is parallel to T.

Therefore, because the external torque on the planet is zero, it is modeled as
an isolated system for angular momentum, and the angular momentum L of the
planet is a constant of the motion:

AL =0 — L = constant
Evaluating L for the planet,
L=FXB=MTXV — L=M|F x 7| (13.9)

We can relate this result to the following geometric consideration. In a time inter-
val dt, the radius vector T in Figure 13.7b sweeps out the area dA, which equals half
the area |¥ X d¥| of the parallelogram formed by the vectors ¥ and d¥. Because
the displacement of the planet in the time interval dtis given by d ¥ = ¥ dt,

_ 1
dA =5

T X d7| =3

T X Vdil =37 x V|dt

Substitute for the absolute value of the cross product from Equation 13.9:

W L
dA=§7 dt
Ml’
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Divide both sides by d¢ to obtain
dA L
di 2M,

where L and Mp are both constants. This result shows that that the derivative dA/dt
is constant—the radius vector from the Sun to any planet sweeps out equal areas in
equal time intervals as stated in Kepler’s second law.

This conclusion is a result of the gravitational force being a central force, which
in turn implies that angular momentum of the planet is constant. Therefore, the law
applies to any situation that involves a central force, whether inverse square or not.

(13.10)

Kepler’s Third Law

Kepler’s third law can be predicted from the inverse-square law for circular orbits
and our analysis models. Consider a planet of mass M, that is assumed to be moving
about the Sun (mass M) in a circular orbit as in Figure 13.8. Because the gravita-
tional force provides the centripetal acceleration of the planet as it moves in a cir-
cle, we model the planet as a particle under a net force and as a particle in uniform
circular motion and incorporate Newton’s law of universal gravitation,

GMgM, 02
F,=Ma — ——5—=M,(—

r? r

The orbital speed of the planet is 27r7/7, where T'is the period; therefore, the pre-
ceding expression becomes

GMy  (2arr/ T)?

5 =

r r
T? = 74772 r® = Ko
GM; '
where K is a constant given by
477* .
Kg= & =997 X 1079 &/m?
S

This equation is also valid for elliptical orbits if we replace rwith the length a of the
semimajor axis (Fig. 13.5):

2
T? = (4” >a3 = K (13.11)
GM;

Equation 13.11 is Kepler’s third law: the square of the period is proportional to
the cube of the semimajor axis. Because the semimajor axis of a circular orbit is its
radius, this equation is valid for both circular and elliptical orbits. Notice that the
constant of proportionality K; is independent of the mass of the planet.® Equation
13.11 is therefore valid for any planet. If we were to consider the orbit of a satellite
such as the Moon about the Earth, the constant would have a different value, with
the Sun’s mass replaced by the Earth’s mass; that is, K, = 47%/GM),.

Table 13.2 on page 398 is a collection of useful data for planets and other objects
in the solar system. The far-right column verifies that the ratio 7%/r% is constant for
all objects orbiting the Sun. The small variations in the values in this column are
the result of uncertainties in the data measured for the periods and semimajor axes
of the objects.

Recent astronomical work has revealed the existence of a large number of solar
system objects beyond the orbit of Neptune. In general, these objects lie in the Kuiper
belt, aregion that extends from about 30 AU (the orbital radius of Neptune) to 50 AU.
(An AU is an astronomical unit, equal to the radius of the Earth’s orbit.) Current

*Equation 13.11 is indeed a proportion because the ratio of the two quantities 72 and 4’ is a constant. The variables
in a proportion are not required to be limited to the first power only.

Figure 13.8 A planct of mass M,
moving in a circular orbit around
the Sun. The orbits of all planets
except Mercury are nearly circular.

<« Kepler's third law
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IELINEVE  Useful Planetary Data

2

Mean Period of Mean Distance T (s2/m®)

Body Mass (kg) Radius (m) Revolution (s) from the Sun (m) r’
Mercury 3.30 X 1023 2.44 X 106 7.60 X 106 5.79 X 10" 2.98 X 1071
Venus 4.87 X 10** 6.05 X 108 1.94 X 107 1.08 x 10" 2.99 x 10719
Earth 5.97 X 10% 6.37 X 106 3.156 X 107 1.496 x 10" 2.97 X 10719
Mars 6.42 X 10 3.39 X 106 5.94 X 107 2.28 X 10" 2.98 X 10719
Jupiter 1.90 X 1027 6.99 X 107 3.74 X 108 7.78 X 101 2.97 X 10719
Saturn 5.68 X 1026 5.82 X 107 9.29 X 108 1.43 X 1012 2.95 X 10719
Uranus 8.68 X 102° 2.54 X 107 2.65 X 109 2.87 X 102 2.97 X 1071
Neptune 1.02 X 1026 2.46 X 107 5.18 X 107 4.50 X 1012 2.94 X 10719
Pluto® 1.25 X 1022 1.20 X 106 7.82 X 107 5.91 X 10'2 2.96 X 10719
Moon 7.85 X 1022 1.74 X 106 — — —

Sun 1.989 X 10%° 6.96 X 108 — — —

“In August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as
a “dwarf planet” like the asteroid Ceres.

estimates identify at least 70 000 objects in this region with diameters larger than
100 km. The first Kuiper belt object (KBO) is Pluto, discovered in 1930 and for-
merly classified as a planet. Starting in 1992, many more have been detected. Sev-
eral have diameters in the 1 000-km range, such as Varuna (discovered in 2000),
Ixion (2001), Quaoar (2002), Sedna (2003), Haumea (2004), Orcus (2004), and
Makemake (2005). One KBO, Eris, discovered in 2005, is believed to be signifi-
cantly larger than Pluto. Other KBOs do not yet have names, but are currently indi-
cated by their year of discovery and a code, such as 2009 YE7 and 2010 EK139.

A subset of about 1400 KBOs are called “Plutinos” because, like Pluto, they
exhibit a resonance phenomenon, orbiting the Sun two times in the same time
interval as Neptune revolves three times. The contemporary application of Kepler’s
laws and such exotic proposals as planetary angular momentum exchange and
migrating planets suggest the excitement of this active area of current research.

@ uick Quiz 13.3 An asteroid is in a highly eccentric elliptical orbit around the
: Sun. The period of the asteroid’s orbit is 90 days. Which of the following state-
f ments is true about the possibility of a collision between this asteroid and the
: Earth? (a) There is no possible danger of a collision. (b) There is a possibility of
f a collision. (c) There is not enough information to determine whether there is
¢ danger of a collision.

Example 13.4 The Mass of the Sun

Calculate the mass of the Sun, noting that the period of the Earth’s orbit around the Sun is 3.156 X 107 s and its dis-
tance from the Sun is 1.496 X 10" m

SOLUTION

Conceptualize Based on the mathematical representation of Kepler’s third law expressed in Equation 13.11, we realize
that the mass of the central object in a gravitational system is related to the orbital size and period of objects in orbit
around the central object.

Categorize This example is a relatively simple substitution problem.
473
GT?

Solve Equation 13.11 for the mass of the Sun: Mg =

47%(1.496 X 10" m)?
(6.674 X 107" N - m?/kg?)(8.156 X 107 5)?

Substitute the known values: Mg = = 1.99 X 10% kg
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In Example 13.2, an understanding of gravitational forces enabled us to find out something about the density of the
Earth’s core, and now we have used this understanding to determine the mass of the Sun!

Example 13.5 A Geosynchronous Satellite

Consider a satellite of mass m moving in a circular orbit around the Earth at a constant T T T T TS
speed vand at an altitude 4 above the Earth’s surface as illustrated in Figure 13.9. 7 \\
/
(A) Determine the speed of satellite in terms of G, h, Rj; (the radius of the Earth), /// \\
and M, (the mass of the Earth). / 1 \
| LR
\

]
SOLUTION \ Ry II

Conceptualize Imagine the satellite moving around the Earth in a circular orbit N
under the influence of the gravitational force. This motion is similar to that of the \ /v
International Space Station, the Hubble Space Telescope, and other objects in orbit S~

around the Earth. T m
Figure 13.9 (Example 13.5) A

satellite of mass m moving around
the Earth in a circular orbit of

Categorize The satellite moves in a circular orbit at a constant speed. Therefore, we
categorize the satellite as a particle in uniform circular motion as well as a particle under

a et force. radius rwith constant speed wv.
............................................................................................. The only force acting on the satel-
Analyze The only external force acting on the satellite is the gravitational force lite is the gravitational force fr’g.
from the Earth, which acts toward the center of the Earth and keeps the satellite in (Not drawn to scale.)
its circular orbit.

. L . Mgpm v?
Apply the particle under a net force and particle in uni- E,=ma — G—5 = m(—)
form circular motion models to the satellite: r r
Solve for v, noting that the distance r from the center of 1) v= \/ GMy _ \/ GMj
the Earth to the satellite is r = R, + & r Ry + h

(B) If the satellite is to be geosynchronous (that is, appearing to remain over a fixed position on the Earth), how fast is
it moving through space?

SOLUTION

To appear to remain over a fixed position on the Earth, the period of the satellite must be 24 h = 86 400 s and the
satellite must be in orbit directly over the equator.

