Static Equilibrium
and Elasticity

In Chapters 10 and 11, we studied the dynamics of rigid objects. Part of this chapter

addresses the conditions under which a rigid object is in equilibrium. The term equilibrium
implies that the object moves with both constant velocity and constant angular velocity
relative to an observer in an inertial reference frame. We deal here only with the special
case in which both of these velocities are equal to zero. In this case, the object is in what
is called static equilibrium. Static equilibrium represents a common situation in engineering
practice, and the principles it involves are of special interest to civil engineers, architects,
and mechanical engineers. If you are an engineering student, you will undoubtedly take an
advanced course in statics in the near future.

The last section of this chapter deals with how objects deform under load conditions. An
elastic object returns to its original shape when the deforming forces are removed. Several
elastic constants are defined, each corresponding to a different type of deformation.

Analysis Model: Rigid Object in Equilibrium

In Chapter 5, we discussed the particle in equilibrium model, in which a particle
moves with constant velocity because the net force acting on it is zero. The situation
with real (extended) objects is more complex because these objects often cannot be
modeled as particles. For an extended object to be in equilibrium, a second condi-
tion must be satisfied. This second condition involves the rotational motion of the
extended object.
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12.4 Elastic Properties of Solids

Balanced Rock in Arches National
Park, Utah, is a 3 000 000-kg
boulder that has been in stable
equilibrium for several millennia.

It had a smaller companion nearby,
called “Chip Off the Old Block,”
that fell during the winter of 1975.
Balanced Rock appeared in an
early scene of the movie Indiana
Jones and the Last Crusade. We will
study the conditions under which
an object is in equilibrium in this
chapter. (John W. Jewett, Jr))
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Figure 12.1 Asingle force F acts
on a rigid object at the point P.

Pitfall Prevention 12.1

Zero Torque Zero net torque does
not mean an absence of rotational
motion. An object that is rotating
at a constant angular speed can
be under the influence of a net
torque of zero. This possibility

is analogous to the translational
situation: zero net force does not
mean an absence of translational

motion.
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Figure 12.2 (Quick Quiz 12.1)
Two forces of equal magnitude are
applied at equal distances from
the center of mass of a rigid object.
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Figure 12.3 (Quick Quiz 12.2)
Three forces act on an object.
Notice that the lines of action of
all three forces pass through a
common point.

Static Equilibrium and Elasticity

Consider a single force F acting on a rigid object as shown in Figure 12.1. Recall
that the torque associated with the force F about an axis through O is given by
Equation 11.1:

.
T=TXF

The magnitude of 7 is Fd (see Equation 10.14), where d is the moment arm shown
in Figure 12.1. According to Equation 10.18, the net torque on a rigid object causes
it to undergo an angular acceleration.

In this discussion, we investigate those rotational situations in which the angular
acceleration of a rigid object is zero. Such an object is in rotational equilibrium.
Because X 7., = la for rotation about a fixed axis, the necessary condition for rota-

tional equilibrium is that the net torque about any axis must be zero. We now have
two necessary conditions for equilibrium of a rigid object:

1. The net external force on the object must equal zero:

S Fe =0 (12.1)
2. The net external torque on the object about any axis must be zero:

Z.=0 (12.2)

ext

These conditions describe the rigid object in equilibrium analysis model. The first
condition is a statement of translational equilibrium; it states that the translational
acceleration of the object’s center of mass must be zero when viewed from an iner-
tial reference frame. The second condition is a statement of rotational equilibrium;
it states that the angular acceleration about any axis must be zero. In the special
case of static equilibrium, which is the main subject of this chapter, the object in
equilibrium is at rest relative to the observer and so has no translational or angular
speed (thatis, vy = 0 and w = 0).

uick Quiz 12.1 Consider the object subject to the two forces of equal magnitude
in Figure 12.2. Choose the correct statement with regard to this situation.

(a) The object is in force equilibrium but not torque equilibrium. (b) The object
: is in torque equilibrium but not force equilibrium. (c) The object is in both

. force equilibrium and torque equilibrium. (d) The object is in neither force
equilibrium nor torque equilibrium.

uick Quiz 12.2 Consider the object subject to the three forces in Figure 12.3.
Choose the correct statement with regard to this situation. (a) The object is in
. force equilibrium but not torque equilibrium. (b) The object is in torque equi-
. librium but not force equilibrium. (c) The object is in both force equilibrium

. and torque equilibrium. (d) The object is in neither force equilibrium nor

5 torque equilibrium.

The two vector expressions given by Equations 12.1 and 12.2 are equivalent,
in general, to six scalar equations: three from the first condition for equilibrium
and three from the second (corresponding to x, y, and z components). Hence, in a
complex system involving several forces acting in various directions, you could be
faced with solving a set of equations with many unknowns. Here, we restrict our
discussion to situations in which all the forces lie in the xy plane. (Forces whose

restriction, we must deal with only three scalar equations. Two come from balanc-
ing the forces in the x and y directions. The third comes from the torque equa-
tion, namely that the net torque about a perpendicular axis through any point in
the xy plane must be zero. This perpendicular axis will necessarily be parallel to
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the z axis, so the two conditions of the rigid object in equilibrium model provide
the equations

SFE=0 XF=0 >7=0 (12.3)

where the location of the axis of the torque equation is arbitrary.

RGBT OGN Rigid Object in Equilibrium

Imagine an object that can rotate, Examples:

but is exhibiting no translational e a balcony juts out from a building and

must support the weight of several
humans without collapsing

acceleration ¢ and no rotational
acceleration a. Such an object is in

both translational and rotational .
equilibrium, so the net force and the

net torque about any axis are both .
equal to zero:

maneuver in an Olympic event
a ship moves at constant speed through
calm water and maintains a perfectly
= level orientation (Chapter 14)
> F =0 (12.1) N i
¢ polarized molecules in a dielectric mate-

a gymnast performs the difficult zron cross

" Y

- rial in a constant electric field take on an average equilibrium orienta-
>Fa U (12.2) . e eenie T _
tion that remains fixed in time (Chapter 26)

More on the Center of Gravity

Whenever we deal with a rigid object, one of the forces we must consider is the grav-
itational force acting on it, and we must know the point of application of this force.
As we learned in Section 9.5, associated with every object is a special point called its
center of gravity. The combination of the various gravitational forces acting on all
the various mass elements of the object is equivalent to a single gravitational force
acting through this point. Therefore, to compute the torque due to the gravita-
tional force on an object of mass M, we need only consider the force Mg acting at
the object’s center of gravity.

How do we find this special point? As mentioned in Section 9.5, if we assume g is
uniform over the object, the center of gravity of the object coincides with its cen-
ter of mass. To see why, consider an object of arbitrary shape lying in the xy plane
as illustrated in Figure 12.4. Suppose the object is divided into a large number of
particles of masses m,, mo, mg, . . . having coordinates (x;, y;), (o, ¥o), (X3, y5), . . . . In
Equation 9.29, we defined the x coordinate of the center of mass of such an object

to be
E m;x;
_ i

my + my + mg + -
m
i

mix; + MoXxy + Mmgxg + -

Xem —

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.

Let us now examine the situation from another point of view by considering the
gravitational force exerted on each particle as shown in Figure 12.5. Each particle
contributes a torque about an axis through the origin equal in magnitude to the
particle’s weight mg multiplied by its moment arm. For example, the magnitude of
the torque due to the force m, g, is m;g x;, where g is the value of the gravitational
acceleration at the position of the particle of mass m;. We wish to locate the center
of gravity, the point at which application of the single gravitational force M g
(where M = m; + my + my + -+ is the total mass of the object and g, is the accel-
eration due to gravity at the location of the center of gravity) has the same effect on

Each particle of the object has
a specific mass and specific
coordinates.
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Figure 12.4 An object can be
divided into many small particles.
These particles can be used to
locate the center of mass.
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Figure 12.5 By dividing an
object into many particles, we can
find its center of gravity.
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The center of gravity of the
system (bottle plus holder) is
directly over the support point.

© Cengage Learning/Charles D. Winters

Figure 12.6 This one-bottle
wine holder is a surprising display
of static equilibrium.

rotation as does the combined effect of all the individual gravitational forces m;g,.
Equating the torque resulting from Mg acting at the center of gravity to the sum
of the torques acting on the individual particles gives

(m1 + my + my + "‘)gcc Xoo = M@1X T MoGeXg + MmaGyxg + - -

This expression accounts for the possibility that the value of g can in general vary
over the object. If we assume uniform gover the object (as is usually the case), the g
factors cancel and we obtain

myx; + MmoXe + mgxg + - -

Xog = 12.4
&e m; + my + mg + - ( )

Comparing this result with Equation 9.29 shows that the center of gravity is located
at the center of mass as long as g is uniform over the entire object. Several exam-
ples in the next section deal with homogeneous, symmetric objects. The center of
gravity for any such object coincides with its geometric center.

@ uick Quiz 12.3 A meterstick of uniform density is hung from a string tied at
. the 25-cm mark. A 0.50-kg object is hung from the zero end of the meterstick,
. and the meterstick is balanced horizontally. What is the mass of the meterstick?
(@) 0.25 kg (b) 0.50 kg (c) 0.75 kg (d) 1.0 kg (e) 2.0 kg (f) impossible to
o determine

Examples of Rigid Objects in Static Equilibrium

The photograph of the one-bottle wine holder in Figure 12.6 shows one example
of a balanced mechanical system that seems to defy gravity. For the system (wine
holder plus bottle) to be in equilibrium, the net external force must be zero (see
Eq. 12.1) and the net external torque must be zero (see Eq. 12.2). The second con-
dition can be satisfied only when the center of gravity of the system is directly over
the support point.

HOLINHBIWHIINELLGA  Rigid Object in Equilibrium

When analyzing a rigid object in equilibrium under the action of several external
forces, use the following procedure.

