Angular Momentum

The central topic of this chapter is angular momentum, a quantity that plays a key role

in rotational dynamics. In analogy to the principle of conservation of linear momentum,

there is also a principle of conservation of angular momentum. The angular momentum of an
isolated system is constant. For angular momentum, an isolated system is one for which no
external torques act on the system. If a net external torque acts on a system, it is nonisolated.
Like the law of conservation of linear momentum, the law of conservation of angular momen-
tum is a fundamental law of physics, equally valid for relativistic and quantum systems.

The Vector Product and Torque

An important consideration in defining angular momentum is the process of
multiplying two vectors by means of the operation called the vector product. We
will introduce the vector product by considering the vector nature of torque.

Consider a force ¥ acting on a particle located at point P and described by the
vector position ¥ (Fig. 11.1 on page 336). As we saw in Section 10.6, the magnitude
of the torque due to this force about an axis through the origin is +"sin ¢, where ¢
is the angle between ¥ and F. The axis about which F tends to produce rotation is
perpendicular to the plane formed by ¥ and F.

The torque vector 7 is related to the two vectors ?and F. We can establish a
mathematical relationship between 7, ¥, and F using a mathematical operation
called the vector product:

-2 —
T=

7 X F (11.1)
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Figure 11.1 The torque vector

7 lies in a direction perpendicular
to the plane formed by the posi-
tion vector T and the applied force
vector F In the situation shown,

T and F lie in the xy plane, so the
torque is along the zaxis.

Properties of the »
vector product

The direction of C is perpendicular
to the plane formed be and ﬁ,
and its direction is determined by
the right-hand rule.
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Flgure 11.2 The vector product
A x B isa third vector C having
amagnitude ABsin 0 equal to the
area of the parallelogram shown.

Cross products of P>
unit vectors

Pitfall Prevention 11.1

The Vector Product Is a Vector
Remember that the result of tak-
ing a vector product between two
vectors is a third vector. Equation
11.3 gives only the magnitude of
this vector.

Angular Momentum

_, We now give a formal definition of the vector product. Given any two vectors
A and B the vector product A x B is defined as a third vector C which has a
magnitude of AB sin 0, where 0 is the angle between A and B. That is, if C is
given by

— — —
C=AXB (11.2)
its magnitude is

C= ABsin 0 (11.3)

The quantity ABsin 6 is equal to the area of the parallelogram formed by A and
B as shown in Figure 11.2. The direction of G is perpendicular to the plane formed
by A and B, and the best way to determine this direction is to use the right-hand
rule illustrated in Figure 11.2. The four fingers of the right hand are pointed along
A and then “wrapped” in the direction that would rotate A into B through the
angle 6. The direction of the upright thumb is the direction of AxB=C.
Because of the notation, A X B isoften read “A cross B so the vector product is
also called the cross product.

Some properties of the vector product that follow from its definition are as
follows:

1. Unlike the scalar product, the vector product is no/ commutative. Instead,
the order in which the two vectors are multiplied in a vector product is
important:

— — - —

AXxB=-BXxA (11.4)
Therefore, if you change the order of the vectors in a vector product, you
must change the sign. You can easily verify this relationship with the right-
hand rule. . N

2. If A LS) parg)llel to B (0 = 0 or 180°), then A X B = 0; therefore, it follows

that A X A = 0.
— — — —
3. If A is perpendicular to B, then |[A X B| = AB.
4. The vector product obeys the distributive law:

— - — — - — —
AX(B+C)=AXB+AXC (11.5)

5. The derivative of the vector product with respect to some variable such as ¢is

— —
d dA dB
—(Kx]_i)=—x]_§+Xx— (11.6)
dt dt dt

where it is important to preserve the multiplicative order of the terms on
the right side in view of Equation 11.4.

It is left as an exercise (Problem 4) to show from Equations 11.3 and 11.4 and
from the definition of unit vectors that the cross products of the unit vectors 1i, j,
and k obey the following rules:

2 » ~

ixi=jxj=kxk=0 (11.7a)

ixj=-jxi=k (11.7v)

jxk=-kxj=1i (11.7¢)

kxi=—-ixk=] (11.7d)

N — —

Signs are interchangeable in cross products. For example, Ax(-B)=—-A x B

and i X (—=j) = —1x].
The cross product of any two vectors
ing determinant form:

— -
A and B can be expressed in the follow-

i k
S J A AL A Al A, A
AxB=|A4 A= i § k
s B|'" |B. B |B, B
B. B, B. y y



11.1 The Vector Product and Torque 337

Expanding these determinants gives the result

— — 2 ~

A x B = (48— AZB),) + (A,B, — AB)j + (AB — AB)k (11.8)
Given the definition of the cross product, we can now assign a direction to the
torque vector. If the force lies in the xy plane as in Figure 11.1, the torque 7 is rep-
resented by a vector parallel to the z axis. The force in Figure 11.1 creates a torque
that tends to rotate the particle counterclockwise about the z axis; the direction of
7 is toward increasing z, and 7 is therefore in the positive z direction. If we reversed
the direction of F in Figure 11.1, 7 would be in the negative z direction.

O)uick Quiz 11.1 Which of the following statements about the relationship between
" the magnitude of the cross product of two vectors and the product of the mag-
- nitudes of the vectors is true? (@) |A x B | is larger than AB. (b) |A x B | is
smaller than AB. (c) | A X B | could be larger or smaller than AB, depending on
o the angle between the vectors. (d) |A x B | could be equal to AB.

Example 11.1 The Vector Product

it Bjand

Two vectors lylng in the xy plane are given by the equations _)K _g
B x A.

B=—1+2_] Find A xBandverlfythatAxﬁ— X

SOLUTION

Conceptualize Given the unit-vector notations of the vectors, think about the directions the vectors point in space.
Draw them on graph paper and imagine the parallelogram shown in Figure 11.2 for these vectors.

Categorize Because we use the definition of the cross product discussed in this section, we categorize this example as
a substitution problem.

— — ~ 2 > ?
Write the cross product of the two vectors: AXB=(2i+3j)x(—i+2j)

—> =g ~ A A~ S A~ A~ ~ ~
Perform the multiplication: AXB=2ix(—i)+2ix2j+3jx(—i) +3jx2j
Use Equations 11.7a through 11.7d to evaluate AXxB=0+4k+3k+0= 7k

the various terms:

— — — — = — 2 A 2 A
B)V’ergythat A X B =—B X A, evaluate BxA=(-i+2j)x(2i+3]j)
B X A:

= — ~ ~ ~ ~ ~ S ~ ~
Perform the multiplication: BXxA=(—1)X2i+(-1)x3j+2jx2i+2jx%x3]j
Use Equations 11.7a through 11.7d to evaluate BxA=0-3k—4k+0= —7k
the various terms:
— - — — — -

Therefore, A X B = —B X A.Asan alternative method for finding A X B, you could use Equation 11.8. Try it!

B
The Torque Vector

Aforce of F = (2.001 + 3.00 j) N is applied to an object that is pivoted about a fixed axis aligned along the z coordi-
nate axis. The force is applied at a point located at ¥ = (4.00 i+ 5.00 j) m. Find the torque 7 applied to the object.