GM,T*\'/?
Solve Kepler’s third law (Equation 13.11, with r= ( i )
a = rand M¢— M) for r: m

6.674 X 107" N - m?/kg?)(5.97 X 10* kg)(86 400 s)>71/3
Substitute numerical values: r= [( m”/kg ) g)( s)

47?

=4.22X10"m

Use Equation (1) to find the speed of the satellite:

. \/(6.674 X 107" N - m?/kg?)(5.97 X 10% kg)
4.92 X 10" m
= 3.07 X 10°m/s

Finalize The value of r calculated here translates to a height of the satellite above the surface of the Earth of almost
36 000 km. Therefore, geosynchronous satellites have the advantage of allowing an earthbound antenna to be aimed
continued
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in a fixed direction, but there is a disadvantage in that the signals between the Earth and the satellite must travel a

long distance. It is difficult to use geosynchronous satellites for optical observation of the Earth’s surface because of

their high altitude.

WEVNR 4 What if the satellite motion in part (A) were taking place at height 4 above the surface of another planet
more massive than the Earth but of the same radius? Would the satellite be moving at a higher speed or a lower speed

than it does around the Earth?

Answer If the planet exerts a larger gravitational force on the satellite due to its larger mass, the satellite must move
with a higher speed to avoid moving toward the surface. This conclusion is consistent with the predictions of Equa-
tion (1), which shows that because the speed v is proportional to the square root of the mass of the planet, the speed
increases as the mass of the planet increases.

v

Figure 13.10 Asa particle of
mass m moves from @ to ® above
the Earth’s surface, the gravi-
tational potential energy of the
particle—Earth system changes
according to Equation 13.12.

Gravitational Potential Energy

In Chapter 8, we introduced the concept of gravitational potential energy, which is
the energy associated with the configuration of a system of objects interacting via the
gravitational force. We emphasized that the gravitational potential energy function
U = mgy for a particle—Earth system is valid only when the particle of mass m is near
the Earth’s surface, where the gravitational force is independent of y. This expression
for the gravitational potential energy is also restricted to situations where a very mas-
sive object (such as the Earth) establishes a gravitational field of magnitude gand a
particle of much smaller mass m resides in that field. Because the gravitational force
between two particles varies as 1/r?, we expect that a more general potential energy
function—one that is valid without the restrictions mentioned above—will be differ-
ent from U = mgy.

Recall from Equation 7.27 that the change in the potential energy of a system
associated with a given displacement of a member of the system is defined as
the negative of the internal work done by the force on that member during the
displacement:

T
AU=U-U;= —J F(r) dr (13.12)

T
i

We can use this result to evaluate the general gravitational potential energy func-
tion. Consider a particle of mass m moving between two points @ and ® above the
Earth’s surface (Fig. 13.10). The particle is subject to the gravitational force given
by Equation 13.1. We can express this force as

GMEm

r2

F(r) =

where the negative sign indicates that the force is attractive. Substituting this
expression for F(r) into Equation 13.12, we can compute the change in the gravi-
tational potential energy function for the particle-Earth system as the separation
distance r changes:

T dr 117
U}-—UZ-ZGMEm 7=GMEm —;

n T 7

1 1
U—U=—=GMym| — — — (13.13)
noo

As always, the choice of a reference configuration for the potential energy is com-
pletely arbitrary. It is customary to choose the reference configuration for zero
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potential energy to be the same as that for which the force is zero. Taking U; = 0 at
r; = %, we obtain the important result

= = GAfEm (13.14)

This expression applies when the particle is separated from the center of the Earth
by a distance 7, provided that » = R;. The result is not valid for particles inside the
Earth, where r < Rj. Because of our choice of U, the function Uis always negative
(Fig. 13.11).

Although Equation 13.14 was derived for the particle-Earth system, a similar
form of the equation can be applied to any two particles. That is, the gravitational
potential energy associated with any pair of particles of masses m; and m, sepa-
rated by a distance ris

= - P (13.15)
r
This expression shows that the gravitational potential energy for any pair of par-
ticles varies as 1/1, whereas the force between them varies as 1/r2. Furthermore,
the potential energy is negative because the force is attractive and we have chosen
the potential energy as zero when the particle separation is infinite. Because the
force between the particles is attractive, an external agent must do positive work to
increase the separation between the particles. The work done by the external agent
produces an increase in the potential energy as the two particles are separated.
That is, Ubecomes less negative as rincreases.

When two particles are at rest and separated by a distance 1 an external agent has
to supply an energy at least equal to +Gm;m,/rto separate the particles to an infinite
distance. It is therefore convenient to think of the absolute value of the potential
energy as the binding energy of the system. If the external agent supplies an energy
greater than the binding energy, the excess energy of the system is in the form of
kinetic energy of the particles when the particles are at an infinite separation.

We can extend this concept to three or more particles. In this case, the total
potential energy of the system is the sum over all pairs of particles. Each pair con-
tributes a term of the form given by Equation 13.15. For example, if the system con-
tains three particles as in Figure 13.12,

mimsy myms MoMs
Uow = Uy + Uy + (]23=_G< + + )

T2 T3 Tog

The absolute value of U, represents the work needed to separate the particles by
an infinite distance.

Example 13.6 The Change in Potential Energy

< Gravitational potential energy
of the Earth—particle system

Earth

)

My : The potential
/ | energy goes to
| zeroasr
U : ?pprf)aches
| infinity.
I
I
I R E
+ r
0 I
I
I
I
GMgpm :
Ry

Figure 13.11 Graph of the grav-
itational potential energy Uversus
rfor the system of an object above
the Earth’s surface.

Figure 13.12 Three interacting
particles.

A particle of mass m is displaced through a small vertical distance Ay near the Earth’s surface. Show that in this situ-
ation the general expression for the change in gravitational potential energy given by Equation 13.13 reduces to the

familiar relationship AU = mg Ay.

SOLUTION

Conceptualize Compare the two different situations for which we have developed expressions for gravitational poten-
tial energy: (1) a planet and an object that are far apart for which the energy expression is Equation 13.14 and (2) a
small object at the surface of a planet for which the energy expression is Equation 7.19. We wish to show that these two

expressions are equivalent.

continued
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Categorize This example is a substitution problem.

Combine the fractions in Equation 13.13:

Evaluate 7, — r;and 7y, if both the initial and final posi- 7=

11
(1) AU= —GMEm(— - —) =
noo

n=A4Ay nn~ Ry

tions of the particle are close to the Earth’s surface:

Substitute these expressions into Equation (1):

where g = GM,/R,? (Eq. 13.5).

GMpm
AU= 5
Ry

Ay = mgAy

VR Suppose you are performing upper-atmosphere studies and are asked by your supervisor to find the
height in the Earth’s atmosphere at which the “surface equation” AU = mg Ay gives a 1.0% error in the change in the
potential energy. What is this height?

Answer Because the surface equation assumes a constant value for g, it will give a AUvalue that is larger than the value
given by the general equation, Equation 13.13.

Set up a ratio reflecting a 1.0% error:

Substitute the expressions for each of these

changes AU:

Substitute for 7;, Ty and g from Equation 13.5:

Solve for Ay:

AUsurfacc = 1.010
Mgera

general

mg A 77
8 _ 010
GMEm(Ay/rl-r/) GM;;

GM/RA)R (R + A R+ A A
( i/ E) E(E y): E }’:1_{__}’:1'010
GMy; Ry Ry

Ay = 0.010R; = 0.010(6.37 X 10°m) = 6.37 X 10* m = 63.7 km

Energy Considerations in Planetary
and Satellite Motion

Given the general expression for gravitational potential energy developed in Sec-
tion 13.5, we can now apply our energy analysis models to gravitational systems.
Consider an object of mass m moving with a speed v in the vicinity of a massive
object of mass M, where M >> m. The system might be a planet moving around the
Sun, a satellite in orbit around the Earth, or a comet making a one-time flyby of
the Sun. If we assume the object of mass M is at rest in an inertial reference frame,
the total mechanical energy E of the two-object system when the objects are sepa-
rated by a distance ris the sum of the kinetic energy of the object of mass m and the
potential energy of the system, given by Equation 13.15:

E=K+U
GM
E=1lmv? — Tm (13.16)

If the system of objects of mass m and M is isolated, and there are no nonconserva-
tive forces acting within the system, the mechanical energy of the system given by
Equation 13.16 is the total energy of the system and this energy is conserved:

AE

system

=0 - AK+AU,=0 — E=E

Therefore, as the object of mass m moves from ® to ® in Figure 13.10, the total

energy remains constant and Equation 13.16 gives
GMm | , GMm
- R

1; 1’f

1
amo;’

(13.17)
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Combining this statement of energy conservation with our earlier discussion of
conservation of angular momentum, we see that both the total energy and the total

angular momentum of a gravitationally bound, two-object system are constants of 7
the motion. 7
Equation 13.16 shows that £ may be positive, negative, or zero, depending on the /

value of v. For a bound system such as the Earth—Sun system, however, Eis necessar- /
ily less than zero because we have chosen the convention that U— 0 as r— <.
We can easily establish that £ < 0 for the system consisting of an object of mass

m moving in a circular orbit about an object of mass M >> m (Fig. 13.13). Modeling \
. . . . . . \
the object of mass m as a particle under a net force and a particle in uniform circu- N
lar motion gives N
P GMm  mv® T
g~ ma 2 7 Figure 13.13 An object of mass
mmoving in a circular orbit about
Multiplying both sides by rand dividing by 2 gives a much larger object of mass M.
GMm
smv® = (13.18)
2r
Substituting this equation into Equation 13.16, we obtain
_ GMm  GMm
2r r
GMm .
E=— (circular orbits) (13.19) < Total energy for circular
2r orbits of an object of
. . . o . mass m around an object of
This result shows that the total mechanical energy is negative in the case of circular mass M >> m

orbits. Notice that the kinetic energy is positive and equal to half the absolute value
of the potential energy. The absolute value of Eis also equal to the binding energy
of the system because this amount of energy must be provided to the system to
move the two objects infinitely far apart.