1. Conceptualize. Think about the object that is in equilibrium and identify all the
forces on it. Imagine what effect each force would have on the rotation of the object
if it were the only force acting.

2. Categorize. Confirm that the object under consideration is indeed a rigid object
in equilibrium. The object must have zero translational acceleration and zero angu-
lar acceleration.

3. Analyze. Draw a diagram and label all external forces acting on the object. Try
to guess the correct direction for any forces that are not specified. When using the
particle under a net force model, the object on which forces act can be represented
in a free-body diagram with a dot because it does not matter where on the object
the forces are applied. When using the rigid object in equilibrium model, however,
we cannot use a dot to represent the object because the location where forces act
is important in the calculation. Therefore, in a diagram showing the forces on an
object, we must show the actual object or a simplified version of it.

Resolve all forces into rectangular components, choosing a convenient coordinate
system. Then apply the first condition for equilibrium, Equation 12.1. Remember to

keep track of the signs of the various force components.
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D Problem-Solving Strategy

Choose a convenient axis for calculating the net torque on the rigid object.
Remember that the choice of the axis for the torque equation is arbitrary; therefore,
choose an axis that simplifies your calculation as much as possible. Usually, the most
convenient axis for calculating torques is one through a point through which the
lines of action of several forces pass, so their torques around this axis are zero. If you
don’t know a force or don’t need to know a force, it is often beneficial to choose an
axis through the point at which this force acts. Apply the second condition for equi-
librium, Equation 12.2.

Solve the simultaneous equations for the unknowns in terms of the known
quantities.

4. Finalize. Make sure your results are consistent with your diagram. If you selected a
direction that leads to a negative sign in your solution for a force, do not be alarmed,;
it merely means that the direction of the force is the opposite of what you guessed.
Add up the vertical and horizontal forces on the object and confirm that each set

of components adds to zero. Add up the torques on the object and confirm that the
sum equals zero.

Example 12.1 The Seesaw Revisited Az

A seesaw consisting of a uniform board of mass M and length € sup- ‘
ports at rest a father and daughter with masses m,and m,, respec- ‘Q*
tively, as shown in Figure 12.7. The support (called the fulcrum) is
under the center of gravity of the board, the father is a distance d >
from the center, and the daughter is a distance ¢/2 from the center. 3

|
(A) Determine the magnitude of the upward force T exerted by Mz ;
the support on the board.

- mg
mg
SOLUTION .
Figure 12.7 (Example 12.1) A balanced system.

Conceptualize Letus focus our attention on the board and consider
the gravitational forces on the father and daughter as forces applied directly to the board. The daughter would cause a
clockwise rotation of the board around the support, whereas the father would cause a counterclockwise rotation.

Categorize Because the text of the problem states that the system is at rest, we model the board as a rigid object in
equilibrium. Because we will only need the first condition of equilibrium to solve this part of the problem, however, we
could also simply model the board as a particle in equilibrium.

Analyze Define upward as the positive y direction and n—mg — myg— Mg=0

substitute the forces on the board into Equation 12.1:

Solve for the magnitude of the force 1: 1) n= mg+ myg + Mg = (mf-l— my + M)g

(B) Determine where the father should sit to balance the system at rest.

SOLUTION

Categorize This part of the problem requires the introduction of torque to find the position of the father, so we model
the board as a rigid object in equilibrium.

Analyze The board’s center of gravity is at its geometric center because we are told that the board is uniform. If we
choose a rotation axis perpendicular to the page through the center of gravity of the board, the torques produced by
1 and the gravitational force on the board about this axis are zero.

continued
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b 12.1
€
Substitute expressions for the torques on the board due (m,g)(d) — (mdg)§ =0
to the father and daughter into Equation 12.2:
m
Solve for d: d= <d>€
my 2

Finalize This result is the same one we obtained in Example 11.6 by evaluating the angular acceleration of the system
and setting the angular acceleration equal to zero.

WEVAR N Suppose we had chosen another point through which the rotation axis were to pass. For example, sup-
pose the axis is perpendicular to the page and passes through the location of the father. Does that change the results
to parts (A) and (B)?

Answer Part (A) is unaffected because the calculation of the net force does not involve a rotation axis. In part (B), we
would conceptually expect there to be no change if a different rotation axis is chosen because the second condition of
equilibrium claims that the torque is zero about any rotation axis.

Let’s verify this answer mathematically. Recall that the sign of the torque associated with a force is positive if that
force tends to rotate the system counterclockwise, whereas the sign of the torque is negative if the force tends to
rotate the system clockwise. Let’s choose a rotation axis perpendicular to the page and passing through the location
of the father.

¢
Substitute expressions for the torques on the board n(d) — (Mg)(d) — (m,lg)<d + 2> =0
around this axis into Equation 12.2:
Substitute from Equation (1) in part (A) and solve for d: (mf+ my, + M)g(d) — (Mg)(d) — (mdg)(d + g) =0

This result is in agreement with the one obtained in part (B).

Example 12.2 Standing on a Horizontal Beam

A uniform horizontal beam with a length of £ =
8.00 m and a weight of W, = 200 N is attached to a
wall by a pin connection. Its far end is supported by a
cable that makes an angle of ¢ = 53.0° with the beam
(Fig. 12.8a). A person of weight W, = 600 N stands a
distance d = 2.00 m from the wall. Find the tension
in the cable as well as the magnitude and direction
of the force exerted by the wall on the beam.

SOLUTION B8 b

*Wb

Conceptualize Imagine the person in Figure 12.8a Rsin 0
moving outward on the beam. It seems reasonable A .
T sin ¢
that the farther he moves outward, the larger the
. . R cos 6
torque he applies about the pivot and the larger the ” 12.8 —
tension in the cable must be to balance this torque. igure 12.8 (Example 12.2) *W Tcos ¢
(a) A uniform beam sup- l«—d b

Categorize Because the system is at rest, we catego- ported by a cable. A person

. . L o walks outward on the beam. w
rize the beam as a rigid object in equilibrium. (b) The force diagram for the ?
.......................................................... beam. (c) The force diagram g |

Analyze We identify all the external forces acting o1 (he beam showing the
on the beam: the 200-N gravitational force, the components of R and T.  C ]
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b 12.2

force T exerted by the cable, the force R exerted by the wall at the pivot, and the 600-N force that the person exerts
on the beam. These forces are all indicated in the force diagram for the beam shown in Figure 12.8b. When we
assign directions for forces, it is sometimes helpful to imagine what would happen if a force were suddenly removed.
For example, if the wall were to vanish suddenly, the left end of the beam would move to the left as it begins to fall.
This scenario tells us that the wall is not only holding the beam up but is also pressing outward against it. Therefore,
we draw the vector R in the direction shown in Figure 12.8b. Figure 12.8c shows the horizontal and vertical compo-
nents of T and K.

Applying the first condition of equilibrium, substitute (1) 2 F,=Rcosf — Tcos¢p =0
expressions for the forces on the beam into component

equations from Equation 12.1: &) E Fy=Rsin0 + Tsing — W, = W, =0

where we have chosen rightward and upward as our positive directions. Because R, 7, and 6 are all unknown, we can-
not obtain a solution from these expressions alone. (To solve for the unknowns, the number of simultaneous equations
must generally equal the number of unknowns.)

Now let’s invoke the condition for rotational equilibrium. A convenient axis to choose for our torque equation_i§
the one that passes through the pi_I)l connection. The feature that makes this axis so convenient is that the force R
and the horizontal component of T both have a moment arm of zero; hence, these forces produce no torque about
this axis.

14
Substitute expressions for the torques on Sr.=(Tsin$)(() — W,d — W,,(g) =0
the beam into Equation 12.2:

) _ _ W,d + W,(€/2) (600 N)(2.00 m) + (200 N)(4.00 m)
This equation contains only 7T'as an T= = = 313N

. (o}
unknown because of our choice of rota- tsin ¢ (8.00 m) sin 53.0
tion axis. Solve for T'and substitute
numerical values:

. Rsin 0 Wp“‘Wb_TSin¢
Rearrange Equations (1) and (2) and then =tan 6 =
.. Rcos 0 T cos ¢
divide:
W, + W, — Tsin ¢
Solve for 6 and substitute numerical 0 = tan~ ( >
) T cos ¢
values:
_,[600N + 200N — (313 N) sin 53.0°
= tan = 71.1°
(813 N) cos 53.0°
T cos 313 N 53.0°
Solve Equation (1) for R and substitute R = cos ¢ = ( ) cos = 581 N

. cos 0 cos 71.1°
numerical values:

Finalize The positive value for the angle 0 indicates that our estimate of the direction of R was accurate.

Had we selected some other axis for the torque equation, the solution might differ in the details but the answers
would be the same. For example, had we chosen an axis through the center of gravity of the beam, the torque equation
would involve both T'and R. This equation, coupled with Equations (1) and (2), however, could still be solved for the
unknowns. Try it!

What if the person walks farther out on the beam? Does T change? Does R change? Does 6 change?

Answer T'mustincrease because the gravitational force on the person exerts a larger torque about the pin connection,
which must be countered by a larger torque in the opposite direction due to an increased value of 7. If T'increases, the
vertical component of R decreases to maintain force equilibrium in the vertlcal direction. Force equilibrium in the
horizontal direction, however, requires an increased horizontal component of R to balance the horizontal component
of the increased T. This fact suggests that  becomes smaller, but it is hard to predict what happens to R. Problem 66
asks you to explore the behavior of R.
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Example 12.3 The Leaning Ladder

A uniform ladder of length € rests against a smooth, vertical wall (Fig.
12.9a). The mass of the ladder is m, and the coefficient of static friction
between the ladder and the ground is w, = 0.40. Find the minimum
angle 6, ;, at which the ladder does not slip.