SOLUTION

Conceptualize Given the unit-vector notations, think about the directions of the force and position vectors. If this

force were applied at this position, in what direction would an object pivoted at the origin turn?
conlinued
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b 11.2

Categorize Because we use the definition of the cross product discussed in this section, we categorize this example as
a substitution problem.

Set up the torque vector using Equation 11.1: Z=FxXF = [(4.001 + 5.00 j) m] x [(2.00 1 + 3.00 j) N]

Perform the multiplication: [(4.00)(2.00) i X i+ (4.00)(3.00)1 x j

+ (5.00)(2.00)j x i+ (5.00)(3.00)] x jIN-m

Use Equations 11.7a through 11.7d to evaluate Z=[0+12.0k — 100k + 0]N-m = 2.0kN-m
the various terms:

N
Notice that both ¥ and F are in the xy plane. As expected, the torque vector is perpendicular to this plane, hav-
ing only a z component. We have followed the rules for significant figures discussed in Section 1.6, which lead to an
answer with two significant figures. We have lost some precision because we ended up subtracting two numbers that

are close.

Figure 11.3 As the skater passes
the pole, she grabs hold of it,

which causes her to swing around
the pole rapidly in a circular path.

Analysis Model: Nonisolated System

(Angular Momentum)

Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.3). A
skater glides rapidly toward the pole, aiming a little to the side so that she does
not hit it. As she passes the pole, she reaches out to her side and grabs it, an action
that causes her to move in a circular path around the pole. Just as the idea of lin-
ear momentum helps us analyze translational motion, a rotational analog—angular
momentum—nhelps us analyze the motion of this skater and other objects undergo-
ing rotational motion.

In Chapter 9, we developed the mathematical form of linear momentum and
then proceeded to show how this new quantity was valuable in problem solving. We
will follow a similar procedure for angular momentum.

Consider a particle of mass m located at the vector position ¥ and moving with
linear momentum p as in Figure 11.4. In describing translational motion, we
found that the net force on the particle equals the time rate of change of its linear
momentum, >, F = dp/ dt (see Eq. 9.3). Let us take the cross product of each side
of Equation 9.3 with ¥, which gives the net torque on the particle on the left side of
the equation:

dp
XEF >7 xdt

Now let’s add to the right side the term (d¥/df) X p, which is zero because
d¥/di =V and V and P are parallel. Therefore,

—
E?:%xd—f%ﬁ -
dt dt

We recognize the right side of this equation as the derivative of T X p (see Eq.

11.6). Therefore,

-
5

s — 11.9
e 0 (11.9)
which looks very similar in form to Equation 9.3, Ei‘) = dp/di. Because torque
plays the same role in rotational motion that force plays in translational motion,
this result suggests that the combination ¥ X p should play the same role in rota-
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tional motion that p plays in translational motion. We call this combination the
angular momentum of the particle:

N
The instantaneous angular momentum L of a particle relative to an axis
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector ¥ and its instantaneous linear momentum p:

L=7xp (11.10)
We can now write Equation 11.9 as
v,
>7=— (11.11)
dt

which is the rotational analogﬁof Newton’s second law, EF = dp/dl. Torque
causes the angular momentum L to change just as force causes linear momentum
P to change.

Notice that Equation 11.11 is valid only if ¥ 7 and L are measured about the
same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.

The SI unit of angular momentum is kg - m?/s. Notice also that both the mag-
nitude and the direction of L depend on the choice of axis. Following the right-
hand rule, we see that the direction of Lis perpendlcular to the plane formed by
T and p. In Flgure 114, ¥ and p are {in the xy plane, so L points in the z direction.
Because p = mv, the magnitude of L is

L = morsin ¢ (11.12)

where ¢ is the angle between T and p. It follows that L is zero when T is parallel to
P (¢ = 0 or 180°). In other words, when the translational velocity of the particle is
along a line that passes through the axis, the particle has zero angular momentum
with respect to the axis. On the other hand, if ¥ is perpendicular to p (¢ = 90°),
then L = mor. At that instant, the particle moves exactly as if it were on the rim of a

wheel rotating about the axis in a plane defined by T and p.

Yuick Quiz 11.2 Recall the skater described at the beginning of this section.
Let her mass be m. (i) What would be her angular momentum relative to the
pole at the instant she is a distance d from the pole if she were skating directly
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What

. would be her angular momentum relative to the pole at the instant she is a dis-

tance d from the pole if she were skating at speed v along a straight path that is

. aperpendicular distance « from the pole? (a) zero (b) mvd (c) mva (d) impos-

¢ sible to determine

Example 11.3

Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure
11.5. Find the magnitude and direction of its angular momentum relative to an axis
through Owhen its velocity is ¥

SOLUTION

Conceptualize The linear momentum of the
particle is always changing in direction (but not
in magnitude). You might therefore be tempted
to conclude that the angular momentum of the
particle is always changing. In this situation,
however, that is not the case. Let’s see why.

Figure 11.5 (Example 11.3) A
particle moving in a circle of radius r
has an angular momentum about an
axis through O that has magmtude
mur. The vector L = ¥ X P points
out of the page.

339

<« Angular momentum
of a particle

The angular momentum Lofa
particle about an axis is a vector
perpendicular to both the
particle’s position T relative to
the axis and its momentum p.

Z

L=-Txp

X

Figure 11.4 The angular
momentum L ofa paltlcle isa
vector given by L=7x P

Pitfall Prevention 11.2

Is Rotation Necessary for Angular
Momentum? We can define angu-
lar momentum even if the particle
is not moving in a circular path.

A particle moving in a straight
line has angular momentum
about any axis displaced from

the path of the particle.

conlinued



340 Chapter 11 Angular Momentum

b 11.3

Categorize We use the definition of the angular momentum of a particle discussed in this section, so we categorize
this example as a substitution problem.

Use Equation 11.12 to evaluate the magnitude of L: L = morsin 90° = mor

This value of L is constant because all three factors on the right are constant. The direction of L also is constant,
even though the direction of p p mv keeps changing. To verify this statement, apply the right-hand rule to find the
direction of L = T X P =mf X Vin Flgule 11.5. Your thumb points out of the page, so that i is the direction of L.
Hence, we can write the vector expressmn L = (mvr)k If the particle were to move clockwise, L would point down-
ward and into the page and L= —(mor) k. A particle in uniform circular motion has a constant angular momentum
about an axis through the center of its path.

Angular Momentum of a System of Particles

Using the techniques of Section 9.7, we can show that Newton’s second law for a
system of particles is

E iz _ df;tot
ext [lt
This equation states that the net external force on a system of particles is equal to
the time rate of change of the total linear momentum of the system. Let’s see if a
similar statement can be made for rotational motion. The total angular momen-
tum of a system of particles about some axis is defined as the vector sum of the

angular momenta of the individual particles:

— - — - —
Lt()t: Ll+ L2+”'+ Ln:ELz

1
where the vector sum is over all n particles in the system.
Differentiating this equation with respect to time gives

- -
dLmt _ dLi — E?
dt =~ dt -

1 1

where we have used Equation 11.11 to replace the time rate of change of the angu-
lar momentum of each particle with the net torque on the particle.