The total mechanical energy is also negative in the case of elliptical orbits. The
expression for E for elliptical orbits is the same as Equation 13.19 with rreplaced by
the semimajor axis length a:

GMm _
EF=——— (elliptical orbits) (13.20) « Total energy for elliptical
2a orbits of an object of
mass m around an object of

@ uick Quiz 13.4 A comet moves in an elliptical orbit around the Sun. Which mass M >> m

: pointin its orbit (perihelion or aphelion) represents the highest value of (a) the
. speed of the comet, (b) the potential energy of the comet—Sun system, (c) the
& kinetic energy of the comet, and (d) the total energy of the comet—Sun system?

Example 13.7 Changing the Orbit of a Satellite

A space transportation vehicle releases a 470-kg communications satellite while in an orbit 280 km above the surface
of the Earth. A rocket engine on the satellite boosts it into a geosynchronous orbit. How much energy does the engine
have to provide?

SOLUTION

Conceptualize Notice that the height of 280 km is much lower than that for a geosynchronous satellite, 36 000 km, as
mentioned in Example 13.5. Therefore, energy must be expended to raise the satellite to this much higher position.

Categorize This example is a substitution problem.

Find the initial radius of the satellite’s orbit when it is r;= R, + 280 km = 6.65 X 10°m
still in the vehicle’s cargo bay: continued
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Use Equation 13.19 to find the difference in ener-
gies for the satellite-Earth system with the satellite

at the initial and final radii:

Substitute numerical values, using 7= 4.22 X 107 m

from Example 13.5:

Chapter 13  Universal Gravitation

AE=E—E = —

]

21 orn ) 2

ron

Ap o - (6.674 x 107" N - m?/kg?)(5.97 X 10** kg)(470 kg) y

1 1
( — = ) = 119 X 10]
4922 X10°'m  6.65 X 10°m

which is the energy equivalent of 89 gal of gasoline. NASA engineers must account for the changing mass of the space-
craft as it ejects burned fuel, something we have not done here. Would you expect the calculation that includes the
effect of this changing mass to yield a greater or a lesser amount of energy required from the engine?

vi=0

T

|

|

|

|

|

|

|

|

| h

|

! Tmax
Vi
m; _ ¥

u

Figure 13.14 An object of
mass m projected upward from
the Earth’s surface with an initial
speed v; reaches a maximum
altitude h.

Escape speed from P>
the Earth

Pitfall Prevention 13.3

You Can't Really Escape Although
Equation 13.22 provides the
“escape speed” from the Earth,
complete escape from the Earth’s
gravitational influence is impos-
sible because the gravitational
force is of infinite range.

Escape Speed

Suppose an object of mass m is projected vertically upward from the Earth’s surface
with aninitial speed v;asillustrated in Figure 13.14. We can use energy considerations
to find the value of the initial speed needed to allow the object to reach a certain dis-
tance away from the center of the Earth. Equation 13.16 gives the total energy of the
system for any configuration. As the object is projected upward from the surface of
the Earth, v = v;and r= r, = R;. When the object reaches its maximum altitude, v =
vy= 0and r = 7= r,,.. Because the object-Earth system is isolated, we substitute
these values into the isolated-system model expression given by Equation 13.17:

GMym  GMym

R E Tmax

2 2(‘M<1 1)
Vo = ¥ —_——_——
i E\ R

£ Tmax

1
vaiz

Solving for v? gives
(13.21)

For a given maximum altitude h = r,, — R, we can use this equation to find the
required initial speed.

We are now in a position to calculate the escape speed, which is the minimum
speed the object must have at the Earth’s surface to approach an infinite separa-
tion distance from the Earth. Traveling at this minimum speed, the object contin-
ues to move farther and farther away from the Earth as its speed asymptotically

approaches zero. Letting r, ., — % in Equation 13.21 and identifying v; as v, gives
2GM,
Voo = A| —— (13.22)
Ry

This expression for v, is independent of the mass of the object. In other words,
a spacecraft has the same escape speed as a molecule. Furthermore, the result is
independent of the direction of the velocity and ignores air resistance.

If the object is given an initial speed equal to v, the total energy of the system
is equal to zero. Notice that when r— o, the object’s kinetic energy and the poten-
tial energy of the system are both zero. If v; is greater than v, however, the total

energy of the system is greater than zero and the object has some residual kinetic
energy as r — .

Example 13.8 Escape Speed of a Rocket

Calculate the escape speed from the Earth for a 5 000-kg spacecraft and determine the kinetic energy it must have at
the Earth’s surface to move infinitely far away from the Earth.
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SOLUTION

Conceptualize Imagine projecting the spacecraft from the Earth’s surface so that it moves farther and farther away,
traveling more and more slowly, with its speed approaching zero. Its speed will never reach zero, however, so the object
will never turn around and come back.

Categorize This example is a substitution problem.

- \/2(6'674 X 107" N - m*/kg*)(5.97 X 10*' kg)
Ry 6.37 X 10°m
= 112X 10'm/s

Use Equation 13.22 to find the escape speed: Uese = \/

Evaluate the kinetic energy of the spacecraft K = smv?, = §(5.00 X 10°kg)(1.12 X 10* m/s)?

from Equation 7.16: = 313 % 10']

The calculated escape speed corresponds to about 25 000 mi/h. The kinetic energy of the spacecraft is equivalent to
the energy released by the combustion of about 2 300 gal of gasoline.

What if you want to launch a 1 000-kg spacecraft at the escape speed? How much energy would that
require?
Answer In Equation 13.22, the mass of the object moving with the escape speed does not appear. Therefore, the

escape speed for the 1 000-kg spacecraft is the same as that for the 5 000-kg spacecraft. The only change in the kinetic
energy is due to the mass, so the 1 000-kg spacecraft requires one-fifth of the energy of the 5 000-kg spacecratft:

K=1(3.13 X 10"']) = 6.25 X 10'°]
B

Equations 13.21 and 13.22 can be applied to objects projected from any planet.
That is, in general, the escape speed from the surface of any planet of mass M and
radius Ris

[2GM
Voge = \| (13.23) < Escape speed from the sur-
R face of a planet of mass M
. . and radius R
Escape speeds for the planets, the Moon, and the Sun are provided in Table 13.3.
The values vary from 2.3 km/s for the Moon to about 618 km/s for the Sun. These
results, together with some ideas from the kinetic theory of gases (see Chapter 21),
explain why some planets have atmospheres and others do not. As we shall see later,
at a given temperature the average kinetic energy of a gas molecule depends only
on the mass of the molecule. Lighter molecules, such as hydrogen and helium, have
a higher average speed than heavier molecules at the same temperature. When the Escape
average speed of the lighter molecules is not much less than the escape speed of a Speeds from the Surfaces
planet, a significant fraction of them have a chance to escape. of the Planets, Moon,
This mechanism also explains why the Earth does not retain hydrogen mole-

cules and helium atoms in its atmosphere but does retain heavier molecules, such and Sun

as oxygen and nitrogen. On the other hand, the very large escape speed for Jupiter Planet Zese (km/5)

enables that planet to retain hydrogen, the primary constituent of its atmosphere. Mercury 4.3
Venus 10.3

Black Holes Ef;;: 1;:3

In Example 11.7, we briefly described a rare event called a supernova, the cata-  Jupiter 60

strophic explosion of a very massive star. The material that remains in the central ~ Saturn 36

core of such an object continues to collapse, and the core’s ultimate fate depends ~ Uranus 22

on its mass. If the core has a mass less than 1.4 times the mass of our Sun, it gradu- Neptune 24

ally cools down and ends its life as a white dwarf star. If the core’s mass is greater ISV{:;OH 61203

than this value, however, it may collapse further due to gravitational forces. What
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Event
horizon

Any event occurring within the
event horizon is invisible to an
outside observer.

Figure 13.15 A black hole. The
distance Rgequals the Schwarzs-
child radius.

r (102 m)

ol 9

Figure 13.16 The orbital speed
vas a function of distance rfrom
the Sun for the eight planets of
the solar system. The theoretical
curve is in red-brown, and the data
points for the planets are in black.
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remains is a neutron star, discussed in Example 11.7, in which the mass of a star is
compressed to a radius of about 10 km. (On the Earth, a teaspoon of this material
would weigh about 5 billion tons!)