SOLUTION

Conceptualize Think about any ladders you have climbed. Do you want
a large friction force between the bottom of the ladder and the surface
or a small one? If the friction force is zero, will the ladder stay up? Simu-
late a ladder with a ruler leaning against a vertical surface. Does the

ruler slip at some angles and stay up at others? Figure 12.9 (Example 12.3) (a) A uniform
ladder at rest, leaning against a smooth wall. The
Categorize We do not wish the ladder to slip, so we model it as a rigid ground is rough. (b) The forces on the ladder.

object in equilibrium.

Analyze A diagram showing all the external forces acting on the ladder is illustrated in Figure 12.9b. The force exerted
by the ground_)on the ladder is the vector sum of a normal force W and the force of static friction ﬁ The wall exerts a
normal force P on the top of the ladder, but there is no friction force here because the wall is smooth. So the net force
on the top of the ladder is perpendicular to the wall and of magnitude P.

Apply the first condition for equilibrium to the ladder in I D E=f-P=0
both the xand the y directions: @ 3 F=n—mg=0

Solve Equation (1) for P: 3) P=/
Solve Equation (2) for n: 4) n=mg
When the ladder is on the verge of slipping, the force B) Poax = fimax = B = png

of static friction must have its maximum value, which is
given by f, .. = un. Combine this equation with Equa-
tions (3) and (4):

4
Apply the second condition for equilibrium to the lad- 27’0 = P{sin 6 — mgg cosf) =0
der, evaluating torques about an axis perpendicular to

the page through O:

Solve for tan 6:

_ [ ™8
=t = — 0 = tan~!
cos 0 2P 2P

m 1 1
Under the conditions that the ladder is just ready 0 = tan ! <2Pg> = tan! (2> = tan ! [2(040)] = 51°
to slip, 6 becomes 0_; and P, is given by Equa- fnax M '

tion (5). Substitute:

Finalize Notice that the angle depends only on the coefficient of friction, not on the mass or length of the ladder.

Example 12.4 Negotiating a Curb

(A) Estimate the magnitude of the force Fa person must apply to a wheelchair’s main wheel to roll up over a side-
walk curb (Fig. 12.10a). This main wheel that comes in contact with the curb has a radius » and the height of the curb
is h.
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SOLUTION

Conceptualize Think about wheelchair access to build-
ings. Generally, there are ramps built for individuals in
wheelchairs. Steplike structures such as curbs are seri-
ous barriers to a wheelchair.

Categorize Imagine the person exerts enough force so
that the bottom of the main wheel just loses contact with
the lower surface and hovers at rest. We model the wheel
in this situation as a rigid object in equilibrium.

Analyze Usually, the person’s hands supply the required
force to a slightly smaller wheel that is concentric with
the main wheel. For simplicity, let’s assume the radius of
this second wheel is the same as the radius of the main
wheel. Let’s estimate a combined gravitational force of
magnitude mg = 1 400 N for the person and the wheel-
chair, acting along a line of action passing through the
axle of the main wheel, and choose a wheel radius of r =
30 cm. We also pick a curb height of 2 = 10 cm. Let’s also
assume the wheelchair and occupant are symmetric and
each wheel supports a weight of 700 N. We then proceed
to analyze only one of the main wheels. Figure 12.10b
shows the geometry for a single wheel.

When the wheel is just about to be raised from the
street, the normal force exerted by the ground on the
wheel at point B goes to zero. Hence, at this time only three
forces act on the wheel as | shown in the force diagram in
Figure 12.10c. The force R which is the force exerted by
the curb on the wheel, acts at point A, so if we choose to
have our axis of rotation be perpendicular to the page
and pass through point A, we do not need to, include
K in our tor que equation. The moment arm of F relative
to an axis through A is given by 2r — / (see Fig. 12.10¢).

Use the triangle OAC in Figure 12.10b to find the
moment arm d of the gravitational force mg acting on
the wheel relative to an axis through point A:

Apply the second condition for equilibrium to the wheel,

taking torques about an axis through A:

Substitute for d from Equation (1):

Solve for F:

Simplify:

Substitute the known values:

371

2r—h

L

N
mg

1

Figure 12.10 (Example 12.4) (a) A person in a wheelchair
attempts to roll up over a curb. (b) Details of the wheel and curb.
The person applies a force F to the top of the wheel. (c) A force
diagram for the wheel when it is just about to be raised. Three
forces acton the wheel at this instant: F which is exerted by the
hand; R which is exerted by the curb; and the gravitational force
mg. (d) The vector sum of the three external forces acting on the
wheel is zero.

d=\r = (r=1?=Vh -

(2) E’TA= mgd — F(2r — 1) = 0

mg\/2rh — h* — F(2r — h) = 0
mg\ 2vh — h?
8 F=———7—
2r — h
\/\/27—
Ir=mg——/————=mg
2r— h 2r — h
0.1m
= (700 N
( )\/2(0.3 m) — 0.1m
= 3 X 102N

conlinued
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(B) Determine the magnitude and direction of K.

SOLUTION

Apply the first condition for equilibrium to the xand y
components of the forces on the wheel:

Chapter 12 Static Equilibrium and Elasticity

(4) D F,=F—Rcos0=0
(5) > F,=Rsin6 — mg=0

Divide Equation (5) by Equation (4): Rsinb _ o ="%
ivide Equation (5) by Equation (4): Rcos an 7
m, 700 N
Solve for the angle 6: 6 =tan" [—2) = an! (L) = 700
F 300 N
m, 700 N
Solve Equation (5) for Rand substitute numerical values: R= £ = 8§ X 10N

sin@®  sin 70°

Finalize Notice that we have kept only one digit as significant. (We have written the angle as 70° because 7 X 10'° is
awkward!) The results indicate that the force that must be applied to each wheel is substantial. You may want to esti-
mate the force required to roll a wheelchair up a typical sidewalk accessibility ramp for comparison.

Would it be easier to negotiate the curb if the person grabbed the wheel at point D in Figure 12.10c and
pulled upward?

Answer If the force F in Figure 12.10c¢ is rotated counterclockwise by 90° and applied at D, its moment arm about an

axis through A is d + r Let’s call the magnitude of this new force F".

Modify Equation (2) for this situation: S ri=mgd—Fd+1 =0

mg\/ 2k — 1
2h — I + r

mgd
Cd+r

Solve this equation for I and substitute for d:

mg\/th— e
E_VQTIL—h2+r_ 2r—h _
Fo mg\/?rh—h2 —\/QTh—h2+ r—

2r— h

Take the ratio of this force to the original force
from Equation (3) and express the result in
terms of A/r, the ratio of the curb height to the
wheel radius:

0.96

—0.33
Substitute the ratio 4/r = 0.33 from the given — = 2 - =
FN/9(0.38) — (0.38)2 + 1

values:

This result tells us that, for these values, it is slightly easier to pull upward at D than horizontally at the top of the wheel.
For very high curbs, so that //ris close to 1, the ratio F'/Fdrops to about 0.5 because point A is located near the right
edge of the wheel in Figure 12.10b. The force at D is applied at a distance of about 2rfrom A, whereas the force at the
top of the wheel has a moment arm of only about » For high curbs, then, it is best to pull upward at D, although a
large value of the force is required. For small curbs, it is best to apply the force at the top of the wheel. The ratio F'/F
becomes larger than 1 at about //r = 0.3 because point A is now close to the bottom of the wheel and the force applied
at the top of the wheel has a larger moment arm than when applied at D.

Final}y, let’s comment on the validity of these mathematical results. Consider Figure 12.10d and imagine that the
vector F is upward instead of to the right. There is no way the three vectors can add to equal zero as required by the
first equilibrium condition. Therefor_&;, our results above may be qualitatively valid, but not exact quantitatively. To
cancel the horizontal component of R, the force at D must be applied at an angle to the vertical rather than straight
upward. This feature makes the calculation more complicated and requires both conditions of equilibrium.
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Elastic Properties of Solids

Except for our discussion about springs in earlier chapters, we have assumed
objects remain rigid when external forces act on them. In Section 9.8, we explored
deformable systems. In reality, all objects are deformable to some extent. That is, it
is possible to change the shape or the size (or both) of an object by applying exter-
nal forces. As these changes take place, however, internal forces in the object resist
the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress and
strain. Stress is a quantity that is proportional to the force causing a deformation;
more specifically, stress is the external force acting on an object per unit cross-
sectional area. The result of a stress is strain, which is a measure of the degree of
deformation. It is found that, for sufficiently small stresses, stress is proportional
to strain; the constant of proportionality depends on the material being deformed
and on the nature of the deformation. We call this proportionality constant the
elastic modulus. The elastic modulus is therefore defined as the ratio of the stress
to the resulting strain:

stress

Elastic modulus = (12.5)

strain
The elastic modulus in general relates what is done to a solid object (a force is
applied) to how that object responds (it deforms to some extent). It is similar to the
spring constant kin Hooke’s law (Eq. 7.9) that relates a force applied to a spring and
the resultant deformation of the spring, measured by its extension or compression.
We consider three types of deformation and define an elastic modulus for each:

1. Young’s modulus measures the resistance of a solid to a change in its
length.

2. Shear modulus measures the resistance to motion of the planes within a
solid parallel to each other.

3. Bulk modulus measures the resistance of solids or liquids to changes in
their volume.

Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area A and initial length L, that is clamped at
one end as in Figure 12.11. When an external force is applied perpendicular to the
cross section, internal molecular forces in the bar resist distortion (“stretching”),
but the bar reaches an equilibrium situation in which its final length L, is greater
than L, and in which the external force is exactly balanced by the internal forces.
In such a situation, the bar is said to be stressed. We define the tensile stress as the
ratio of the magnitude of the external force I"to the cross-sectional area A, where
the cross section is perpendicular to the force vector. The tensile strain in this
case is defined as the ratio of the change in length AL to the original length L, We
define Young’s modulus by a combination of these two ratios:

tensile stress  F/A
tensile strain  AL/L,;

Y= (12.6)
Young’s modulus is typically used to characterize a rod or wire stressed under either
tension or compression. Because strain is a dimensionless quantity, Y has units of
force per unit area. Typical values are given in Table 12.1 on page 374.