The torques acting on the particles of the system are those associated with inter-
nal forces between particles and those associated with external forces. The net
torque associated with all internal forces, however, is zero. Recall that Newton’s
third law tells us that internal forces between particles of the system are equal in
magnitude and opposite in direction. If we assume these forces lie along the line
of separation of each pair of particles, the total torque around some axis passing
through an origin O due to each action-reaction force pair is zero (that is, the
moment arm d from O to the line of action of the forces is equal for both particles,
and the forces are in opposite directions). In the summation, therefore, the net
internal torque is zero. We conclude that the total angular momentum of a system
can vary with time only if a net external torque is acting on the system:

—
The net external torque on a P> o 4L o (11.13)

system equals the time rate dt
of change of angular momen-
tum of the system

This equation is indeed the rotational analog of Efm = dP./dl for a system
of particles. Equation 11.13 is the mathematical representation of the angular
momentum version of the nonisolated system model. If a system is nonisolated
in the sense that there is a net torque on it, the torque is equal to the time rate of
change of angular momentum.

Although we do not prove it here, this statement is true regardless of the motion
of the center of mass. It applies even if the center of mass is accelerating, provided
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the torque and angular momentum are evaluated relative to an axis through the
center of mass.
Equation 11.13 can be rearranged and integrated to give

Aftm = J'( ?exl)dt

This equation represents the angular impulse—angular momentum theorem. Compare
this equation to the translational version, Equation 9.40.

PUEIVSOI OGN  Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the
system, the time rate of change of the angular momentum of the system is equal to the
net external torque:

=
_ AL

11.13
7 (11.13)

—
Text

Examples:

¢ a flywheel in an automobile engine increases its angular momentum when the
engine applies torque to it

¢ the tub of a washing machine decreases in angular momentum due to frictional
torque after the machine is turned off

¢ the axis of the Earth undergoes a precessional motion due to the torque exerted on
the Earth by the gravitational force from the Sun

341

System ‘
buundary External
\ torque

/

Angular momentum

The rate of change in the
angular momentum of the
nonisolated system is equal
to the net external torque
on the system.

e the armature of a motor increases its angular momentum due to the torque exerted by a surrounding magnetic

field (Chapter 31)

Example 11.4 A System of Objects

A sphere of mass m; and a block of mass m, are connected by a light cord that passes
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on
a frictionless, horizontal surface. Find an expression for the linear acceleration of
the two objects, using the concepts of angular momentum and torque.

SOLUTION

Conceptualize When the system is released, the block slides to the left, the sphere
drops downward, and the pulley rotates counterclockwise. This situation is similar to
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the

4;
”12 |

"R

<

my

Figure 11.6 (Example 11.4)
When the system is released, the
sphere moves downward and
the block moves to the left.

sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object
undergoing pure rotation (the pulley).

Analyze At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the
sphere about the pulley axle is m;vR and that of the block is m,vR. At the same instant, all points on the rim of the pul-

ley also move with speed v, so the angular momentum of the pulley is MuR.
Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force
continued
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b 11.4

acting on the block is balanced by the gravitational force myg, so these forces do not contribute to the torque. The
gravitational force m; g acting on the sphere produces a torque about the axle equal in magnitude to m;gR, where R
is the moment arm of the force about the axle. This result is the total external torque about the pulley axle; that is,
2 T = mgR

Write an expression for the total angular momentum of (I) L=mpuR+ myvR+ MuR= (m; + my + M)vR
the system:
. . . dL
Substitute this expression and the total external torque Eﬂrm = A
into Equation 11.13, the mathematical representation of
the nonisolated system model for angular momentum: mgR = i [(m, + my + M)vR]
dv

(2) mgR=(m; + my+ M)RE

Finalize When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the
objects because these forces are internal to the system under consideration. Instead, we analyzed the system as a
whole. Only external torques contribute to the change in the system’s angular momentum. Let M — 0 in Equation (3)
and call the result Equation A. Now go back to Equation (5) in Example 5.10, let 8 — 0, and call the result Equation B.
Do Equations A and B match? Looking at Figures 5.15 and 11.6 in these limits, should the two equations match?

Angular Momentum of a Rotating Rigid Object

z In Example 11.4, we considered the angular momentum of a deformable system of

o particles. Let us now restrict our attention to a nondeformable system, a rigid object.

(<l > Consider a rigid object rotating about a fixed axis that coincides with the z axis of a
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum

AT of this object. Each particle of the object rotates in the xy plane about the z axis with

an angular speed w. The magnitude of the angular momentum of a particle of mass
m; about the z axis is m;v;r;. Because v; = r,w (Eq. 10.10), we can express the magni-

e

a4 P tude of the angular momentum of this particle as
, ' \
— )
\ — y | — 2
| - :r__mi = J L= my o
xR The vector L for this particle is directed along the z axis, as is the vector .

We can now find the angular momentum (which in this situation has only a z

Figure 11.7 When arigid object  component) of the whole object by taking the sum of L, over all particles:
rotates about anjxis, the angu-

lar momentum L is in the same 9 9
direction as the angular velocity L, = ELi = E m;rw = 2 m;r; |w
Z)\according to the expression ! ! ‘
_ =%
L=/o L= lw (11.14)

where we have recognized =, m;r? as the moment of inertia / of the object about the
z axis (Eq. 10.19). Notice that Equation 11.14 is mathematically similar in form to
Equation 9.2 for linear momentum: p = mv.
Now let’s differentiate Equation 11.14 with respect to time, noting that /is con-
stant for a rigid object:
L,  dw

— =
dt dt

I (11.15)
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where « is the angular acceleration relative to the axis of rotation. Because dL,/d!t
is equal to the net external torque (see Eq. 11.13), we can express Equation 11.15 as

D T = I (11.16)

That is, the net external torque acting on a rigid object rotating about a fixed axis
equals the moment of inertia about the rotation axis multiplied by the object’s
angular acceleration relative to that axis. This result is the same as Equation 10.18,
which was derived using a force approach, but we derived Equation 11.16 using the
concept of angular momentum. As we saw in Section 10.7, Equation 11.16 is the
mathematical representation of the rigid object under a net torque analysis model.
This equation is also valid for a rigid object rotating about a moving axis, provided
the moving axis (1) passes through the center of mass and (2) is a symmetry axis.

If a symmetrical object rotates about a fixed axis passing through its center
of mass, you can write Equation 11.14 in vector form as L= I &, where L is the
total angular momentum of the object measured with respect to the axis of rota-
tion. Furthermore, the expression is valid for any object, regardless of its symmetry,
if L stands for the component of angular momentum along the axis of rotation.!

<« Rotational form of
Newton's second law

(Duick Quiz 11.3 A solid sphere and a hollow sphere have the same mass and
. radius. They are rotating with the same angular speed. Which one has the
: higher angular momentum? (a) the solid sphere (b) the hollow sphere (c) both
& have the same angular momentum (d) impossible to determine

Example 11.5 Bowling Ball

Estimate the magnitude of the angular momentum
of a bowling ball spinning at 10 rev/s as shown in Fig-
ure 11.8.

SOLUTION

Conceptualize Imagine spinning a bowling ball on
the smooth floor of a bowling alley. Because a bowling

Figure 11.8 (Example 11.5)
A bowling ball that rotates
about the zaxis in the direc-
tion shown has an angular

J
momentum L in the positive

ball is relatively heavy, the angular momentum should
be relatively large.