An even more unusual star death may occur when the core has a mass greater
than about three solar masses. The collapse may continue until the star becomes
a very small object in space, commonly referred to as a black hole. In effect, black
holes are remains of stars that have collapsed under their own gravitational force. If
an object such as a spacecraft comes close to a black hole, the object experiences an
extremely strong gravitational force and is trapped forever.

The escape speed for a black hole is very high because of the concentration of
the star’s mass into a sphere of very small radius (see Eq. 13.23). If the escape speed
exceeds the speed of light ¢, radiation from the object (such as visible light) cannot
escape and the object appears to be black (hence the origin of the terminology
“black hole”). The critical radius Rg at which the escape speed is ¢ is called the
Schwarzschild radius (Fig. 13.15). The imaginary surface of a sphere of this radius
surrounding the black hole is called the event horizon, which is the limit of how
close you can approach the black hole and hope to escape.

There is evidence that supermassive black holes exist at the centers of galaxies,
with masses very much larger than the Sun. (There is strong evidence of a super-
massive black hole of mass 2—3 million solar masses at the center of our galaxy.)

Dark Matter

Equation (1) in Example 13.5 shows that the speed of an object in orbit around the
Earth decreases as the object is moved farther away from the Earth:

GM,
o= |
.

Using data in Table 13.2 to find the speeds of planets in their orbits around the
Sun, we find the same behavior for the planets. Figure 13.16 shows this behavior for
the eight planets of our solar system. The theoretical prediction of the planet speed
as a function of distance from the Sun is shown by the red-brown curve, using Equa-
tion 13.24 with the mass of the Earth replaced by the mass of the Sun. Data for the
individual planets lie right on this curve. This behavior results from the vast major-
ity of the mass of the solar system being concentrated in a small space, i.e., the Sun.

Extending this concept further, we might expect the same behavior in a galaxy.
Much of the visible galactic mass, including that of a supermassive black hole, is
near the central core of a galaxy. The opening photograph for this chapter shows
the central core of the Whirlpool galaxy as a very bright area surrounded by the
“arms” of the galaxy, which contain material in orbit around the central core. Based
on this distribution of matter in the galaxy, the speed of an object in the outer part
of the galaxy would be smaller than that for objects closer to the center, just like for
the planets of the solar system.

That is not what is observed, however. Figure 13.17 shows the results of measure-
ments of the speeds of objects in the Andromeda galaxy as a function of distance
from the galaxy’s center.* The red-brown curve shows the expected speeds for these
objects if they were traveling in circular orbits around the mass concentrated in the
central core. The data for the individual objects in the galaxy shown by the black
dots are all well above the theoretical curve. These data, as well as an extensive
amount of data taken over the past half century, show that for objects outside the
central core of the galaxy, the curve of speed versus distance from the center of the
galaxy is approximately flat rather than decreasing at larger distances. Therefore,
these objects (including our own Solar System in the Milky Way) are rotating faster
than can be accounted for by gravity due to the visible galaxy! This surprising

(13.24)

4V. C. Rubin and W. K. Ford, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,”
Astrophysical Journal 159: 379—-403 (1970).
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result means that there must be additional mass in a more extended distribution, v (km/s)

causing these objects to orbit so fast, and has led scientists to propose the existence 600[ Iczzrtzdl

of dark matter. This matter is proposed to exist in a large halo around each galaxy 490} /! .

(with a radius up to 10 times as large as the visible galaxy’s radius). Because it is not T Tlegd, 0 -
luminous (i.e., does not emit electromagnetic radiation) it must be either very cold 200 N~ >
or electrically neutral. Therefore, we cannot “see” dark matter, except through its L (109 m)
gravitational effects. Ob 20 4060 80

The proposed existence of dark matter is also implied by earlier observations
made on larger gravitationally bound structures known as galaxy clusters.® These
observations show that the orbital speeds of galaxies in a cluster are, on average,
too large to be explained by the luminous matter in the cluster alone. The speeds
of the individual galaxies are so high, they suggest that there is 50 times as much
dark matter in galaxy clusters as in the galaxies themselves!

Why doesn’t dark matter affect the orbital speeds of planets like it does those
of a galaxy? It seems that a solar system is too small a structure to contain enough
dark matter to affect the behavior of orbital speeds. A galaxy or galaxy cluster, on
the other hand, contains huge amounts of dark matter, resulting in the surprising
behavior.

What, though, is dark matter? At this time, no one knows. One theory claims
that dark matter is based on a particle called a weakly interacting massive particle,
or WIMP. If this theory is correct, calculations show that about 200 WIMPs pass
through a human body at any given time. The new Large Hadron Collider in Europe
(see Chapter 46) is the first particle accelerator with enough energy to possibly gen-
crate and detect the existence of WIMPs, which has generated much current interest
in dark matter. Keeping an eye on this research in the future should be exciting.

Summary

=
The gravitational field at a point in space is defined as the gravitational force F, experienced by any test particle

located at that point divided by the mass m, of the test particle:
-

U (13.7)

My

Figure 13.17 The orbital speed
v of a galaxy object as a function
of distance r from the center of
the central core of the Androm-
eda galaxy. The theoretical curve
is in red-brown, and the data
points for the galaxy objects are
in black. No data are provided
on the left because the behavior
inside the central core of the gal-
axy is more complicated.
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Concepts and Principles

Newton’s law of universal gravitation states that the
gravitational force of attraction between any two par-
ticles of masses m; and m, separated by a distance rhas
the magnitude

mymo
F,=G——5

g 72

where G = 6.674 X 107! N - m?/kg? is the universal
gravitational constant. This equation enables us to
calculate the force of attraction between masses under
many circumstances.

(13.1)

An object at a distance A above the Earth’s surface
experiences a gravitational force of magnitude mg,
where gis the free-fall acceleration at that elevation:
GM,;  GM;

r* (Ry+ R)?

g= (13.6)
In this expression, M is the mass of the Earth and R,
is its radius. Therefore, the weight of an object
decreases as the object moves away from the Earth’s
surface.

°F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophysical Journal 86: 217-246 (1937).
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Kepler’s laws of planetary motion state:

1. All planets move in elliptical orbits with the Sun
at one focus.

2. The radius vector drawn from the Sun to a planet
sweeps out equal areas in equal time intervals.

3. The square of the orbital period of any planet is
proportional to the cube of the semimajor axis of
the elliptical orbit.

Kepler’s third law can be expressed as

T = (4772 )as
GMj

where Mg is the mass of the Sun and ais the semimajor
axis. For a circular orbit, a can be replaced in Equation
13.11 by the radius » Most planets have nearly circular
orbits around the Sun.

(13.11)

The gravitational potential energy associated with a
system of two particles of mass m; and m, separated by
a distance ris

Gmym
U= ——— (13.15)

r
where Uis taken to be zero as r— o,

Analysis Model for Problem Solving

Particle in a Field (Gravitational) A source particle with some mass establishes a gravitational
field g throughout space. When a particle of mass m is placed in that field, it experiences a gravita-

tional force given by
=

L= mg

Objective Questions

1. A system consists of five particles. How many terms
appear in the expression for the total gravitational
potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20
(e) 25

2. Rank the following quantities of energy from largest to
smallest. State if any are equal. (a) the absolute value
of the average potential energy of the Sun—Earth sys-
tem (b) the average kinetic energy of the Earth in its
orbital motion relative to the Sun (c) the absolute value
of the total energy of the Sun—Earth system

3. A satellite moves in a circular orbit at a constant speed
around the Earth. Which of the following statements is

If an isolated system consists of an object of mass m
moving with a speed vin the vicinity of a massive object
of mass M, the total energy £ of the system is the sum
of the kinetic and potential energies:

GMm
r

E= %mv2 =

(13.16)

The total energy of the system is a constant of the
motion. If the object moves in an elliptical orbit of
semimajor axis ¢ around the massive object and
M >> m, the total energy of the system is

p= - SMn (13.20)

2a

For a circular orbit, this same equation applies with
a=r

The escape speed for an object projected from the
surface of a planet of mass M and radius Ris

[2GM
vesc =
R

(13.23)

aal

(5.5)

denotes answer available in Student Solutions Manual/Study Guide

true? (a) No force acts on the satellite. (b) The satellite
moves at constant speed and hence doesn’t accelerate.
(c) The satellite has an acceleration directed away from
the Earth. (d) The satellite has an acceleration directed
toward the Earth. (e) Work is done on the satellite by
the gravitational force.

4. Suppose the gravitational acceleration at the surface

of a certain moon A of Jupiter is 2 m/s?. Moon B has
twice the mass and twice the radius of moon A. What
is the gravitational acceleration at its surfacer Neglect
the gravitational acceleration due to Jupiter. (a) 8 m/s?
(b) 4 m/s? (c) 2m/s? (d) 1 m/s? (e) 0.5 m/s?