For relatively small stresses, the bar returns to its initial length when the force is
removed. The elastic limit of a substance is defined as the maximum stress that can
be applied to the substance before it becomes permanently deformed and does not
return to its initial length. It is possible to exceed the elastic limit of a substance by

The amount by
which the length
of the bar changes
due to the applied
force is AL.

AL
Figure 12.11 A force F is

applied to the free end of a bar
clamped at the other end.

<« Young's modulus
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Elastic
behavior
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Figure 12.12 Stress-versus-strain
curve for an elastic solid.

Shear modulus P>

Figure 12.13 (a) A shear defor-
mation in which a rectangular
block is distorted by two forces
of equal magnitude but opposite
directions applied to two parallel
faces. (b) A book is under shear
stress when a hand placed on the
cover applies a horizontal force
away from the spine.

Static Equilibrium and Elasticity

IELI[SPAE  Typical Values for Elastic Moduli

Young’s Modulus Shear Modulus Bulk Modulus
Substance (N/m?) (N/m?) (N/m?)
Tungsten 35 X 1010 14 X 1010 20 x 101°
Steel 20 X 10 8.4 X 10 6 X 1010
Copper 11 X 10'° 4.2 X 1010 14 X 100
Brass 9.1 x 101 3.5 X 101 6.1 x 101
Aluminum 7.0 X 101° 2.5 X 101 7.0 X 100
Glass 6.5-7.8 X 1010 2.6-3.2 X 10%0 5.0-5.5 X 1010
Quartz 5.6 X 1010 2.6 X 101 2.7 X 101
Water — — 0.21 X 10
Mercury — — 2.8 X 1010

applying a sufficiently large stress as seen in Figure 12.12. Initially, a stress-versus-
strain curve is a straight line. As the stress increases, however, the curve is no longer
a straight line. When the stress exceeds the elastic limit, the object is permanently
distorted and does not return to its original shape after the stress is removed. As
the stress is increased even further, the material ultimately breaks.

Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force paral-
lel to one of its faces while the opposite face is held fixed by another force (Fig.
12.13a). The stress in this case is called a shear siress. If the object is originally a
rectangular block, a shear stress results in a shape whose cross section is a paral-
lelogram. A book pushed sideways as shown in Figure 12.13b is an example of an
object subjected to a shear stress. To a first approximation (for small distortions),
no change in volume occurs with this deformation.

We define the shear stress as I'/A, the ratio of the tangential force to the area
A of the face being sheared. The shear strain is defined as the ratio Ax//, where
Ax is the horizontal distance that the sheared face moves and / is the height of the
object. In terms of these quantities, the shear modulus is
F/A

= 12.7
shear strain  Ax/h ( )

shear stress

S

Values of the shear modulus for some representative materials are given in Table
12.1. Like Young’s modulus, the unit of shear modulus is the ratio of that for force
to that for area.

Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of an object to changes in a force of uni-
form magnitude applied perpendicularly over the entire surface of the object as
shown in Figure 12.14. (We assume here the object is made of a single substance.)

The shear / The shear
stress causes 7// / stress causes
the top face \/ the front
4
F

of the block
to move to
the right
relative to
the bottom.

cover of the
book to move
to the right
relative to the

back cover.
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As we shall see in Chapter 14, such a uniform distribution of forces occurs when an
object is immersed in a fluid. An object subject to this type of deformation undergoes
a change in volume but no change in shape. The volume stress is defined as the ratio
of the magnitude of the total force I'exerted on a surface to the area A of the sur-
face. The quantity P = I/A is called pressure, which we shall study in more detail in
Chapter 14. If the pressure on an object changes by an amount AP = AJ/A, the object
experiences a volume change AV. The volume strain is equal to the change in volume
AVdivided by the initial volume V. Therefore, from Equation 12.5, we can character-
ize a volume (“bulk”) compression in terms of the bulk modulus, which is defined as

volume stress AF/A _ AP
volume strain AV/V, AV/V,

A negative sign is inserted in this defining equation so that B is a positive number. Vi
This maneuver is necessary because an increase in pressure (positive AP) causes a F
decrease in volume (negative AV) and vice versa. Ty 2
Table 12.1 lists bulk moduli for some materials. If you look up such values in a = 4
different source, you may find the reciprocal of the bulk modulus listed. The recip- 3 |
rocal of the bulk modulus is called the compressibility of the material. |
Notice from Table 12.1 that both solids and liquids have a bulk modulus. No :/V
shear modulus and no Young’s modulus are given for liquids, however, because a = ., |
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a o e |
tensile force is applied to a liquid, the liquid simply flows in response. F

Fbo ttom

B=

(12.8) <« Bulk modulus

uick Quiz 12.4 For the three parts of this Quick Quiz, choose from the fol- The cube undergoes a change in

. lowing choices the correct answer for the elastic modulus that describes the volume but no change in shape.
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those Figure 12.14 A cube is under
choices (i) A block of iron is sliding across a horizontal floor. The friction force uniform pressure and is therefore
between the sliding block and the floor causes the block to deform. (ii) A tra- compressed on all sides by forces
peze artist swings through a circular arc. At the bottom of the swing, the wires normal to ity six faces. Thearrow-

heads of force vectors on the sides
of the cube that are not visible are
hidden by the cube.

supporting the trapeze are longer than when the trapeze artist simply hangs

from the trapeze due to the increased tension in them. (iii) A spacecraft carries
. a steel sphere to a planet on which atmospheric pressure is much higher than on
o the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed Concrete

If the stress on a solid object exceeds a certain value, the object fractures. The max-
imum stress that can be applied before fracture occurs—called the tensile strength,
compressive strength, or shear strength—depends on the nature of the material and
on the type of applied stress. For example, concrete has a tensile strength of about
2 X 10° N/m?, a compressive strength of 20 X 10 N/m?, and a shear strength of
2 X 105 N/m?2. If the applied stress exceeds these values, the concrete fractures. It is
common practice to use large safety factors to prevent failure in concrete structures.

Concrete is normally very brittle when it is cast in thin sections. Therefore, concrete
slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. The slab
can be strengthened by the use of steel rods to reinforce the concrete as illustrated
in Figure 12.15b. Because concrete is much stronger under compression (squeezing)
than under tension (stretching) or shear, vertical columns of concrete can support

Load force Steel Steel rod Figure 12.15 (a) A concrete
reinforcing under
Concrete Cracks rod tension

N % ‘y_, ', to crack under a heavy load.
— iy 4 (b) The strength of the concrete is
o~ increased by using steel reinforce-

ment rods. (c) The concrete is fur-
ther strengthened by prestressing
it with steel rods under tension.

slab with no reinforcement tends
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very heavy loads, whereas horizontal beams of concrete tend to sag and crack. A sig-
nificant increase in shear strength is achieved, however, if the reinforced concrete is
prestressed as shown in Figure 12.15c. As the concrete is being poured, the steel rods
are held under tension by external forces. The external forces are released after the
concrete cures; the result is a permanent tension in the steel and hence a compressive
stress on the concrete. The concrete slab can now support a much heavier load.

Example 12.5 Stage Design

In Example 8.2, we analyzed a cable used to support an actor as he swings onto the stage. Now suppose the tension in
the cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-long steel cable have if we do not
want it to stretch more than 0.50 cm under these conditions?

SOLUTION

Conceptualize Look back at Example 8.2 to recall what is happening in this situation. We ignored any stretching of
the cable there, but we wish to address this phenomenon in this example.

Categorize We perform a simple calculation involving Equation 12.6, so we categorize this example as a substitution
problem.

FL,
Solve Equation 12.6 for the cross-sectional A

area of the cable: YAL

A [ FL,
Assuming the cross section is circular, find the d=2r= 2\/7 =2
9 T wYAL

diameter of the cable from d = 2rand A = 7r?:

(940 N)(10 m)

. m 3 =35X10%m = 3.5 mm
7(20 X 10" N/m?)(0.005 0 m)

Substitute numerical values: d= 2\/

To provide a large margin of safety, you would probably use a flexible cable made up of many smaller wires having a
total cross-sectional area substantially greater than our calculated value.

Example 12.6 Squeezing a Brass Sphere

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 1.0 X 10° N/m? (normal atmo-
spheric pressure). The sphere is lowered into the ocean to a depth where the pressure is 2.0 X 107 N/m?. The volume of
the sphere in air is 0.50 m®. By how much does this volume change once the sphere is submerged?

SOLUTION

Conceptualize Think about movies or television shows you have seen in which divers go to great depths in the water
in submersible vessels. These vessels must be very strong to withstand the large pressure under water. This pressure
squeezes the vessel and reduces its volume.

Categorize We perform a simple calculation involving Equation 12.8, so we categorize this example as a substitution
problem.

V.AP
Solve Equation 12.8 for the volume change of the sphere: AV = — [B
. . (0.50 m*)(2.0 X 10"N/m? — 1.0 X 10° N/m?)
Substitute numerical values: AV = —

6.1 X 10" N/m?
= —1.6X10"*m3

The negative sign indicates that the volume of the sphere decreases.
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Summary

The gravitational force exerted on
an object can be considered as acting
at a single point called the center of

We can describe the elastic properties of a substance using the con-
cepts of stress and strain. Stress is a quantity proportional to the force
producing a deformation; strain is a measure of the degree of deforma-
gravity. An object’s center of gravity tion. Stress is proportional to strain, and the constant of proportionality
coincides with its center of mass if is the elastic modulus:
the object is in a uniform gravita- stress

tional field. Elastic modulus = strain (12.5)

Concepts and Principles

Three common types of deformation are represented by (1) the resistance of a solid to elongation under a load,
characterized by Young’s modulus Y; (2) the resistance of a solid to the motion of internal planes sliding past each
other, characterized by the shear modulus S; and (3) the resistance of a solid or fluid to a volume change, character-
ized by the bulk modulus B.