Categorize We evaluate the angular momentum

zdirection. If the direction
(lf rotation is reversed, then
L points in the negative z
direction.

using Equation 11.14, so we categorize this example as
a substitution problem.

We start by making some estimates of the relevant physical parameters and model the ball as a uniform solid sphere.
A typical bowling ball might have a mass of 7.0 kg and a radius of 12 cm.

Evaluate the moment of inertia of the I=:MR*=%(7.0kg)(0.12 m)? = 0.040 kg - m?
ball about an axis through its center from

Table 10.2:

Evaluate the magnitude of the angular L, = Io = (0.040 kg - m?)(10 rev/s)(2m rad/rev) = 2.53 kg - m?/s

momentum from Equation 11.14:

Because of the roughness of our estimates, we should keep only one significant figure, so L, = 3 kg - m?/s.

n general, the expression L = I@isnotalw ays valid. If a rigid object rotates about an arbitrary axis, then Landa
may point in different directions. In this case, the moment of inertia cannot be treated as a scalar. Strictly speaking,
L=/ applies only to rigid objects of any shape that rotate about one of three mutually perpendicular axes (called
principal axes) through the center of mass. This concept is discussed in more advanced texts on mechanics.
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Example 11.6 The Seesaw

A father of mass m, and his daughter of mass m, sit on y/'\
opposite ends of a seesaw at equal distances from the p *“'\
pivot at the center (Fig. 11.9). The seesaw is modeled as &
a rigid rod of mass M and length ¢ and is pivoted without / 0 / »l .
friction. At a given moment, the combination rotates in a p:
vertical plane with an angular speed w. mgg

. . . Figure 11.9 (Example
(A) Find an expression for the magnitude of the system’s 11.6) A father and
angular momentum. daughter demonstrate

angular momentum on

SOLUTION a seesaw. g

Conceptualize Identify the z axis through O as the axis of rotation in Figure 11.9. The rotating system has angular
momentum about that axis.

Categorize Ignore any movement of arms or legs of the father and daughter and model them both as particles. The
system is therefore modeled as a rigid object. This first part of the example is categorized as a substitution problem.

The moment of inertia of the system equals the sum of the moments of inertia of the three components: the seesaw
and the two individuals. We can refer to Table 10.2 to obtain the expression for the moment of inertia of the rod and
use the particle expression I = mr? for each person.

2 2 2
Find the total moment of inertia of the system about the I=5ME + m, (2) + md<§> = i(ﬂg/[ + my+ md)
z axis through O:
€2
Find the magnitude of the angular momentum of the L=Iw= 4(3 + m,+ md>w
system:

(B) Find an expression for the magnitude of the angular acceleration of the system when the seesaw makes an angle 0
with the horizontal.

SOLUTION

Conceptualize Generally, fathers are more massive than daughters, so the system is not in equilibrium and has an
angular acceleration. We expect the angular acceleration to be positive in Figure 11.9.

Categorize The combination of the board, father, and daughter is a rigid object under a net torque because of the external
torque associated with the gravitational forces on the father and daughter. We again identify the axis of rotation as the
zaxis in Figure 11.9.

Analyze To find the angular acceleration of the system at any angle 0, we first calculate the net torque on the system
and then use X 7., = lo from the rigid object under a net torque model to obtain an expression for a.

ext

Evaluate the torque due to the gravitational force on the 7= myg 5 cos 0 (7, out of page)
father:
- ¢ S .
Evaluate the torque due to the gravitational force on the Ty = —mug P cos 0 (7, into page)
daughter:
Evaluate the net external torque exerted on the system: Erexl =1t T1,= %( my— m,,)g€ cos 0
D T 2(m;— my)gcos 0

Use Equation 11.16 and 7 from part (A) to find a:

I C[(M/3) + mp+ m,]

Finalize For a father more massive than his daughter, the angular acceleration is positive as expected. If the seesaw
begins in a horizontal orientation (f = 0) and is released, the rotation is counterclockwise in Figure 11.9 and the
father’s end of the seesaw drops, which is consistent with everyday experience.

WLPNEIES Imagine the father moves inward on the seesaw to a distance d from the pivot to try to balance the two
sides. What is the angular acceleration of the system in this case when it is released from an arbitrary angle 0?



11.4 Analysis Model: Isolated System (Angular Momentum) 345

b 11.6

Answer The angular acceleration of the system should decrease if the system is more balanced.

N (M .
Find the total moment of inertia about the z axis I= 12M€2 + m/d2 + md(2> = T\ + m, | + m_/z/l2
through O for the modified system:
Find the net torque exerted on the system about an axis ETW =1+ 7,= mgdcosf — tm,gl cos 0
through O:

2 Tosi ( m;d —

Find the new angular acceleration of the system: a = =

sm,€)g cos 0

I (€2/4) [(M/3) + m,] + m,d®

The seesaw is balanced when the angular acceleration is zero. In this situation, both father and daughter can push off

the ground and rise to the highest possible point.

(m,d — sm,€)g cos O

Find the required position of the father by setting o = 0: o=

myd —sml =0 d=(—>—
f 214, m»/Q

(@/0)[(M/3) + m]] + mpd®

4

my

In the rare case that the father and daughter have the same mass, the father is located at the end of the seesaw, d = ¢/2.

Analysis Model: Isolated System
(Angular Momentum)

In Chapter 9, we found that the total linear momentum of a system of particles
remains constant if the system is isolated, that is, if the net external force acting
on the system is zero. We have an analogous conservation law in rotational motion:

The total angular momentum of a system is constant in both magnitude and
direction if the net external torque acting on the system is zero, that is, if the
system is isolated.

This statement is often called? the principle of conservation of angular momentum
and is the basis of the angular momentum version of the isolated system model.
This principle follows directly from Equation 11.13, which indicates that if

dL.
- tot
=—=0 11.17
B = (1147)
then
AL, =0 (11.18)
Equation 11.18 can be written as
=g — —
L. = constant or L;= L,

For an isolated system consisting of a small number of particles, we write this conser-
vation law as LLol > L” = constant, where the index n denotes the nth particle in
the system.

If an isolated rotating system is deformable so that its mass undergoes redistri-
bution in some way, the system’s moment of inertia changes. Because the magni-
tude of the angular momentum of the system is L. = Jw (Eq. 11.14), conservation

2The most general conservation of angular momentum equation is Equation 11.13, which describes how the system
interacts with its environment.

< Conservation of angular
momentum
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When his arms and legs are close
to his body, the skater’s moment

of inertia is small and his angular
speed is large.

Clive Rose/Getty Images

To slow down for the finish of his
spin, the skater moves his arms
and legs outward, increasing his
moment of inertia.

Al Bello/Getty Images

Figure 11.10 Angular momen-
tum is conserved as Russian

gold medalist Evgeni Plushenko
performs during the Turin 2006
Winter Olympic Games.

Angular Momentum

of angular momentum requires that the product of /and @ must remain constant.
Therefore, a change in /for an isolated system requires a change in w. In this case,
we can express the principle of conservation of angular momentum as

lw; = L,w,= constant (11.19)

This expression is valid both for rotation about a fixed axis and for rotation about
an axis through the center of mass of a moving system as long as that axis remains
fixed in direction. We require only that the net external torque be zero.