5. Imagine that nitrogen and other atmospheric gases

were more soluble in water so that the atmosphere of
the Earth is entirely absorbed by the oceans. Atmo-
spheric pressure would then be zero, and outer space
would start at the planet’s surface. Would the Earth
then have a gravitational field? (a) Yes, and at the sur-
face it would be larger in magnitude than 9.8 N/kg.
(b) Yes, and it would be essentially the same as the
current value. (c) Yes, and it would be somewhat less
than 9.8 N/kg. (d) Yes, and it would be much less than
9.8 N/kg. (e) No, it would not.

. An object of mass m is located on the surface of a
spherical planet of mass M and radius R. The escape
speed from the planet does not depend on which
of the following? (a) M (b) m (c) the density of the
planet (d) R (e) the acceleration due to gravity on
that planet

. A satellite originally moves in a circular orbit of radius
R around the Earth. Suppose it is moved into a circu-
lar orbit of radius 4R. (i) What does the force exerted
on the satellite then become? (a) eight times larger
(b) four times larger (c) one-half as large (d) one-
eighth as large (e) one-sixteenth as large (ii) What
happens to the satellite’s speed? Choose from the
same possibilities (a) through (e). (iii) What hap-
pens to its period? Choose from the same possibilities
(a) through (e).

. The vernal equinox and the autumnal equinox are
associated with two points 180° apart in the Earth’s
orbit. That is, the Earth is on precisely opposite sides
of the Sun when it passes through these two points.
From the vernal equinox, 185.4 days elapse before
the autumnal equinox. Only 179.8 days elapse from
the autumnal equinox until the next vernal equinox.
Why is the interval from the March (vernal) to the

Conceptual Questions

1. Each Voyager spacecraft was accelerated toward escape
speed from the Sun by the gravitational force exerted by
Jupiter on the spacecraft. (a) Is the gravitational force
a conservative or a nonconservative force? (b) Does the
interaction of the spacecraft with Jupiter meet the defi-
nition of an elastic collision? (c) How could the space-
craft be moving faster after the collision?

In his 1798 experiment, Cavendish was said to have

“weighed the Earth.” Explain this statement.

Why don’t we put a geosynchronous weather satellite in

orbit around the 45th parallel? Wouldn’t such a satel-
lite be more useful in the United States than one in
orbit around the equator?

. (@) Explain why the force exerted on a particle by a
uniform sphere must be directed toward the center
of the sphere. (b) Would this statement be true if the
mass distribution of the sphere were not spherically
symmetric? Explain.

409

Conceptual Questions

September (autumnal) equinox (which contains the
summer solstice) longer than the interval from the
September to the March equinox rather than being
equal to that interval? Choose one of the following
reasons. (a) They are really the same, but the Earth
spins faster during the “summer” interval, so the
days are shorter. (b) Over the “summer” interval, the
Earth moves slower because it is farther from the Sun.
(c) Over the March-to-September interval, the Earth
moves slower because it is closer to the Sun. (d) The
Earth has less kinetic energy when it is warmer.
(e) The Earth has less orbital angular momentum
when it is warmer.

Rank the magnitudes of the following gravitational

10.

11.

forces from largest to smallest. If two forces are equal,
show their equality in your list. (a) the force exerted by
a 2-kg object on a 3-kg object 1 m away (b) the force
exerted by a 2-kg object on a 9-kg object 1 m away
(c) the force exerted by a 2-kg object on a 9-kg object
2 m away (d) the force exerted by a 9-kg object on a
2-kg object 2 m away (e) the force exerted by a 4-kg
object on another 4-kg object 2 m away

The gravitational force exerted on an astronaut on
the Earth’s surface is 650 N directed downward. When
she is in the space station in orbit around the Earth,
is the gravitational force on her (a) larger, (b) exactly
the same, (c) smaller, (d) nearly but not exactly zero, or
(e) exactly zero?

Halley’s comet has a period of approximately 76 years,
and it moves in an elliptical orbit in which its distance
from the Sun at closest approach is a small fraction of
its maximum distance. Estimate the comet’s maximum
distance from the Sun in astronomical units (AUs)
(the distance from the Earth to the Sun). (a) 6 AU
(b) 12 AU (c) 20 AU (d) 28 AU (e) 35 AU

denotes answer available in Student Solutions Manual/Study Guide

(a) At what position in its elliptical orbit is the speed of

6.

a planet a maximum? (b) At what position is the speed
a minimum?

You are given the mass and radius of planet X. How
would you calculate the free-fall acceleration on this
planet’s surface?

. (a) If a hole could be dug to the center of the Earth,

would the force on an object of mass m still obey Equa-
tion 13.1 there? (b) What do you think the force on m
would be at the center of the Farth?

Explain why it takes more fuel for a spacecraft to travel

9.

from the Earth to the Moon than for the return trip.
Estimate the difference.

A satellite in low-Earth orbit is not truly traveling
through a vacuum. Rather, it moves through very thin
air. Does the resulting air friction cause the satellite to
slow down?
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o _ The problems found in this Analysis Model tutorial available in
WebAssign chapter may be assigned Enhanced WebAssign
online in Enhanced WebAssign [ Guided Problem
1. straightforward; 2. intermediate; Yl Master It tutorial available in Enhanced
3. challenging WebAssign
full solution available in the Student Watch It video solution available in
Solutions Manual/Study Guide Enhanced WebAssign

Section 13.1 Newton's Law of Universal Gravitation

Problem 12 in Chapter 1 can also be assigned with this
section.

In introductory physics laboratories, a typical Caven-

¥l dish balance for measuring the gravitational constant
G uses lead spheres with masses of 1.50 kg and 15.0 g
whose centers are separated by about 4.50 cm. Calcu-
late the gravitational force between these spheres, treat-
ing each as a particle located at the sphere’s center.

2. Determine the order of magnitude of the gravitational
force that you exert on another person 2 m away. In
your solution, state the quantities you measure or esti-
mate and their values.

3. A 200-kg object and a 500-kg object are separated by

[ 4.00 m. (a) Find the net gravitational force exerted
by these objects on a 50.0-kg object placed midway
between them. (b) At what position (other than an infi-
nitely remote one) can the 50.0-kg object be placed so
as to experience a net force of zero from the other two
objects?

4. During a solar eclipse, the Moon, the Earth, and the
Sun all lie on the same line, with the Moon between
the Earth and the Sun. (a) What force is exerted by
the Sun on the Moon? (b) What force is exerted by the
Earth on the Moon? (c) What force is exerted by the
Sun on the Earth? (d) Compare the answers to parts
(@) and (b). Why doesn’t the Sun capture the Moon
away from the Earth?

5. Two ocean liners, each with a mass of 40 000 metric
tons, are moving on parallel courses 100 m apart. What
is the magnitude of the acceleration of one of the lin-
ers toward the other due to their mutual gravitational
attraction? Model the ships as particles.

6. Three uniform spheres of y
[ masses m; = 2.00 kg, m, = (0, 3.00) m |
4.00 kg, and my = 6.00 kg ny
are placed at the corners of
a right triangle as shown in iy

Figure P13.6. Calculate the (=4.00,0) m

resultant gravitational force .
on the': object of mass m,, e Fa O my
assuming the spheres are 3 |
isolated from the rest of the ]

Universe. Figure P13.6

7. Two identical isolated particles, each of mass 2.00 kg,
are separated by a distance of 30.0 cm. What is the

9.

magnitude of the gravitational force exerted by one
particle on the other?

. Why is the following situation impossible? The centers of two

homogeneous spheres are 1.00 m apart. The spheres
are each made of the same element from the peri-
odic table. The gravitational force between the spheres
is 1.00 N.

Two objects attract each other with a gravitational

Wl force of magnitude 1.00 X 1078 N when separated b
g P y

10.

20.0 cm. If the total mass of the two objects is 5.00 kg,
what is the mass of each?

Review. A student proposes to study the gravita-
tional force by suspending two 100.0-kg spherical
objects at the lower ends of cables from the ceiling
of a tall cathedral and measuring the deflection of
the cables from the vertical. The 45.00-m-long cables
are attached to the ceiling 1.000 m apart. The first
object is suspended, and its position is carefully mea-
sured. The second object is suspended, and the two
objects attract each other gravitationally. By what dis-
tance has the first object moved horizontally from its
initial position due to the gravitational attraction to
the other object? Suggestion: Keep in mind that this
distance will be very small and make appropriate
approximations.

Section 13.2 Free-Fall Acceleration and
the Gravitational Force

11.{When a falling meteoroid is at a distance above the
[}l Earth’s surface of 3.00 times the Earth’s radius, what is

its acceleration due to the Earth’s gravitation?

The free-fall acceleration on the surface of the Moon
M is about one-sixth that on the surface of the Earth.

13.

The radius of the Moon is about 0.250R;, (R;; = Earth’s
radius = 6.37 X 10° m). Find the ratio of their average
denSitieS’ pMoon/pEarth'

Review. Miranda, a satellite of Uranus, is shown in Fig-
ure P13.13a. It can be modeled as a sphere of radius
242 km and mass 6.68 X 10! kg. (a) Find the free-fall
acceleration on its surface. (b) A cliff on Miranda is
5.00 km high. It appears on the limb at the 11 o’clock
position in Figure P13.13a and is magnified in Figure
P13.13b. If a devotee of extreme sports runs horizon-
tally oft the top of the cliff at 8.50 m/s, for what time
interval is he in flight? (c) How far from the base of the
vertical cliff does he strike the icy surface of Miranda?
(d) What will be his vector impact velocity?