Analysis Model for Problem Solving

Rigid Object in Equilibrium A rigid object in equilibrium exhibits no translational a=0 a=0
or angular acceleration. The net external force acting on it is zero, and the net external y é?xz 8 2, =0
torque on it is zero about any axis: \ y

SF=0 (12.1) N /

S 2 =0 (12.2)

The first condition is the condition for translational equilibrium, and the second is the 0
condition for rotational equilibrium.

Objective Questions denotes answer available in Student Solutions Manual/Study Guide

1. The acceleration due to gravity becomes weaker by 2. A rod 7.0 m long is pivoted at a point 2.0 m from the

about three parts in ten million for each meter of
increased elevation above the Earth’s surface. Suppose
a skyscraper is 100 stories tall, with the same floor plan
for each story and with uniform average density. Com-
pare the location of the building’s center of mass and
the location of its center of gravity. Choose one: (a) Its
center of mass is higher by a distance of several meters.
(b) Its center of mass is higher by a distance of several
millimeters. (c) Its center of mass and its center of grav-
ity are in the same location. (d) Its center of gravity is
higher by a distance of several millimeters. (e) Its cen-
ter of gravity is higher by a distance of several meters.

left end. A downward force of 50 N acts at the left
end, and a downward force of 200 N acts at the right
end. At what distance to the right of the pivot can a
third force of 300 N acting upward be placed to pro-
duce rotational equilibrium? Note: Neglect the weight
of the rod. (@) 1.0 m (b) 2.0 m (c) 3.0 m (d) 4.0 m
(e) 3.5 m

. Consider the object in Figure OQ12.3. A single force is

exerted on the object. The line of action of the force
does not pass through the object’s center of mass. The
acceleration of the object’s center of mass due to this
force (a) is the same as if the force were applied at the
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center of mass, (b) is larger
than the acceleration would
be if the force were applied
at the center of mass, (c) is
smaller than the accelera-
tion would be if the force
were applied at the center of
mass, or (d) is zero because
the force causes only angu-
lar acceleration about the
center of mass.

F
X

Figure 0Q12.3

. Two forces are acting on an object. Which of the fol-
lowing statements is correct? (a) The object is in equi-
librium if the forces are equal in magnitude and oppo-
site in direction. (b) The object is in equilibrium if the
net torque on the object is zero. (c) The object is in
equilibrium if the forces act at the same point on the
object. (d) The object is in equilibrium if the net force
and the net torque on the object are both zero. (e) The
object cannot be in equilibrium because more than
one force acts on it.

. In the cabin of a ship, a soda can rests in a saucer-
shaped indentation in a built-in counter. The can tilts
as the ship slowly rolls. In which case is the can most
stable against tipping over? (a) It is most stable when it
is full. (b) It is most stable when it is half full. (¢) It is
most stable when it is empty. (d) It is most stable in two
of these cases. (e) It is equally stable in all cases.

6. A20.0-kg horizontal plank 4.00 m long rests on two sup-

ports, one at the left end and a second 1.00 m from the
rightend. Whatis the magnitude of the force exerted on
the plank by the support near the right end? (a) 32.0 N
(b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 N

7. Assume a single 300-N force is exerted on a bicycle

frame as shown in Figure OQ12.7. Consider the torque
produced by this force about axes perpendicular to
the plane of the paper and through each of the points

Conceptual Questions

A ladder stands on the ground, leaning against a wall.

Would you feel safer climbing up the ladder if you
were told that the ground is frictionless but the wall
is rough or if you were told that the wall is frictionless
but the ground is rough? Explain your answer.

. The center of gravity of an object may be located out-
side the object. Give two examples for which that is the
case.

. (@) Give an example in which the net force acting on
an object is zero and yet the net torque is nonzero.
(b) Give an example in which the net torque acting on
an object is zero and yet the net force is nonzero.

. Stand with your back against a wall. Why can’t you put
your heels firmly against the wall and then bend for-
ward without falling?

A through E, where E 300 N
is the center of mass \
of the frame. Rank the LD

torques T,, Ty, Ty Tps

and 7, from largest to E
smallest, noting that ° Ve
zero is greater than a ¢
negative quantity. If (e
) q y 4 @
two torques are equal,
B

note their equality in

your ranking. Figure 0Q12.7

. In analyzing the equi-

librium of a flat, rigid object, you are about to choose
an axis about which you will calculate torques. Which
of the following describes the choice you should make?
(a) The axis should pass through the object’s center of
mass. (b) The axis should pass through one end of the
object. (c) The axis should be either the x axis or the
y axis. (d) The axis should pass through any point
within the object. (e) Any axis within or outside the
object can be chosen.

A certain wire, 3 m long, stretches by 1.2 mm when

under tension 200 N. (i) Does an equally thick wire 6 m
long, made of the same material and under the same
tension, stretch by (a) 4.8 mm, (b) 2.4 mm, (c) 1.2 mm,
(d) 0.6 mm, or (e) 0.3 mm? (ii) A wire with twice the
diameter, 3 m long, made of the same material and
under the same tension, stretches by what amount?
Choose from the same possibilities (a) through (e).

10. The center of gravity of an ax is on the centerline

of the handle, close to the head. Assume you saw across
the handle through the center of gravity and weigh the
two parts. What will you discover? (a) The handle
side is heavier than the head side. (b) The head side
is heavier than the handle side. (c) The two parts are
equally heavy. (d) Their comparative weights cannot
be predicted.

denotes answer available in Student Solutions Manual/Study Guide

5. An arbitrarily shaped piece of plywood can be suspended

from a string attached to the ceiling. Explain how you
could use a plumb bob to find its center of gravity.

6. A girl has a large, docile dog she wishes to weigh on a

small bathroom scale. She reasons that she can deter-
mine her dog’s weight with the following method.
First she puts the dog’s two front feet on the scale and
records the scale reading. Then she places only the
dog’s two back feet on the scale and records the read-
ing. She thinks that the sum of the readings will be the
dog’s weight. Is she correct? Explain your answer.

. Can an object be in equilibrium if it is in motion?

Explain.

. What kind of deformation does a cube of Jell-O exhibit

when it jiggles?
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Section 12.1 Analysis Model: Rigid Object in Equilibrium

1. What are the necessary condi-
tions for equilibrium of the
object shown in Figure P12.1?
Calculate torques about an
axis through point O.

2. Why is the following situation
impossible? A uniform beam of
mass m, = 3.00 kg and length
¢ = 1.00 m supports blocks
with masses m; = 5.00 kg and
my = 15.0 kg at two positions

Figure P12.1

as shown in Figure P12.2. The beam rests on two trian-
gular blocks, with point Pa distance d = 0.300 m to the
right of the center of gravity of the beam. The position of
the object of mass m, is adjusted along the length of the

beam until the normal force on the beam at O is zero.

Figure P12.2

Section 12.2 More on the Center of Gravity

Problems 45, 48, 49, and 92 in Chapter 9 can also be
assigned with this section.

3. A carpenter’s square has the shape of an L as shown in

M Figure P12.3. Locate its center of gravity.

4.0 cm

rﬁ

v

18.0 cm
]
nnnnnn 4.0 cm
12.0 cm
Figure P12.3

Problems 379

The problems found in this Analysis Model tutorial available in
Enhanced WebAssign

[T Guided Problem
Y1 Master It tutorial available in Enhanced

Watch It video solution available in
Enhanced WebAssign

Consider the following distribution of objects: a
"1 5.00-kg object with its center of gravity at (0, 0) m, a

3.00-kg object at (0, 4.00) m, and a 4.00-kg object
at (3.00, 0) m. Where should a fourth object of mass
8.00 kg be placed so that the center of gravity of the
four-object arrangement will be at (0, 0)?

Pat builds a track for his model car out of solid wood

as shown in Figure P12.5. The track is 5.00 cm wide,
1.00 m high, and 3.00 m long. The runway is cut so that
it forms a parabola with the equation y = (x — 3)2/9.
Locate the horizontal coordinate of the center of grav-
ity of this track.

Figure P12.5

6. A circular pizza of radius R has a circular piece of

radius R/2 removed from one side as shown in Fig-
ure P12.6. The center of gravity has moved from C to
C’ along the xaxis. Show that the distance from Cto C’
is R/6. Assume the thickness and density of the pizza
are uniform throughout.

Ce 'C’@’

Figure P12.6

. Figure P12.7 on page 380 shows three uniform objects: a

rod with m; = 6.00 kg, aright triangle with m, = 3.00 kg,
and a square with mg = 5.00 kg. Their coordinates in
meters are given. Determine the center of gravity for
the three-object system.
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y (m)

i "

b em——————— (9, 7)
(-5,5) - (2, 7)

- (8,5)
M

2,9 (4,1)
IIIIIIIIIIIIIIIIIIIIx(m)
Figure P12.7

Section 12.3 Examples of Rigid Objects in Static Equilibrium

Problems 14, 26, 27, 28, 31, 33, 34, 60, 66, 85, 89, 97, and
100 in Chapter 5 can also be assigned with this section.

A 1 500-kg automobile has a wheel base (the distance
[AYil between the axles) of 3.00 m. The automobile’s center
"} of mass is on the centerline at a point 1.20 m behind
the front axle. Find the force exerted by the ground on
each wheel.

9. Find the mass m of the counterweight needed to bal-

ance a truck with mass M = 1500 kg on an incline of
0 = 45° (Fig. P12.9). Assume both pulleys are friction-
less and massless.

Figure P12.9

10. A mobile is constructed of light rods, light strings, and
M beach souvenirs as shown in Figure P12.10. If m, =
12.0 g, find values for (a) m,, (b) my, and (c) ms.