Many examples demonstrate conservation of angular momentum for a deform-
able system. You may have observed a figure skater spinning in the finale of a
program (Fig. 11.10). The angular speed of the skater is large when his hands
and feet are close to the trunk of his body. (Notice the skater’s hair!) Ignoring
friction between skater and ice, there are no external torques on the skater. The
moment of inertia of his body increases as his hands and feet are moved away
from his body at the finish of the spin. According to the isolated system model for
angular momentum, his angular speed must decrease. In a similar way, when div-
ers or acrobats wish to make several somersaults, they pull their hands and feet
close to their bodies to rotate at a higher rate. In these cases, the external force
due to gravity acts through the center of mass and hence exerts no torque about
an axis through this point. Therefore, the angular momentum about the center
of mass must be conserved; that is, Jw; = I/-w/. For example, when divers wish to
double their angular speed, they must reduce their moment of inertia to half its
initial value.

In Equation 11.18, we have a third version of the isolated system model. We can
now state that the energy, linear momentum, and angular momentum of an iso-
lated system are all constant:

AE e =0 (if there are no energy transfers across the system boundary)
Pt =0 (if the net external force on the system is zero)
s,

AL, =0 (if the net external torque on the system is zero)

A system may be isolated in terms of one of these quantities but not in terms of
another. If a system is nonisolated in terms of momentum or angular momentum,
it will often be nonisolated also in terms of energy because the system has a net
force or torque on it and the net force or torque will do work on the system. We
can, however, identify systems that are nonisolated in terms of energy but isolated
in terms of momentum. For example, imagine pushing inward on a balloon (the
system) between your hands. Work is done in compressing the balloon, so the sys-
tem is nonisolated in terms of energy, but there is zero net force on the system, so
the system is isolated in terms of momentum. A similar statement could be made
about twisting the ends of a long, springy piece of metal with both hands. Work
is done on the metal (the system), so energy is stored in the nonisolated system as
elastic potential energy, but the net torque on the system is zero. Therefore, the
system is isolated in terms of angular momentum. Other examples are collisions of
macroscopic objects, which represent isolated systems in terms of momentum but
nonisolated systems in terms of energy because of the output of energy from the
system by mechanical waves (sound).

(Duick Quiz 11.4 A competitive diver leaves the diving board and falls toward

the water with her body straight and rotating slowly. She pulls her arms and
legs into a tight tuck position. What happens to her rotational kinetic energy?
: (a) It increases. (b) It decreases. (c) It stays the same. (d) It is impossible to
» determine.
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PN OLEE  Isolated System (Angular Momentum)

Imagine a system rotates about System Examples:
an axis. If there is no net external ~boundary

torque on the system, there is no
change in the angular momen-
tum of the system: Angular momentum

e after a supernova explosion, the core of a
star collapses to a small radius and spins at a
much higher rate

e the square of the orbital period of a planet is
proportional to the cube of its semimajor axis;
Kepler’s third law (Chapter 13)

e in atomic transitions, selection rules on the
quantum numbers must be obeyed in order to
conserve angular momentum (Chapter 42)

® in beta decay of a radioactive nucleus, a neu-
trino must be emitted in order to conserve

lw; = l;w, = constant (11.19) angular momentum (Chapter 44)

AL, =0 (11.18)

Applymg this law of conserva- The angular momentum of the
tion of angular momentum to a isolated system is constant.

system whose moment of inertia
changes gives

Example 11.7 Formation of a Neutron Star

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a
point on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a
supernova explosion, the stellar core, which had a radius of 1.0 X 10* km, collapses into a neutron star of radius 3.0 km.
Determine the period of rotation of the neutron star.

SOLUTION

Conceptualize The change in the neutron star’s motion is similar to that of the skater described earlier, but in the
reverse direction. As the mass of the star moves closer to the rotation axis, we expect the star to spin faster.

Categorize Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) it remains
spherical with the same relative mass distribution, and (3) its mass remains constant. We categorize the star as an iso-
lated system in terms of angular momentum. We do not know the mass distribution of the star, but we have assumed the
distribution is symmetric, so the moment of inertia can be expressed as kMR?, where £ is some numerical constant.
(From Table 10.2, for example, we see that k = %for a solid sphere and k = %for a spherical shell.)

Analyze Let’s use the symbol T'for the period, with 7;being the initial period of the star and 7}being the period of the
neutron star. The star’s angular speed is given by w = 27/ T.

From the isolated system model for angular o, = Lo,
momentum, write Equation 11.19 for the star:
2 2

Use w = 277/ 7T to rewrite this equation in terms of L(;) = If<;)
the initial and final periods: / /

. . L . of 27 of 27
Substitute the moments of inertia in the preceding kMR, )= kMR, T
equation: i !

R\?
Solve for the final period of the star: T, = (E) T;
Substitute numerical values T (7&0 km )2(30 days) = 2.7 X 107%d 0.23
: = ays) = 2. ays = 0.23s
77\ 1.0 X 10 km y Y

Finalize The neutron star does indeed rotate faster after it collapses, as predicted. It moves very fast, in fact, rotating
about four times each second!
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Example 11.8 The Merry-Go-Round

A horizontal platform in the shape of a circular disk rotates freely in a horizon-
tal plane about a frictionless, vertical axle (Fig. 11.11). The platform has a mass
M = 100 kg and a radius R = 2.0 m. A student whose mass is m = 60 kg walks
slowly from the rim of the disk toward its center. If the angular speed of the system
is 2.0 rad/s when the student is at the rim, what is the angular speed when she
reaches a point r = 0.50 m from the center?

SOLUTION

Conceptualize The speed change here is similar to those of the spinning skater
and the neutron star in 'prec'edmg discussions. This problem is different becau.se Figure 1111 (Example 11.8) As
part of the moment of inertia of the system changes (that of the student) while the student walks toward the center

part remains fixed (that of the platform). of the rotating platform, the angu-

. L. . X lar speed of the system increases
Categorize Because the platform rotates on a frictionless axle, we identify the because the angular momentum of

system of the student and the platform as an isolated system in terms of angular the system remains constant.
momentum.

Analyze Let us denote the moment of inertia of the platform as 7, and that of the student as 1. We model the student
as a particle.

Find the initial moment of inertia /; of the L=1,+1,= %MRQ + mR?2
system (student plus platform) about the
axis of rotation:
Find the moment of inertia of the system I=1,+ I;= sMR* + mr’
when the student walks to the position » < R:
Write Equation 11.19 for the system: lw;,= Lo,
Substitute the moments of inertia: (sMR* + mR*)w; = (MR* + mr*)w,
_ $MR? + mR?
Solve for the final angular speed: o= T o,
' s MR* + mr

(2.0 rad/s) = 4.1 rad/s

5(100 kg)(2.0 m)* + (60 kg)(2.0 m)?
Substitute numerical values: ;=

5(100 kg)(2.0 m)* + (60 kg)(0.50 m)?

Finalize As expected, the angular speed increases. The fastest that this system could spin would be when the stu-
dent moves to the center of the platform. Do this calculation to show that this maximum angular speed is 4.4 rad/s.
Notice that the activity described in this problem is dangerous as discussed with regard to the Coriolis force in
Section 6.3.

WS What if you measured the kinetic energy of the system before and after the student walks inward? Are the
initial kinetic energy and the final kinetic energy the same?