Figure P13.13

Section 13.3 Analysis Model: Particle in a Field (Gravitational)

(a) Compute the vector gravitational field at a point P
on the perpendicular bisector of the line joining two
objects of equal mass separated by a distance 2a as
shown in Figure P13.14. (b) Explain physically why the
field should approach zero as r — 0. (c) Prove math-
ematically that the answer to part (a) behaves in this
way. (d) Explain physically why the magnitude of the
field should approach 2GM/r? as r— . (e) Prove math-
ematically that the answer to part (a) behaves correctly
in this limit.

Figure P13.14

15. Three objects of equal mass are located at three cor-
ners of a square of edge length ¢ as shown in Figure
P13.15. Find the magnitude and direction of the gravi-
tational field at the fourth corner due to these objects.

y
L ¢
m—————— m

:

|

¢

|

|
0 J—*

Figure P13.15
16. A spacecraftin the shape of a long cylinder has a length

XY of 100 m, and its mass with occupants is 1 000 kg.

M It has strayed too close to a black hole having a mass
100 times that of the Sun (Fig. P13.16). The nose of
the spacecraft points toward the black hole, and the
distance between the nose and the center of the black
hole is 10.0 km. (a) Determine the total force on the
spacecraft. (b) What is the difference in the gravita-

NASA/JPL
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tional fields acting on the occupants in the nose of the
ship and on those in the rear of the ship, farthest from
the black hole? (This difference in accelerations grows
rapidly as the ship approaches the black hole. It puts
the body of the ship under extreme tension and even-
tually tears it apart.)

Black hole

} 100 m }

//—10.0 km ﬁ//—»‘
Figure P13.16

Section 13.4 Kepler's Laws and the Motion of Planets

17. An artificial satellite circles the Earth in a circular orbit

at a location where the acceleration due to gravity is
9.00 m/s% Determine the orbital period of the satellite.

Io, asatellite of Jupiter, has an orbital period of 1.77 days

19.

20.

and an orbital radius of 4.22 X 10° km. From these
data, determine the mass of Jupiter.

A minimum-energy transfer orbit to an outer planet
consists of putting a spacecraft on an elliptical trajec-
tory with the departure planet corresponding to the
perihelion of the ellipse, or the closest point to the Sun,
and the arrival planet at the aphelion, or the farthest
point from the Sun. (a) Use Kepler’s third law to calcu-
late how long it would take to go from Earth to Mars on
such an orbit as shown in Figure P13.19. (b) Can such
an orbit be undertaken at any time? Explain.

Transfer orbit

Mars orbit
Arrival at __—+4——=<_
-
Mars :‘%ﬁ -L_ N
7 ~ N
PN
A - A
Vi s N \
/ / N \ X
// Sun \ \ _ Launch from
! I | the Earth
| |
1 o
\\ \\ / !
. / /
\ \ Earth orbit , /
\\ N N e ’ /
~_ - /
\ —-—\- ’
AN Ve
N 7

Figure P13.19

A particle of mass m moves along a straight line with
constant velocity v, in the x direction, a distance b from
the xaxis (Fig. P13.20). (a) Does the particle possess any
angular momentum about the origin? (b) Explain why
the amount of its angular momentum should change or
should stay constant. (c) Show that Kepler’s second law
is satisfied by showing that the two shaded triangles in
the figure have the same area when (g — tg = lg — {g.

Figure P13.20
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Plaskett’s binary system consists of two stars that revolve

Y]l in a circular orbit about a center of mass midway between

them. This statement implies that the masses of the two

stars are equal (Fig. P13.21). Assume the orbital speed

of each star is |V| = 220 km/s and the orbital period

of each is 14.4 days. Find the mass M of each star. (For
comparison, the mass of our Sun is 1.99 X 10%° kg.)

R
v
XM
//
\
/ \

\
\ XeM /'
\

\ ,/
M-

v
Figure P13.21

22. Two planets X and Y travel counterclockwise in circu-
lar orbits about a star as shown in Figure P13.22. The
radii of their orbits are in the ratio 3:1. At one moment,
they are aligned as shown in Figure P13.22a, making a
straight line with the star. During the next five years,
the angular displacement of planet X is 90.0° as shown
in Figure P13.22b. What is the angular displacement of
planetY at this moment?

=l O~
s S s N
/ N / \
/ \ / \
/ s \ / agiaN \
| ( oY oX i ( ) !
\ \ \ Qo ./ !
\ - / \ Yy~ /
\ / \ /
N 7 No 7

Figure P13.22

23. Comet Halley (Fig. P13.23) approaches the Sun to
[ within 0.570 AU, and its orbital period is 75.6 yr. (AU is
the symbol for astronomical unit, where 1 AU = 1.50 X
10" m is the mean Earth—Sun distance.) How far from
the Sun will Halley’s comet travel before it starts its

return journey?
-~ - \
7
7
7 AN
/ \
/ Sun \
1 \
]
]
\
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N v
\\ 2
~d P
0.570 AU .
2a

Figure P13.23 (Orbit is not drawn
to scale.)

24. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following

orbit parameters: perigee, 459 km; apogee, 2 289 km
(both distances above the Earth’s surface); period,
112.7 min. Find the ratio v, /v, of the speed at perigee to
that at apogee.

25. Use Kepler’s third law to determine how many days it
takes a spacecraft to travel in an elliptical orbit from a
point 6 670 km from the Earth’s center to the Moon,
385 000 km from the Earth’s center.

26. Neutron stars are extremely dense objects formed from

M the remnants of supernova explosions. Many rotate
very rapidly. Suppose the mass of a certain spherical
neutron star is twice the mass of the Sun and its radius
is 10.0 km. Determine the greatest possible angular
speed it can have so that the matter at the surface of
the star on its equator is just held in orbit by the gravi-
tational force.

A synchronous satellite, which always remains above
the same point on a planet’s equator, is put in orbit
around Jupiter to study that planet’s famous red spot.
Jupiter rotates once every 9.84 h. Use the data of Table
13.2 to find the altitude of the satellite above the sur-
face of the planet.

28. (a) Given that the period of the Moon’s orbit about the
Earth is 27.32 days and the nearly constant distance
between the center of the Earth and the center of the
Moon is 3.84 X 10% m, use Equation 13.11 to calculate
the mass of the Earth. (b) Why is the value you calcu-
late a bit too large?

29. Suppose the Sun’s gravity were switched off. The plan-
ets would leave their orbits and fly away in straight lines
as described by Newton’s first law. (a) Would Mercury
ever be farther from the Sun than Pluto? (b) If so, find
how long it would take Mercury to achieve this passage.
If not, give a convincing argument that Pluto is always
farther from the Sun than is Mercury.

Section 13.5 Gravitational Potential Energy

Note: In Problems 30 through 50, assume U = 0 at r = .

30. A satellite in Earth orbit has a mass of 100 kg and is

[ at an altitude of 2.00 X 10% m. (a) What is the poten-
tial energy of the satellite—Earth system? (b) What is
the magnitude of the gravitational force exerted by the
Earth on the satellite? (c) What If? What force, if any,
does the satellite exert on the Earth?

31. How much work is done by the Moon’s gravitational
field on a 1 000-kg meteor as it comes in from outer
space and impacts on the Moon’s surface?

32. How much energy is required to move a 1 000-kg
object from the Earth’s surface to an altitude twice the
Earth’s radius?

After the Sun exhausts its nuclear fuel, its ultimate fate
will be to collapse to a white dwarf state. In this state,
it would have approximately the same mass as it has
now, but its radius would be equal to the radius of the
Earth. Calculate (a) the average density of the white
dwarf, (b) the surface free-fall acceleration, and (c) the



gravitational potential energy associated with a 1.00-kg
object at the surface of the white dwarf.

34. An object is released from rest at an altitude 4 above the

35.

surface of the Earth. (a) Show that its speed at a distance
rfrom the Earth’s center, where Ry = r= R, + 5, is

1 1
v \/QGME(r TRy + h)
E

(b) Assume the release altitude is 500 km. Perform the

integral
/ /
A= Jdr= —Jl
i U

i i

to find the time of fall as the object moves from the
release point to the Earth’s surface. The negative sign
appears because the object is moving opposite to the
radial direction, so its speed is v = —dr/dt. Perform the
integral numerically.

A system consists of three particles, each of mass 5.00 g,
located at the corners of an equilateral triangle with
sides of 30.0 cm. (a) Calculate the potential energy
of the system. (b) Assume the particles are released
simultaneously. Describe the subsequent motion of
each. Will any collisions take place? Explain.

Section 13.6 Energy Considerations in Planetary
and Satellite Motion

A space probe is fired as a projectile from the Earth’s
IV surface with an initial speed of 2.00 X 10* m/s. What will
Ml its speed be when it is very far from the Earth? Ignore

37.

atmospheric friction and the rotation of the Earth.