4.00cm | 6.00 cm
[
2.00 cm| 5.00 cm |
;

3.00 cm 3:4.0() cm Mg

=]
o i é :
©
my .Q g
my

Figure P12.10

11. A uniform beam of length 7.60 m and weight 4.50 X
10% N is carried by two workers, Sam and Joe, as shown
in Figure P12.11. Determine the force that each person
exerts on the beam.

Figure P12.11

12. A vaulter holds a 29.4-N pole in equilibrium by exert-
ing an upward force U with her leading hand and a
downward force D with her trailing hand as shown in
Figure P12.12. Point Cis the center of gravity of the
pole. What are the magnitudes of (a) U and (b) D?

0.750 m y
<150 m—>f«— 2.25 m —]
£

A

- ¢
5| 20" Ve

Fg
[

Figure P12.12

A 15.0-m uniform ladder weighing 500 N rests against
X0 2 frictionless wall. The ladder makes a 60.0° angle
Y] with the horizontal. (a) Find the horizontal and verti-
cal forces the ground exerts on the base of the ladder
when an 800-N firefighter has climbed 4.00 m along
the ladder from the bottom. (b) If the ladder is just
on the verge of slipping when the firefighter is 9.00 m
from the bottom, what is the coefficient of static fric-

tion between ladder and ground?

14. A uniform ladder of length L and mass m, rests against
a frictionless wall. The ladder makes an angle 6 with
the horizontal. (a) Find the horizontal and vertical
forces the ground exerts on the base of the ladder
when a firefighter of mass m, has climbed a distance
x along the ladder from the bottom. (b) If the ladder
is just on the verge of slipping when the firefighter is
a distance d along the ladder from the bottom, what
is the coefficient of static friction between ladder and
ground?

15. A flexible chain weighing 40.0 N hangs between two
hooks located at the same height (Fig. P12.15). At each
hook, the tangent to the chain makes an angle 6 =
42.0° with the horizontal. Find (a) the magnitude of
the force each hook exerts on the chain and (b) the

Figure P12.15



tension in the chain at its midpoint. Suggestion: For part
(b), make a force diagram for half of the chain.

16. A uniform beam of length L

and mass m shown in Figure
P12.16 is inclined at an angle
0 to the horizontal. Its upper
end is connected to a wall by
arope, and its lower end rests
on a rough, horizontal sur-
face. The coefficient of static
friction between the beam
and surface is u,. Assume
the angle 0 is such that the static friction force is at its
maximum value. (a) Draw a force diagram for the beam.
(b) Using the condition of rotational equilibrium,
find an expression for the tension 7 in the rope in
terms of m, g, and 6. (c) Using the condition of trans-
lational equilibrium, find a second expression for T'in
terms of w,, m, and g (d) Using the results from parts
(@) through (c), obtain an expression for u, involv-
ing only the angle 0. (e) What happens if the ladder
is lifted upward and its base is placed back on the
ground slightly to the left of its position in Figure
P12.16? Explain.

Figure P12.16

17. Figure P12.17 shows a claw hammer being used to pull
a nail out of a horizontal board. The mass of the ham-

mer is 1.00 kg. A force of 150 N is exerted horizontally
as shown, and the nail does not yet move relative to
the board. Find (a) the force exerted by the hammer
claws on the nail and (b) the force exerted by the sur-
face on the point of contact with the hammer head.
Assume the force the hammer exerts on the nail is par-

allel to the nail.
:
!——»

30.0 cm

b

/
| \Single point

|
/ I of contact
730.0% 1
/ > | <
[
5.00 cm

Figure P12.17

18. A 20.0-kg floodlight in a park is ¢
[ supported at the end of a horizon-

tal beam of negligible mass that is
hinged to a pole as shown in Figure
P12.18. A cable at an angle of 6 =
30.0° with the beam helps support
the light. (a) Draw a force diagram
for the beam. By computing torques
about an axis at the hinge at the left-
hand end of the beam, find (b) the
tension in the cable, (c) the horizontal component of
the force exerted by the pole on the beam, and (d) the

Figure P12.18

19.

20.
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vertical component of this force. Now solve the same
problem from the force diagram from part (a) by com-
puting torques around the junction between the cable
and the beam at the right-hand end of the beam. Find
(e) the vertical component of the force exerted by the
pole on the beam, (f) the tension in the cable, and
(g) the horizontal component of the force exerted
by the pole on the beam. (h) Compare the solution
to parts (b) through (d) with the solution to parts
(e) through (g). Is either solution more accurate?

Sir Lost-a-Lot dons his armor and sets out from the
castle on his trusty steed (Fig. P12.19). Usually, the
drawbridge is lowered to a horizontal position so that
the end of the bridge rests on the stone ledge. Unfor-
tunately, Lost-a-Lot’s squire didn’t lower the draw-
bridge far enough and stopped it at 6 = 20.0° above
the horizontal. The knight and his horse stop when
their combined center of mass is d = 1.00 m from the
end of the bridge. The uniform bridge is € = 8.00 m
long and has mass 2 000 kg. The lift cable is attached
to the bridge 5.00 m from the hinge at the castle end
and to a point on the castle wall 2 = 12.0 m above the
bridge. Lost-a-Lot’s mass combined with his armor
and steed is 1 000 kg. Determine (a) the tension in the
cable and (b) the horizontal and (c) the vertical force
components acting on the bridge at the hinge.

Figure P12.19 Problems 19 and 20.

Review. While Lost-a-Lot ponders his next move in
the situation described in Problem 19 and illustrated
in Figure P12.19, the enemy attacks! An incoming
projectile breaks off the stone ledge so that the end
of the drawbridge can be lowered past the wall where
it usually rests. In addition, a fragment of the projec-
tile bounces up and cuts the drawbridge cable! The
hinge between the castle wall and the bridge is fric-
tionless, and the bridge swings down freely until it is
vertical and smacks into the vertical castle wall below
the castle entrance. (a) How long does Lost-a-Lot stay
in contact with the bridge while it swings downward?
(b) Find the angular acceleration of the bridge just
as it starts to move. (c) Find the angular speed of the
bridge when it strikes the wall below the hinge. Find
the force exerted by the hinge on the bridge (d) imme-
diately after the cable breaks and (e) immediately
before it strikes the castle wall.
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John is pushing his daughter Rachel in a wheelbarrow
when it is stopped by a brick 8.00 cm high (Fig. P12.21).
The handles make an angle of § = 15.0° with the
ground. Due to the weight of Rachel and the wheelbar-
row, a downward force of 400 N is exerted at the center
of the wheel, which has a radius of 20.0 cm. (a) What
force must John apply along the handles to just start the
wheel over the brick? (b) What is the force (magnitude
and direction) that the brick exerts on the wheel just as
the wheel begins to lift over the brick? In both parts,
assume the brick remains fixed and does not slide
along the ground. Also assume the force applied by
John is directed exactly toward the center of the wheel.

oy

Figure P12.21 Problems 21 and 22.

John is pushing his daughter Rachel in a wheelbarrow
when it is stopped by a brick of height . (Fig. P12.21).
The handles make an angle of 6 with the ground. Due
to the weight of Rachel and the wheelbarrow, a down-
ward force mg is exerted at the center of the wheel,
which has a radius R. (a) What force Fmust John apply
along the handles to just start the wheel over the brick?
(b) What are the components of the force that the
brick exerts on the wheel just as the wheel begins to lift
over the brick? In both parts, assume the brick remains
fixed and does not slide along the ground. Also assume
the force applied by John is directed exactly toward the
center of the wheel.

One end of a uniform 4.00-m-long rod of weight F, is

supported by a cable at an angle of @ = 37° with the rod.

24.

The other end rests against the wall, where it is held by
friction as shown in Figure P12.23. The coefficient of
static friction between the wall and the rod is w, = 0.500.
Determine the minimum distance x from point A at
which an additional object, also with the same weight Fg,
can be hung without causing the rod to slip at point A.

- X >

- 2

Figure P12.23

A 10.0-kg monkey climbs a uniform ladder with
weight 1.20 X 10% N and length I = 3.00 m as shown
in Figure P12.24. The ladder rests against the wall

25.

and makes an angle of 6 = 60.0°
with the ground. The upper and
lower ends of the ladder rest on
frictionless surfaces. The lower
end is connected to the wall by a
horizontal rope that is frayed and
can support a maximum tension
of only 80.0 N. (a) Draw a force
diagram for the ladder. (b) Find
the normal force exerted on the
bottom of the ladder. (c¢) Find the
tension in the rope when the monkey is two-thirds of
the way up the ladder. (d) Find the maximum distance
d that the monkey can climb up the ladder before the
rope breaks. (e) If the horizontal surface were rough
and the rope were removed, how would your analysis
of the problem change? What other information would
you need to answer parts (c) and (d)?

Figure P12.24

A uniform plank of length 2.00 m and mass 30.0 kg is
supported by three ropes as indicated by the blue vec-
tors in Figure P12.25. Find the tension in each rope
when a 700-N person is d = 0.500 m from the left end.

Ty A 7
1
- 40.0°
= =d >{ ‘
T?’ 200 m 1

Figure P12.25

Section 12.4 Elastic Properties of Solids

26.

27.

28.

29.

A steel wire of diameter 1 mm can support a tension
of 0.2 kN. A steel cable to support a tension of 20 kN
should have diameter of what order of magnitude?

The deepest pointin the ocean is in the Mariana Trench,
about 11 km deep, in the Pacific. The pressure at this
depth is huge, about 1.13 X 108 N/m?. (a) Calculate the
change in volume of 1.00 m® of seawater carried from
the surface to this deepest point. (b) The density of sea-
water at the surface is 1.03 X 10% kg/m?®. Find its density
at the bottom. (c) Explain whether or when it is a good
approximation to think of water as incompressible.