Answer You may be tempted to say yes because the system is isolated. Remember, however, that energy can be trans-
formed among several forms, so we have to handle an energy question carefully.

Find the initial kinetic energy: K, = 5Iw? = 5(440 kg - m?)(2.0 rad/s)* = 880 ]
Find the final kinetic energy: K, =5lw/ = 5215 kg m?)(4.1 rad/s)* = 1.80 X 10°]

Therefore, the kinetic energy of the system increases. The student must perform muscular activity to move herself
closer to the center of rotation, so this extra kinetic energy comes from potential energy stored in the student’s body
from previous meals. The system is isolated in terms of energy, but a transformation process within the system changes
potential energy to kinetic energy.



Disk and Stick Collision LUl

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick of length 4.0 m that is lying flat
on nearly frictionless ice as shown in the overhead view of Figure 11.12a. The disk
strikes at the endpoint of the stick, at a distance » = 2.0 m from the stick’s center.
Assume the collision is elastic and the disk does not deviate from its original line of

11.4 Analysis Model: Isolated System (Angular Momentum)

motion. Find the translational speed of the disk, the translational speed of the stick,
and the angular speed of the stick after the collision. The moment of inertia of the

stick about its center of mass is 1.33 kg + m

a8
SOLUTION
Conceptualize Examine Figure 11.12a and imagine what  Figure 11.12 (Example
happens after the disk hits the stick. Figure 11.12b shows 11.9) Overhead view of
. . . a disk striking a stick
what you might expect: the disk continues to move at a slower . ) o
o X . in an elastic collision.
speed, and the stick is in both translational and rotational (a) Before the collision, ~~~"""71 """
motion. We assume the disk does not deviate from its origi- the disk moves toward the
nal line of motion because the force exerted by the stick on stick. (b) The collision
the disk is parallel to the original path of the disk. causes the stick to rotate
and move to the right. b

After

Categorize Because the ice is frictionless, the disk and stick
form an isolated system in terms of momentum and angular momentum. Ignoring the sound made in the collision, we also
model the system as an isolated system in terms of energy. In addition, because the collision is assumed to be elastic, the

kinetic energy of the system is constant.

Before

349

Analyze First notice that we have three unknowns, so we need three equations to solve simultaneously.

Apply the isolated system model for momentum to Po=0 = (muy,+ muy) — myv, =0

the system and then rearrange the result:

Apply the isolated system model for angular momen-
tum to the system and rearrange the result. Use an
axis passing through the center of the stick as the

1y my(v, — V) = m,

2) —rmy(vy; — vy = lo

rotation axis so that the path of the disk is a distance

r= 2.0 m from the rotation axis:

Apply the isolated system model for energy to the
system, rearrange the equation, and factor the com-

bination of terms related to the disk:

B) my(vy; — vy) (v + vg) = mo? + I

Multiply Equation (1) by rand add to Equation (2): rmg(Vg; = V) = rimgo,

Solve for w:

Divide Equation (3) by Equation (1):

Substitute Equation (4) into Equation (5):

Substitute v, from Equation (1) into
Equation (6):

—rmy(vg; = V) = lo
0=rmy, + lw
WnYU.V

1

@ o=-

m vy — va) (Vg + vgp) B mo? + Io®

m (v — v((f) MU
2

5) vyt vy,= v+
() di df s mu

sYs

r-m

2
6) vyt vy= vs(l + S)

1

m, r2ms
vyt vdi—;vs =vu|\ 1+ 7
d

Af'm =0 — (—rm(,vd/-i- Iv) — (—rmyvy) =0

AK=0 — (Gmuo,’ +smp? + 5l0?) — smv,’ =

0

continued
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P 11.9
: : 2,
Solve for v, and substitute numerical v, = 5
- 1+ (my/my) + (r*m /T)
2(3.0 m/s)
= = 1.3 m/s
1+ (1.0 kg/2.0 kg) + [(2.0 m)3(1. 0kg)/1.33 kg m 2]

(2.0m)(1.0 kg)(1.3 m/s)
Substitute numerical values into w=— & = —2.0rad/s

)
Equation (4): LA kg o

Solve Equation (1) for vdfand substitute Vg = Vg — (1.83m/s) = 2.3m/s

numerical values:

Finalize These values seem reasonable. The disk is moving more slowly after the collision than it was before the col-
lision, and the stick has a small translational speed. Table 11.1 summarizes the initial and final values of variables for
the disk and the stick, and it verifies the conservation of linear momentum, angular momentum, and kinetic energy
for the isolated system.

EL[SEREY  Comparison of Values in Example 11.9 Before and After the Collision
v(m/s) w(ad/s)  p(kg-m/s) L (kg-m?/s) Koans () Kioe ()

Before

Disk 3.0 — 6.0 =12 9.0 —
Stick 0 0 0 0 0 0
Total for system — — 6.0 —12 9.0 0
After

Disk 2.3 — 4.7 —9.3 5.4 —
Stick 1.3 —240 1.3 —2.7 0.9 2.7
Total for system — — 6.0 —12 6.3 2.7

Note: Linear momentum, angular momentum, and total kinetic energy of the system are all conserved.

The Motion of Gyroscopes and Tops

An unusual and fascinating type of motion you have probably observed is that of a
top spinning about its axis of symmetry as shown in Figure 11.13a. If the top spins
rapidly, the symmetry axis rotates about the z axis, sweeping out a cone (see Fig.
11.13b). The motion of the symmetry axis about the vertical—known as preces-
sional motion—is usually slow relative to the spinning motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center
of mass is not directly above the pivot point O, a net torque is acting on the top
about an axis passing through O, a torque resulting from the gravitational force
Mg. The top would certainly fall over if it were not spinning. Because it is spin-
ning, however, it has an angular momentum L directed along its symmetry axis.
We shall show that this symmetry axis moves about the z axis (precessional motion
occurs) because the torque produces a change in the direction of the symmetry axis.
This illustration is an excellent example of the importance of the vector nature of
angular momentum.

The essential features of precessional motion can be illustrated by considering
the simple gyroscope shown in Figure 11.14a. The two forces acting on the gyro-
scope are shown in Figure 11.14b: the downward gravitational force Mg and the
normal force ® acting upward at the pivot point O. The normal force produces no
torque about an axis passing through the pivot because its moment arm through
that point is zero. The gravitational force, however, produces a torque 7 = T X Mg
about an axis passing through O, where the direction of 7 is perpendicular to the
plane formed by T and Mg. By necessity, the vector 7 lies in a horizontal xy plane
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perpendicular to the angular momentum vector. The net torque and angular

. The right- hand rule indicates
momentum of the gyroscope are related through Equation 11.13: 8

that'r—er—ergls
- in the xy plane.
E?ext = ﬂ
dt
This expression shows that in the infinitesimal time interval di, the nonzero torque #)
produces a change in angular momentum d L_)a change that is in the same direc-
tion as 7. Therefore, like the torque vector, d L must also be perpendicular to L. \
Figure 11.14c illustrates the resulting precessional motion of the symmetry axis of <
the gyroscope In a time nlgerval di, the change in angular momentum is d L=
L, - L,; = 7 di. Because d L is perpendicular to L the magnitude of L does not
change (| L, | =1L f|) Rather, what is changing is the direction of L. Because the
change in angular momentum dL is in the direction of 7 7, which lies in the xy plane,
the gyroscope undergoes precessional motion.