A 500-kg satellite is in a circular orbit at an altitude of
500 km above the Earth’s surface. Because of air fric-
tion, the satellite eventually falls to the Earth’s surface,
where it hits the ground with a speed of 2.00 km/s. How
much energy was transformed into internal energy by
means of air friction?

A “treetop satellite” moves in a circular orbit just above
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the surface of a planet, assumed to offer no air resis-
tance. Show that its orbital speed vand the escape speed
from the planet are related by the expression v, = V2v.

A 1 000-kg satellite orbits the Earth at a constant alti-

tude of 100 km. (a) How much energy must be added
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to the system to move the satellite into a circular orbit
with altitude 200 km? What are the changes in the sys-
tem’s (b) kinetic energy and (c) potential energy?

A comet of mass 1.20 X 10 kg moves in an elliptical
orbit around the Sun. Its distance from the Sun ranges
between 0.500 AU and 50.0 AU. (a) What is the eccen-
tricity of its orbit? (b) What s its period? (c) Ataphelion,
what is the potential energy of the comet—Sun system?
Note: 1 AU = one astronomical unit = the average dis-
tance from the Sun to the Earth = 1.496 X 10! m.

An asteroid is on a collision course with Earth. An astro-
naut lands on the rock to bury explosive charges that
will blow the asteroid apart. Most of the small fragments
will miss the Earth, and those that fall into the atmo-

42,
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sphere will produce only a beautiful meteor shower. The
astronaut finds that the density of the spherical asteroid
is equal to the average density of the Earth. To ensure its
pulverization, she incorporates into the explosives the
rocket fuel and oxidizer intended for her return journey.
What maximum radius can the asteroid have for her to
be able to leave it entirely simply by jumping straight up?
On Earth she can jump to a height of 0.500 m.

Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius
2R to one of radius 3R;.

(a) Determine the amount of work that must be done
on a 100-kg payload to elevate it to a height of 1 000 km
above the Earth’s surface. (b) Determine the amount
of additional work that is required to put the payload
into circular orbit at this elevation.

(a) What is the minimum speed, relative to the Sun,
necessary for a spacecraft to escape the solar system if
it starts at the Earth’s orbit? (b) Voyager 1 achieved a
maximum speed of 125 000 km/h on its way to pho-
tograph Jupiter. Beyond what distance from the Sun is
this speed sufficient to escape the solar system?

A satellite of mass 200 kg is placed into Earth orbit

[ at a height of 200 km above the surface. (a) Assum-
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ing a circular orbit, how long does the satellite take to
complete one orbit? (b) What is the satellite’s speed?
(c) Starting from the satellite on the Earth’s surface,
what is the minimum energy input necessary to place
this satellite in orbit? Ignore air resistance but include
the effect of the planet’s daily rotation.

A satellite of mass m, originally on the surface of
the Earth, is placed into Earth orbit at an altitude A.
(a) Assuming a circular orbit, how long does the sat-
ellite take to complete one orbit? (b) What is the sat-
ellite’s speed? (c) What is the minimum energy input
necessary to place this satellite in orbit? Ignore air
resistance but include the effect of the planet’s daily
rotation. Represent the mass and radius of the Earth as
My and Ry, respectively.

Ganymede is the largest of Jupiter’s moons. Consider
a rocket on the surface of Ganymede, at the point far-
thest from the planet (Fig. P13.47). Model the rocket as
a particle. (a) Does the presence of Ganymede make
Jupiter exert a larger, smaller, or same size force on the
rocket compared with the force it would exert if Gany-
mede were not interposed? (b) Determine the escape
speed for the rocket from the planet-satellite system.
The radius of Ganymede is 2.64 X 105 m, and its mass

Ganymede

Jupiter

Figure P13.47
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is 1.495 X 10% kg. The distance between Jupiter and
Ganymede is 1.071 X 109 m, and the mass of Jupiter is
1.90 X 10%" kg. Ignore the motion of Jupiter and Gany-
mede as they revolve about their center of mass.

A satellite moves around the Earth in a circular orbit
of radius r (a) What is the speed v; of the satellite?
(b) Suddenly, an explosion breaks the satellite into
two pieces, with masses m and 4m. Immediately after
the explosion, the smaller piece of mass m is stationary
with respect to the Earth and falls directly toward the
Earth. What is the speed v of the larger piece immedi-
ately after the explosion? (c) Because of the increase in
its speed, this larger piece now moves in a new ellipti-
cal orbit. Find its distance away from the center of the
Earth when it reaches the other end of the ellipse.

At the Earth’s surface, a projectile is launched straight
up at a speed of 10.0 km/s. To what height will it rise?
Ignore air resistance.

Additional Problems
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A rocket is fired straight up through the atmosphere
from the South Pole, burning out at an altitude of
250 km when traveling at 6.00 km/s. (a) What maxi-
mum distance from the Earth’s surface does it travel
before falling back to the Earth? (b) Would its maxi-
mum distance from the surface be larger if the same
rocket were fired with the same fuel load from a launch
site on the equator? Why or why not?

Review. A cylindrical habitat in space 6.00 km in diam-
eter and 30.0 km long has been proposed (by G. K.
O’Neill, 1974). Such a habitat would have cities, land,
and lakes on the inside surface and air and clouds in
the center. They would all be held in place by rotation
of the cylinder about its long axis. How fast would the
cylinder have to rotate to imitate the Earth’s gravita-
tional field at the walls of the cylinder?

Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s
moon JTo and photographed active volcanoes spewing
liquid sulfur to heights of 70 km above the surface of
this moon. Find the speed with which the liquid sul-
fur left the volcano. Io’s mass is 8.9 X 10?? kg, and its
radius is 1 820 km.

. A satellite is in a circular orbit around the Earth at an

altitude of 2.80 X 10° m. Find (a) the period of the
orbit, (b) the speed of the satellite, and (c) the accel-
eration of the satellite.

Why is the following situation impossible? A spacecraft is
launched into a circular orbit around the Earth and
circles the Earth once an hour.

Let Ag,, represent the difference in the gravitational
fields produced by the Moon at the points on the
Earth’s surface nearest to and farthest from the Moon.
Find the fraction Ag,,/g, where g is the Earth’s gravi-
tational field. (This difference is responsible for the
occurrence of the lunar tides on the Earth.)

A sleeping area for a long space voyage consists of two
cabins each connected by a cable to a central hub as
shown in Figure P13.56. The cabins are set spinning
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around the hub axis, which is connected to the rest of
the spacecraft to generate artificial gravity in the cab-
ins. A space traveler lies in a bed parallel to the outer
wall as shown in Figure P13.56. (a) With r = 10.0 m,
what would the angular speed of the 60.0-kg traveler
need to be if he is to experience half his normal Earth
weight? (b) If the astronaut stands up perpendicular
to the bed, without holding on to anything with his
hands, will his head be moving at a faster, a slower, or
the same tangential speed as his feet? Why? (c) Why is
the action in part (b) dangerous?
\o

Figure P13.56

(a) A space vehicle is launched vertically upward from
the Earth’s surface with an initial speed of 8.76 km/s,
which is less than the escape speed of 11.2 km/s. What
maximum height does it attain? (b) A meteoroid falls
toward the Earth. It is essentially at rest with respect to
the Earth when it is at a height of 2.51 X 107 m above
the Earth’s surface. With what speed does the meteor-
ite (a meteoroid that survives to impact the Earth’s sur-
face) strike the Earth?

(a) A space vehicle is launched vertically upward from
the Earth’s surface with an initial speed of v; that is
comparable to but less than the escape speed v,,.. What
maximum height does it attain? (b) A meteoroid falls
toward the Earth. It is essentially at rest with respect
to the Earth when it is at a height # above the Earth’s
surface. With what speed does the meteorite (a meteor-
oid that survives to impact the Earth’s surface) strike
the Earth? (c) What If? Assume a baseball is tossed up
with an initial speed that is very small compared to the
escape speed. Show that the result from part (a) is con-
sistent with Equation 4.12.

Assume you are agile enough to run across a horizon-
tal surface at 8.50 m/s, independently of the value of
the gravitational field. What would be (a) the radius
and (b) the mass of an airless spherical asteroid of
uniform density 1.10 X 10%® kg/m® on which you could
launch yourself into orbit by running? (c) What would
be your period? (d) Would your running significantly
affect the rotation of the asteroid? Explain.

Two spheres having masses M and 2M and radii R and
3R, respectively, are simultaneously released from
rest when the distance between their centers is 12R.
Assume the two spheres interact only with each other
and we wish to find the speeds with which they collide.
(a) What fwoisolated system models are appropriate for
this system? (b) Write an equation from one of the mod-
els and solve it for ¥y, the velocity of the sphere of mass
M at any time after release in terms of V,, the veloc-



ity of 2M. (c) Write an equation from the other model
and solve it for speed v, in terms of speed v, when the
spheres collide. (d) Combine the two equations to find
the two speeds v, and v, when the spheres collide.