Assume Young’s modulus for bone is 1.50 X 10! N/m?.
The bone breaks if stress greater than 1.50 X 108 N/m?
is imposed on it. (a) What is the maximum force that
can be exerted on the femur bone in the leg if it has
a minimum effective diameter of 2.50 cm? (b) If this
much force is applied compressively, by how much does
the 25.0-cm-long bone shorten?

A child slides across a floor in a pair of rubber-soled
shoes. The friction force acting on each foot is 20.0 N.
The footprint area of each shoe sole is 14.0 cm?, and
the thickness of each sole is 5.00 mm. Find the hori-
zontal distance by which the upper and lower surfaces
of each sole are offset. The shear modulus of the rub-
ber is 3.00 MN/m?.



30. Evaluate Young’s modulus for the material whose
stress—strain curve is shown in Figure 12.12.

Assume if the shear stress in steel exceeds about 4.00 X
71 108 N/m?, the steel ruptures. Determine the shear-
ing force necessary to (a) shear a steel bolt 1.00 cm in
diameter and (b) punch a 1.00-cm-diameter hole in a
steel plate 0.500 cm thick.

When water freezes, it expands by about 9.00%. What
pressure increase would occur inside your automobile
engine block if the water in it froze? (The bulk modu-
lus of ice is 2.00 X 10 N/m?2.)

A 200-kg load is hung on a wire of length 4.00 m, cross-
[l sectional area 0.200 X 107* m?, and Young’s modulus
8.00 X 10! N/m? What is its increase in length?

34. A walkway suspended across a hotel lobby is supported at
numerous points along its edges by a vertical cable above
each point and a vertical column underneath. The steel
cable is 1.27 cm in diameter and is 5.75 m long before
loading. The aluminum column is a hollow cylinder
with an inside diameter of 16.14 cm, an outside diameter
of 16.24 cm, and an unloaded length of 3.25 m. When
the walkway exerts a load force of 8 500 N on one of the
support points, how much does the point move down?

35. Review. A 2.00-m-long cylindrical
steel wire with a cross-sectional diam-
eter of 4.00 mm is placed over a light,
frictionless pulley. An object of mass
m; = 5.00 kg is hung from one end of
the wire and an object of mass m, =
3.00 kg from the other end as shown
in Figure P12.35. The objects are
released and allowed to move freely.
Compared with its length before the
objects were attached, by how much
has the wire stretched while the objects are in motion?

m
ﬁl

Figure P12.35

36. Review. A 30.0-kg hammer, moving with speed 20.0 m/s,

strikes a steel spike 2.30 cm in diameter. The hammer

rebounds with speed 10.0 m/s after 0.110 s. What is the
average strain in the spike during the impact?

Additional Problems

[37.]A bridge of length 50.0 m and mass 8.00 X 10* kg is
[/l supported on a smooth pier at each end as shown in
Figure P12.37. A truck of mass 3.00 X 10* kg is located
15.0 m from one end. What are the forces on the bridge

at the points of support?

A il B

—»‘ 15.0 m |<=—

[ 50.0 m |
Figure P12.37

38. A uniform beam resting on two pivots has a length . =
[3 6.00 m and mass M = 90.0 kg. The pivot under the left
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end exerts a normal force n; on the beam, and the sec-
ond pivot located a distance £ = 4.00 m from the left
end exerts a normal force n,. A woman of mass m =
55.0 kg steps onto the left end of the beam and begins
walking to the right as in Figure P12.38. The goal is to
find the woman’s position when the beam begins to tip.
(a) What is the appropriate analysis model for the beam
before it begins to tip? (b) Sketch a force diagram for
the beam, labeling the gravitational and normal forces
acting on the beam and placing the woman a distance
x to the right of the first pivot, which is the origin.
(c) Where is the woman when the normal force », is the
greatest? (d) What is »; when the beam is about to
tip? (e) Use Equation 12.1 to find the value of n, when
the beam is about to tip. (f) Using the result of part
(d) and Equation 12.2, with torques computed around
the second pivot, find the woman’s position x when the
beam is about to tip. (g) Check the answer to part (e) by
computing torques around the first pivot point.

—

\ 4
Figure P12.38

39. In exercise physiology studies, it is sometimes impor-
[ tant to determine the location of a person’s center
of mass. This determination can be done with the
arrangement shown in Figure P12.39. A light plank
rests on two scales, which read Fg1 = 380 N and Fg2 =
320 N. A distance of 1.65 m separates the scales. How

far from the woman’s feet is her center of mass?

1.65m |

Figure P12.39

40. The lintel of prestressed reinforced concrete in Fig-
ure P12.40 is 1.50 m long. The concrete encloses
one steel reinforcing rod with cross-sectional area
1.50 cm?. The rod joins two strong end plates. The
cross-sectional area of the concrete perpendicular to
the rod is 50.0 cm?. Young’s modulus for the concrete
is 30.0 X 10° N/m?. After the concrete cures and the
original tension 7} in the rod is released, the con-
crete is to be under compres-
sive stress 8.00 X 10 N/m?2. }kl“r’omﬂ
(a) By what distance will the =
rod compress the concrete
when the original tension in

the rod is released? (b) What Figure P12.40
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is the new tension 7, in the rod? (c) The rod will
then be how much longer than its unstressed length?
(d) When the concrete was poured, the rod should
have been stretched by what extension distance from
its unstressed length? (e) Find the required original
tension 7; in the rod.

41. The arm in Figure P12.41 weighs 41.5 N. The gravita-
tional force on the arm acts through point A. Deter-
mine the magnitudes of the tension force F in the
deltoid muscle and the force F exerted by the shoul-
der on the humerus (upper-arm bone) to hold the arm
in the position shown.

—

F,

29.0 cm }

Figure P12.41

42. When a person stands on tiptoe on one foot (a strenu-
ous position), the position of the foot is as shown in
Figure P12.42a. The total grav1tat10na1 force F, on the
body is supported by the normal force o exerted by the
floor on the toes of one foot. A mechanical model of
the situation is shown in Figure P12.42b, where T is
the force exerted on the foot by the Achilles tendon
and R is the force exerted on the foot by the tibia.
Find the values of 7, R, and 6 when F, = 700 N.

Achilles N o

| |
Tibia tendon : ﬁ \&
15.0°| |
\ A

18.0 cm

\/ 25.0 cm
il
8 0

Figure P12.42

43 A hungry bear weighing 700 N walks out on a beam
in an attempt to retrieve a basket of goodies hanging
at the end of the beam (Fig. P12.43). The beam is uni-

Goodies @

Figure P12.43

form, weighs 200 N, and is 6.00 m long, and it is sup-
ported by a wire at an angle of § = 60.0°. The basket
weighs 80.0 N. (a) Draw a force diagram for the beam.
(b) When the bear is at x = 1.00 m, find the tension
in the wire supporting the beam and the components
of the force exerted by the wall on the left end of the
beam. (c) What If? If the wire can withstand a maxi-
mum tension of 900 N, what is the maximum distance
the bear can walk before the wire breaks?

44. The following equations are obtained from a force
diagram of a rectangular farm gate, supported by two
hinges on the left-hand side. A bucket of grain is hang-
ing from the latch.

-A+C=0
+B— 392N - 50.0N =0
A(0) + B(0) + C(1.80 m) — 392 N(1.50 m)
—50.0N(3.00m) =0

(a) Draw the force diagram and complete the statement
of the problem, specifying the unknowns. (b) Deter-
mine the values of the unknowns and state the physical
meaning of each.

A uniform sign of weight F, and width 2L hangs from
a light, horizontal beam hinged at the wall and sup-
ported by a cable (Fig. P12.45). Determine (a) the
tension in the cable and (b) the components of the
reaction force exerted by the wall on the beam in
terms of Fg, d, L,and 6.

o1 —

Figure P12.45

46. A 1 200-N uniform boom at ¢ = 65° to the vertical is
supported by a cable at an angle 6 = 25.0° to the hori-
zontal as shown in Figure P12.46. The boom is pivoted
at the bottom, and an object of weight m = 2000 N
hangs from its top. Find (a) the tension in the support
cable and (b) the components of the reaction force
exerted by the floor on the boom.

Figure P12.46

47. A crane of mass m; = 3 000 kg supports a load of mass
my = 10 000 kg as shown in Figure P12.47. The crane



is pivoted with a frictionless pin at A and rests against
a smooth support at B. Find the reaction forces at
(a) point A and (b) point B.

Figure P12.47

48. Assume a person bends forward to lift a load “with his

A 10 000-N shark is supported .

back” as shown in Figure P12.48a. The spine pivots
mainly at the fifth lumbar vertebra, with the princi-
pal supporting force provided by the erector spinalis
muscle in the back. To see the magnitude of the forces
involved, consider the model shown in Figure P12.48b
for a person bending forward to lifta 200-N object. The
spine and upper body are represented as a uniform hor-
izontal rod of weight 350 N, pivoted at the base of the
spine. The erector spinalis muscle, attached at a point
two-thirds of the way up the spine, maintains the posi-
tion of the back. The angle between the spine and this
muscle is @ = 12.0°. Find (a) the tension T in the back
muscle and (b) the compressional force in the spine.
(c) Is this method a good way to lift a load? Explain
your answer, using the results of parts (a) and (b).
(d) Can you suggest a better method to lift a load?

Back muscle

5 F120°

o

R, {
l 200 N

350 N

Pivot

N

a8 b
Figure P12.48

7l by a rope attached to a 4.00-m 90.0°] )

50.

rod that can pivot at the base.
(a) Calculate the tension in
the cable between the rod
and the wall, assuming the
cable is holding the system
in the position shown in Fig-
ure P12.49. Find (b) the hori-
zontal force and (c) the verti-
cal force exerted on the base
of the rod. Ignore the weight
of the rod.