To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum /& due to the
spinning and the angular momentum due to the motion of the center of mass
about the pivot. In our treatment, we shall neglect the contribution from the center-
of-mass motion and take the total angular momentum to be simply /. In practice,
this approximation is good if & is made very large.

The vector diagram in Figure 11.14c shows that in the time interval d¢, the angu-
lar momentum vector rotates through an angle d¢, which is also the angle through
which the gyroscope axle rotates. From the vector triangle formed by the vectors
L, Lf, and dL, we see that

=y

N
7

dL E Texe A (MgTCM) dt The direction of AL is parallel
o T L = L to that of 7 in

dg =

Dividing through by df and using the relationship L = Jw, we find that the rate at

which the axle rotates about the vertical axis is
Figure 11.13 Precessional
motion of a top spinning about

(11.20) its symmetry axis. (a) The only
external forces acting on the top
are the normal force 1 and the
gravitational force M g. The direc-
t1on of the angular momentum
Lis along the axis of symmetry.
(b) Because Lf— AL + L,, the
top precesses about the z axis.

_ b _ Moy
dt o

@y

} S — o
X -

L mgy y
The gravitational force Mg in the The torque results in a change in angular
negative z direction produces a momentum dL in a direction parallel to the
torque on the gyroscope in the torque vector. The gyroscope axle sweeps
positive y direction about the pivot. out an angle d¢ in a time interval dt.

Figure 11.14 (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking
down the zaxis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal
time interval di.
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- The angular speed w, is called the precessional frequency. This result is valid
only when w, << . Otherwise, a much more complicated motion is involved. As
you can see from Equation 11.20, the condition w, << w is met when o is large,
‘ that is, when the wheel spins rapidly. Furthermore, notice that the precessional
{ frequency decreases as w increases, that is, as the wheel spins faster about its axis
of symmetry.

As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in
deep space and you need to alter your trajectory. To fire the engines in the correct
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft
in empty space? One way is to have small rocket engines that fire perpendicularly
out the side of the spacecraft, providing a torque around its center of mass. Such a
setup is desirable, and many spacecraft have such rockets.

Let us consider another method, however, that does not require the consump-

B tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its
When the gyroscope center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
i ol scope a nonzero angular momentum. There is no external torque on the isolated

the spacecraft turns .
system (spacecraft and gyroscope), so the angular momentum of this system must

clockwise . . !

‘\ remain zero according to the isolated system (angular momentum) model. The

zero value can be satisfied if the spacecraft rotates in the direction opposite that
of the gyroscope so that the angular momentum vectors of the gyroscope and the
spacecraft cancel, resulting in no angular momentum of the system. The result of
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.

This effect created an undesirable situation with the Voyager 2 spacecraft during
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds.
Each time the tape recorder was turned on, the reels acted as gyroscopes and the
spacecraft started an undesirable rotation in the opposite direction. This rotation
had to be counteracted by Mission Control by using the sideward-firing jets to stop

Figure 11.15 (a) A spacecraft the rotation!

carries a gyroscope that is not
spinning. (b) The gyroscope is set
into rotation.

Summary

Given two ) yectors A and ]_f, t_}>1e vec- The torque 7 on a particle due to a force F about an axis
tor product A X B is a vector G having a through the origin in an inertial frame is defined to be
agnitude
maghi 7=TFxF (11.1)
C = ABsin 0 (11.3)

where 0 is the angle between A and B. The
direction of the vector C = A X B is per- |

pendicular to the plane formed by A and B
and this direction is determined by the right- L=1x P (11.10)
hand rule.

=
The angular momentum L about an axis through the origin
of a particle having linear momentum p = mv is

where T is the vector position of the particle relative to the origin.
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Concepts and Principles

The z component of angular momentum of a rigid object rotating about a fixed z axis is
L =lo (11.14)

where /is the moment of inertia of the object about the axis of rotation and w is its angular speed.

Analysis Models for Problem Solving

System t System
boundary ~External boundary
\ torque

v

o
Angular momentum Angular momentum

The rate of change in the
angular momentum of the
nonisolated system is equal
to the net external torque
on the system. Isolated System (Angular Momentum). If a system

experiences no external torque from the environ-
ment, the total angular momentum of the system is

The angular momentum of the
isolated system is constant.

Nonisolated System (Angular Momentum). If a sys-
tem interacts with its environment in the sense that

conserved:
there is an external torque on the system, the net exter- o,
nal torque acting on a system is equal to the time rate AL, =0 (11.18)
of change of its angular momentum: Applying this law of conservation of angular momen-
JdL tum to a system whose moment of inertia changes gives
N tot
Toxt = (11.13)
dt Iw; = I;w,= constant (11.19)
Objective Questions denotes answer available in Student Solutions Manual/Study Guide
1. An ice skater starts a spin with her arms stretched out following questions. (iii) In this process, is the mechan-
to the sides. She balances on the tip of one skate to ical energy of the mouse—turntable system constant?
turn without friction. She then pulls her arms in so that (iv) Is the momentum of the system constant? (v) Is the
her moment of inertia decreases by a factor of 2. In the angular momentum of the system constant?
process of her doing so, what happens to her kinetic  [3]Let us name three perpendicular directions as right,
energy? (a) It increases bygfactor of 4. (b) It increases up, and toward you as you might name them when
by a factor of 2. (¢) It remains constant. (d) It decreases you are facing a television screen that lies in a vertical
by a factor of 2. (e) It decreases by a factor of 4. plane. Unit vectors for these directions are #, 4, and {,

respectively. Consider the quantity (—3a X 2t). (i) Is
the magnitude of this vector (a) 6, (b) 3, (c) 2, or (d) 0?
(i1) Is the direction of this vector (a) down, (b) toward
you, (c) up, (d) away from you, or (e) left?

2. A pet mouse sleeps near the eastern edge of a station-
ary, horizontal turntable thatis supported by a friction-
less, vertical axle through its center. The mouse wakes
up and starts to walk north on the turntable. (i) As it

takes its first steps, what is the direction of the mouse’s 4. Let the four compass directions north, east, south,
displacement relative to the stationary ground below? and west be represented by unit vectors i, &, §, and W,
(@) north (b) south (c) no displacement. (ii) In this respectively. Vertically up and down are represented as
process, the spot on the turntable where the mouse G and d. Let us also identify unit vectors that are half-
had been snoozing undergoes a displacement in what way between these directions such as ne for northeast.
direction relative to the ground below? (a) north Rank the magnitudes of the following cross products

(b) south (c) no displacement. Answer yes or no for the from largest to smallest. If any are equal in magnitude
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or are equal to zero, show that in your ranking.
(@A xfh(b)wxne(c)axne(dnXnw()nXe

5. Answer yes or no to the following questions. (a) Is it
possible to calculate the torque acting on a rigid object
without specifying an axis of rotation? (b) Is the torque
independent of the location of the axis of rotation?

6. Vector A isinthe negative ydirection,and vector ]_3>_i>sin
tlle negative xdirection. (i) Whatis the directionof A X
B? (a) no direction because it is a scalar (b) x (c) )
(d) z () —z (ii) What is the direction of B X A?
Choose from the same possibilities (a) through (e).