Two hypothetical planets of masses m; and my, and
radii r, and r,, respectively, are nearly at rest when they
[l are an infinite distance apart. Because of their gravi-

tational attraction, they head toward each other on a
collision course. (a) When their center-to-center separa-
tion is d, find expressions for the speed of each planet
and for their relative speed. (b) Find the kinetic ener-
gy of each planet just before they collide, taking m; =
2.00 X 10** kg, my = 8.00 X 10** kg, r, = 3.00 X 10° m,
and r, = 5.00 X 10° m. Note: Both the energy and mo-
mentum of the isolated two-planet system are constant.

(a) Show that the rate of change of the free-fall accel-
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eration with vertical position near the Earth’s surface is

dg  2GMy

dr Ry
This rate of change with position is called a gradient.
(b) Assuming /% is small in comparison to the radius of
the Earth, show that the difference in free-fall accel-
eration between two points separated by vertical dis-
tance his

9GM,;h

R;
(c) Evaluate this difference for 2 = 6.00 m, a typical
height for a two-story building.

|Agl =

A ring of matter is a familiar structure in planetary and
stellar astronomy. Examples include Saturn’s rings and
a ring nebula. Consider a uniform ring of mass 2.36 X
10* kg and radius 1.00 X 10® m. An object of mass
1 000 kg is placed at a point A on the axis of the ring,
2.00 X 10® m from the center of the ring (Fig. P13.63).
When the object is released, the attraction of the ring
makes the object move along the axis toward the cen-
ter of the ring (point B). (a) Calculate the gravitational

NASA

Figure P13.63
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potential energy of the object-ring system when the
object is at A. (b) Calculate the gravitational potential
energy of the system when the object is at B. (c) Calcu-
late the speed of the object as it passes through B.

A spacecraft of mass 1.00 X 10* kg is in a circular orbit
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at an altitude of 500 km above the Earth’s surface. Mis-
sion Control wants to fire the engines in a direction
tangent to the orbit so as to put the spacecraft in an
elliptical orbit around the Earth with an apogee of
2.00 X 10* km, measured from the Earth’s center. How
much energy must be used from the fuel to achieve
this orbit? (Assume that all the fuel energy goes into
increasing the orbital energy. This model will give a
lower limit to the required energy because some of the
energy from the fuel will appear as internal energy in
the hot exhaust gases and engine parts.)

. Review. As an astronaut, you observe a small planet

to be spherical. After landing on the planet, you set
off, walking always straight ahead, and find yourself
returning to your spacecraft from the opposite side
after completing a lap of 25.0 km. You hold a hammer
and a falcon feather at a height of 1.40 m, release them,
and observe that they fall together to the surface in
29.2 s. Determine the mass of the planet.

A certain quaternary star system consists of three stars,
each of mass m, moving in the same circular orbit
of radius r about a central star of mass M. The stars
orbit in the same sense and are positioned one-third
of a revolution apart from one another. Show that the
period of each of the three stars is given by

Ty G(M + m/\V/3)

Studies of the relationship of the Sun to our galaxy—
the Milky Way—have revealed that the Sun is located
near the outer edge of the galactic disc, about 30 000 ly
(I1ly = 9.46 X 10 m) from the center. The Sun has
an orbital speed of approximately 250 km/s around
the galactic center. (a) What is the period of the Sun’s
galactic motion? (b) What is the order of magnitude of
the mass of the Milky Way galaxy? (c) Suppose the gal-
axy is made mostly of stars of which the Sun is typical.
What is the order of magnitude of the number of stars
in the Milky Way?

Review. Two identical hard spheres, each of mass m
and radius 7, are released from rest in otherwise empty
space with their centers separated by the distance R.
They are allowed to collide under the influence of
their gravitational attraction. (a) Show that the mag-
nitude of the impulse received by each sphere before
they make contact is given by [Gm®(1/2r — 1/R)]V2.
(b) What If? Find the magnitude of the impulse each
receives during their contact if they collide elastically.

T=

The maximum distance from the Earth to the Sun (at

aphelion) is 1.521 X 10" m, and the distance of closest
approach (at perihelion) is 1.471 X 10! m. The Earth’s
orbital speed at perihelion is 3.027 X 10* m/s. Deter-
mine (a) the Earth’s orbital speed at aphelion and the
kinetic and potential energies of the Earth—Sun system
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(b) at perihelion and (c) at aphelion. (d) Is the total
energy of the system constant? Explain. Ignore the
effect of the Moon and other planets.

Many people assume air resistance acting on a mov-
ing object will always make the object slow down. It
can, however, actually be responsible for making the
object speed up. Consider a 100-kg Earth satellite in
a circular orbit at an altitude of 200 km. A small force
of air resistance makes the satellite drop into a circu-
lar orbit with an altitude of 100 km. (a) Calculate the
satellite’s initial speed. (b) Calculate its final speed
in this process. (c) Calculate the initial energy of the
satellite—Earth system. (d) Calculate the final energy
of the system. (e) Show that the system has lost
mechanical energy and find the amount of the loss
due to friction. (f) What force makes the satellite’s
speed increase? Hint: You will find a free-body dia-
gram useful in explaining your answer.

X-ray pulses from Cygnus X-1, the first black hole to
be identified and a celestial x-ray source, have been
recorded during high-altitude rocket flights. The sig-
nals can be interpreted as originating when a blob
of ionized matter orbits a black hole with a period of
5.0 ms. If the blob is in a circular orbit about a black
hole whose mass is 20Mg,,,, what is the orbit radius?

Show that the minimum period for a satellite in orbit
around a spherical planet of uniform density p is

3w

Gp

independent of the planet’s radius.

Tmin =

Astronomers detect a distant meteoroid moving along
a straight line that, if extended, would pass at a dis-
tance 3R, from the center of the Earth, where Ris the
Earth’s radius. What minimum speed must the meteor-
oid have if it is not to collide with the Earth?

Two stars of masses M and LT T TN
m, separated by a distance 7 AN
. . . m s \
d, revolve in circular orbits ’
Y/ / L,
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about their center of mass v, I
(Fig. P13.74). Show that each
star has a period given by

=~
\ \
QM \'/VQ\I
M !

/

T2 — 47243
G(M + m)

Two identical particles, each
of mass 1 000 kg, are coast-
ing in free space along the same path, one in front of
the other by 20.0 m. At the instant their separation
distance has this value, each particle has precisely the
same velocity of 800 im/s. What are their precise veloc-
ities when they are 2.00 m apart?

Figure P13.74

Consider an object of mass m, not necessarily small
compared with the mass of the Earth, released at a dis-
tance of 1.20 X 107 m from the center of the Earth.
Assume the Earth and the object behave as a pair of

particles, isolated from the rest of the Universe. (a) Find
the magnitude of the acceleration g, with which each
starts to move relative to the other as a function of m.
Evaluate the acceleration (b) for m = 5.00 kg, (c) for m =
2 000 kg, and (d) for m = 2.00 X 10** kg. (¢) Describe

the pattern of variation of a,, with m.

77. As thermonuclear fusion proceeds in its core, the Sun

loses mass at a rate of 3.64 X 10° kg/s. During the
5 000-yr period of recorded history, by how much has
the length of the year changed due to the loss of mass
from the Sun? Suggestions: Assume the Earth’s orbit is
circular. No external torque acts on the Earth—-Sun
system, so the angular momentum of the Earth is
constant.

Challenge Problems
78. The Solar and Heliospheric Observatory (SOHO)

spacecraft has a special orbit, located between the
Earth and the Sun along the line joining them, and
it is always close enough to the Earth to transmit data
easily. Both objects exert gravitational forces on the
observatory. It moves around the Sun in a near-circular
orbit that is smaller than the Earth’s circular orbit. Its
period, however, is not less than 1 yr but just equal to
1 yr. Show that its distance from the Earth must be
1.48 X 10° m. In 1772, Joseph Louis Lagrange deter-
mined theoretically the special location allowing this
orbit. Suggestions: Use data that are precise to four dig-
its. The mass of the Earth is 5.974 X 102! kg. You will
not be able to easily solve the equation you generate;
instead, use a computer to verify that 1.48 X 10° m is
the correct value.

79. The oldest artificial satellite still in orbit is Vanguard I,

launched March 3, 1958. Its mass is 1.60 kg. Neglecting
atmospheric drag, the satellite would still be in its ini-
tial orbit, with a minimum distance from the center of
the Earth of 7.02 Mm and a speed at this perigee point
of 8.23 km/s. For this orbit, find (a) the total energy of
the satellite—Earth system and (b) the magnitude of
the angular momentum of the satellite. (c) At apo-
gee, find the satellite’s speed and its distance from the
center of the Earth. (d) Find the semimajor axis of its
orbit. (e) Determine its period.

A spacecraft is approaching Mars after a long trip

from the Earth. Its velocity is such that it is traveling
along a parabolic trajectory under the influence of the
gravitational force from Mars. The distance of closest
approach will be 300 km above the Martian surface. At
this point of closest approach, the engines will be fired
to slow down the spacecraft and place it in a circular
orbit 300 km above the surface. (a) By what percentage
must the speed of the spacecraft be reduced to achieve
the desired orbit? (b) How would the answer to part
(a) change if the distance of closest approach and the
desired circular orbit altitude were 600 km instead of
300 km? (Note: The energy of the spacecraft—Mars sys-
tem for a parabolic orbitis £ = 0.)