Why is the following situation impossible? A worker in a
factory pulls a cabinet across the floor using a rope as

\60'0 10000 N

Figure P12.49
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shown in Figure P12.50a. The rope make an angle 6 =
37.0° with the floor and is tied 7; = 10.0 cm from the
bottom of the cabinet. The uniform rectangular cabi-
net has height € = 100 cm and width w = 60.0 cm, and
it weighs 400 N. The cabinet slides with constant speed
when a force /= 300 N is applied through the rope.
The worker tires of walking backward. He fastens the
rope to a point on the cabinet i, = 65.0 cm off the
floor and lays the rope over his shoulder so that he can
walk forward and pull as shown in Figure P12.50b. In
this way, the rope again makes an angle of 0 = 37.0°
with the horizontal and again has a tension of 300 N.
Using this technique, the worker is able to slide the
cabinet over a long distance on the floor without tiring.

9

w w

b
Figure P12.50 Problems 50 and 62.

A uniform beam of mass m is inclined at an angle 0 to

52.

the horizontal. Its upper end (point P) produces a 90°
bend in a very rough rope tied to a wall, and its lower
end rests on a rough floor (Fig. P12.51). Let u, repre-
sent the coefficient of static friction between beam
and floor. Assume u, is less than the cotangent of 0.
(a) Find an expression for the maximum mass M that
can be suspended from the top before the beam slips.
Determine (b) the magnitude of the reaction force at
the floor and (c) the magnitude of the force exerted
by the beam on the rope at Pin terms of m, M, and u,.

P

m\
o

Figure P12.51

The large quadriceps muscle in the upper leg terminates
at its lower end in a tendon attached to the upper end of
the tibia (Fig. P12.52a, page 386). The forces on the lower
leg when the leg is extended are modeled as in Flgule
P12.52b, where T is the force in the tendon, Fg leg 1S

the gravitational force acting on the lower leg, and
F, fo0. is the gravitational force acting on the foot. Find
Twhen the tendon is at an angle of ¢ = 25.0° with the
tibia, assuming F, ., = 30.0 N, F, (.., = 12.5 N, and the
leg is extended at an angle 6 = 40.0° with respect to
the vertical. Also assume the center of gravity of the
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tibia is at its geometric center and the tendon attaches
to the lower leg at a position one-fifth of the way down
the leg.

Quadriceps
Tendon >

7 10
/ Tibia ! ‘

gfoot

Figure P12.52

53. When a gymnast performing on the rings executes the

iron cross, he maintains the position at rest shown in
Figure P12.53a. In this maneuver, the gymnast’s feet
(not shown) are off the floor. The primary muscles
involved in supporting this position are the latissimus
dorsi (“lats”) and the pectoralis majgl)r (“pecs”). One
of the rings exerts an upward force,  F, on a hand as
shown in Figure P12.53b. The force F,is exerted by the
shoulder joint on the arm. The latissimus dorsi and
pectoralis major muscles exert a total force F, on the
arm. (a) Using the informgtion in the figure, find the
magnitude of the force F, for an athlete of weight
750 N. (b) Suppose an athlete in training cannot per-
form the iron cross but can hold a position similar to
the figure in which the arms make a 45° angle with the
horizontal rather than being horizontal. Why is this
position easier for the athlete?

© Ed Bock/Surf/Corbis

Shoulder N
joint F

Figure P12.53

54. Figure P12.54 shows a light truss formed from three

struts lying in a plane and joined by three smooth
hinge pins at their ends. The truss supports a down-
ward force of F = 1000 N applied at the point B.
The truss has negligible weight. The piers at A and C

55.

are smooth. (a) Given 6, = 30.0° and 6, = 45.0°, find
n, and n.. (b) One can show that the force any strut
exerts on a pin must be directed along the length of
the strut as a force of tension or compression. Use that
fact to identify the directions of the forces that the
struts exert on the pins joining them. Find the force of
tension or of compression in each of the three bars.

-l

Figure P12.54

One side of a plant shelf
is supported by a bracket
mounted on a vertical wall
by a single screw as shown

=
80.0 N 5.00 cm
\

A

. . 3.00 cm
in Figure P12.55. Ignore
the weight of the bracket.
(@) Find the horizontal 6.00 cm

component of the force
that the screw exerts on
the bracket when an 80.0 N
vertical force is applied as
shown. (b) As your grand-
father waters his geraniums, the 80.0-N load force is
increasing at the rate 0.150 N/s. At what rate is the
force exerted by the screw changing? Suggestion: Imag-
ine that the bracket is slightly loose.

Figure P12.55

A stepladder of negligible

[ weight is constructed as

57.

shown in Figure P12.56,
with AC=BC= ¢ =4.00m.
A painter of mass m =
70.0 kg stands on the lad-
der d = 3.00 m from the
bottom. Assuming the floor
is frictionless, find (a) the
tension in the horizon-
tal bar DE connecting the
two halves of the ladder,
(b) the normal forces at
A and B, and (c) the com-
ponents of the reaction
force at the single hinge C
that the left half of the ladder exerts on the right half.
Suggestion: Treat the ladder as a single object, but also
treat each half of the ladder separately.

Figure P12.56
Problems 56 and 57.

A stepladder of negligible weight is constructed as
shown in Figure P12.56, with AC = BC = {. A painter
of mass m stands on the ladder a distance d from the
bottom. Assuming the floor is frictionless, find (a) the
tension in the horizontal bar DE connecting the two



58.

59.

halves of the ladder, (b) the normal forces at A and B,
and (c) the components of the reaction force at the
single hinge C that the left half of the ladder exerts on
the right half. Suggestion: Treat the ladder as a single
object, but also treat each half of the ladder separately.

(a) Estimate the force with which a karate master strikes
a board, assuming the hand’s speed at the moment of
impact is 10.0 m/s and decreases to 1.00 m/s during a
0.002 00-s time interval of contact between the hand
and the board. The mass of his hand and arm is 1.00 kg.
(b) Estimate the shear stress, assuming this force is
exerted on a 1.00-cm-thick pine board that is 10.0 cm
wide. (c) If the maximum shear stress a pine board can
support before breaking is 3.60 X 10% N/m?, will the
board break?

Two racquetballs, each having a 174
mass of 170 g, are placed in a glass
jar as shown in Figure P12.59.
Their centers lie on a straight line B
that makes a 45° angle with the
horizontal. (a) Assume the walls
are frictionless and determine
Py, Py, and P;. (b) Determine the
magnitude of the force exerted by
the left ball on the right ball.

Figure P12.59

Review. A wire of length L,

61.

Young’s modulus Y, and cross-sectional area A is
stretched elastically by an amount AL. By Hooke’s law,
the restoring force is —k AL. (a) Show that k = YA/L.
(b) Show that the work done in stretching the wire by
an amount ALis W = $YA(AL)?/L.

Review. An aluminum wire is 0.850 m long and has
a circular cross section of diameter 0.780 mm. Fixed
at the top end, the wire supports a 1.20-kg object that
swings in a horizontal circle. Determine the angular
speed of the object required to produce a strain of
1.00 X 1073,

- 62.|Consider the rectangular cabinet of Problem 50 shown

63

.A 500-N uniform rectangular
[Msign 4.00 m wide and 3.00 m

in Figure P12.50, but with a force ¥ applied horizon-
tally at the upper edge. (a) What is the minimum
force required to start to tip the cabinet? (b) What is
the minimum coefficient of static friction required for
the cabinet not to slide with the application of a force
of this magnitude? (c) Find the magnitude and direc-
tion of the minimum force required to tip the cabinet
if the point of application can be chosen anywhere on
the cabinet.

high is suspended from a hori-
zontal, 6.00-m-long, uniform,
100-N rod as indicated in Figure
P12.63. The left end of the rod
is supported by a hinge, and the
right end is supported by a thin
cable making a 30.0° angle with
the vertical. (a) Find the ten-
sion 7T in the cable. (b) Find the
horizontal and vertical compo-

Figure P12.63

64.
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nents of force exerted on the left end of the rod by
the hinge.

A steel cable 3.00 cm? in cross-sectional area has a
mass of 2.40 kg per meter of length. If 500 m of the
cable is hung over a vertical cliff, how much does the
cable stretch under its own weight? Take Y, = 2.00 X
10" N/m?2.

Challenge Problems

65.

66.

67.

68.

A uniform pole is propped between the floor and the
ceiling of a room. The height of the room is 7.80 ft,
and the coefficient of static friction between the pole
and the ceiling is 0.576. The coefficient of static fric-
tion between the pole and the floor is greater than that
between the pole and the ceiling. What is the length
of the longest pole that can be propped between the
floor and the ceiling?

In the What If? section of Example 12.2, let d repre-
sent the distance in meters between the person and
the hinge at the left end of the beam. (a) Show that
the cable tension is given by T'= 93.9d + 125, with T
in newtons. (b) Show that the direction angle 0 of the
hinge force is described by

tan9=< 32

——— — 1) tan 53.0°
3d + 4

(c) Show that the magnitude of the hinge force is given
by

R=V882 X 10°® — 9.65 X 10'd + 4.96 X 10°

(d) Describe how the changes in 7, 0, and R as d
increases differ from one another.
|

Figure P12.67 shows a vertical force
applied tangentially to a uniform cyl-
inder of weight F,. The coefficient of
static friction between the cylinder
and all surfaces is 0.500. The force
P is increased in magnitude until
the cylinder begins to rotate. In
terms of F,, find the maximum force
magnltude P that can be applied
without causing the cylinder to rotate. Suggestion: Show
that both friction forces will be at their maximum
values when the cylinder is on the verge of slipping.

Figure P12.67

A uniform rod of weight F, and length L is supported
at its ends by a frictionless trough as shown in Fig-
ure P12.68. (a) Show that the center of gravity of the
rod must be vertically over point O when the rod is in
equilibrium. (b) Determine the equilibrium value of
the angle 0. (¢) Is the equilibrium of the rod stable or

unstable?
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Figure P12.68