7. Two ponies of equal mass are initially at diametrically
opposite points on the rim of a large horizontal turn-
table that is turning freely on a frictionless, vertical
axle through its center. The ponies simultaneously start
walking toward each other across the turntable. (i) As

they walk, what happens to the angular speed of the
turntable? (a) It increases. (b) It decreases. (c) It stays
constant. Consider the ponies—turntable system in this
process and answer yes or no for the following ques-
tions. (ii) Is the mechanical energy of the system con-
served? (iii) Is the momentum of the system conserved?
(iv) Is the angular momentum of the system conserved?

. Consider an isolated system moving through empty

space. The system consists of objects that interact with
each other and can change location with respect to
one another. Which of the following quantities can
change in time? (a) The angular momentum of the sys-
tem. (b) The linear momentum of the system. (c) Both
the angular momentum and linear momentum of the
system. (d) Neither the angular momentum nor linear
momentum of the system.

Conceptual Questions denotes answer available in Student Solutions Manual/Study Guide

1. Stars originate as large bodies of slowly rotating gas.
Because of gravity, these clumps of gas slowly decrease
in size. What happens to the angular speed of a star as
it shrinks? Explain.

2. A scientist arriving at a hotel asks a bellhop to carry
a heavy suitcase. When the bellhop rounds a corner,
the suitcase suddenly swings away from him for some
unknown reason. The alarmed bellhop drops the suit-
case and runs away. What might be in the suitcase?

Why does a long pole help a tightrope walker stay
balanced?

Two children are playing with a roll of paper towels.
One child holds the roll between the index fingers
of her hands so that it is free to rotate, and the sec-
ond child pulls at constant speed on the free end of
the paper towels. As the child pulls the paper towels,
the radius of the roll of remaining towels decreases.
(a) How does the torque on the roll change with time?
(b) How does the angular speed of the roll change
in time? (c) If the child suddenly jerks the end paper
towel with a large force, is the towel more likely to
break from the others when it is being pulled from a
nearly full roll or from a nearly empty roll?

5. Both torque and work are products of force and dis-
placement. How are they different? Do they have the
same units?

6. In some motorcycle races, the riders drive over small
hills and the motorcycle becomes airborne for a short
time interval. If the motorcycle racer keeps the throttle
open while leaving the hill and going into the air, the
motorcycle tends to nose upward. Why?

7. If the torque acting on a particle about an axis through
a certain origin is zero, what can you say about its angu-
lar momentum about that axis?

8. A ball is thrown in such a way that it does not spin
about its own axis. Does this statement imply that the
angular momentum is zero about an arbitrary axis?
Explain.

If global warming continues over the next one hun-

dred years, it is likely that some polar ice will melt and
the water will be distributed closer to the equator.
(a) How would that change the moment of inertia of
the Earth? (b) Would the duration of the day (one rev-
olution) increase or decrease?

10. A cat usually lands on its feet regardless of the position

from which it is dropped. A slow-motion film of a cat
falling shows that the upper half of its body twists in
one direction while the lower half twists in the oppo-
site direction. (See Fig. CQ11.10.) Why does this type of
rotation occur?

Agence Nature/Photo Researchers, Inc.

Figure CQ11.10

11. In Chapters 7 and 8, we made use of energy bar charts

to analyze physical situations. Why have we not used
bar charts for angular momentum in this chapter?



> . The problems found in this
WebAssign chapter may be assigned

online in Enhanced WebAssign m Guided Problem

1. straightforward; 2. intermediate;
3. challenging

full solution available in the Student
Solutions Manual/Study Guide

WebAssign

Section 11.1 The Vector Product and Torque

1. leenM—Ql—SJ-i-k andN =4i+5j — 2%, calcu-
] late the vector product M x N.

2. The displacement vectors 42.0 cm at 15.0° and 23.0 cm
at 65.0° both start from the origin and form two sides
of a parallelogram. Both angles are measured coun-
terclockwise from the x axis. (a) Find the area of
the parallelogram. (b) Find the length of its longer
diagonal.

.Twovectors are given by A=i+ 2jand B = —21 + 3_|
[ Find (a) A x B and (b) the angle between A and B.

4. Use the definition of the vector product and the defini-
tions of the unit vectors i, j, and k to prove Equations
11.7. You may assume the x axis points to the right, the
y axis up, and the z axis horizontally toward you (not
away from you). This choice is said to make the coordi-
nate system a right-handed system.

5. Calculate the net torque (magnitude and direction) on
the beam in Figure P11.5 about (a) an axis through O
perpendicular to the page and (b) an axis through C
perpendicular to the page.

: 25 N
I
I

JETF

Figure P11.5

6. Two vectors are given by these expressions: A= -3i+
7j — 4k and B = 61 —10j + 9k. Evaluate the guanti-
ties (a) cos”'[A - B/AB] and (b) sin'[|A x B|/AB].
(c) Which give(s) the angle between the vectors?

If |A x B| = A - B, whatis the angle between A and B?

8. A particle is located at the vector position T =
(4. 00 + 6. 00_]) m, and a force exerted on it is given by
F = (3.00i + 2.00j) N. (a) What is the torque acting on
the particle about the origin? (b) Can there be another
point about which the torque caused by this force on
this particle will be in the opposite direction and half
as large in magnitude? (c) Can there be more than
one such point? (d) Can such a point lie on the y axis?
(e) Can more than one such point lie on the y axis?
(f) Determine the position vector of one such point.
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Problems

Analysis Model tutorial available in
Enhanced WebAssign

Y1 Master It tutorial available in Enhanced

Watch It video solution available in
Enhanced WebAssign

9. Two forces f‘)] and i?)Q act along the two sides of an equi-
lateral triangle as shown in Figure P11.9. Point O is the
intersection of) the altitudes of the triangle. (a) Find
a third force F; to be applied at B and along BC that
will make the total torque zero about the point O.
(b) What If? Will the total torque change if Fy is
applied not at B but at any other point along BC?

Figure P11.9

10. A studeAnt clgims Athat Lle hasAfounAd a vector A such
that (21 — 3j + 4k) x A = (4i + 3j — k). (a) Do you
believe this claim? (b) Explain why or why not.

Section 11.2 Analysis Model: Nonisolated System
(Angular Momentum)

@A light, rigid rod of length € = 1.00 m joins two par-
7 ticles, with masses m; = 4.00 kg and m, = 3.00 kg, at its
ends. The combination rotates in the xy plane about a
pivot through the center of the rod (Fig. P11.11). Deter-
mine the angular momentum of the system about the
origin when the speed of each particle is 5.00 m/s.

Figure P11.11

12. A 1.50-kg particle moves in the xy plane with a veloc-

M ity of v = (4.201 — 3.60j) m/s. Determine the angular
momentum of the particle about the origin when its
position vectoris ¥ = (1.501 + 2.20j) m

13. A partlcle of mass mmoves in the xyplane with a velocity
of V=u,i+ vJ Determine the angular momentum
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of the particle about the origin when its position vector
is T = xi +yj.

Heading straight toward the summit of Pike’s Peak, an
airplane of mass 12 000 kg flies over the plains of Kan-
sas at nearly constant altitude 4.30 km with constant
velocity 175 m/s west. (a) What is the airplane’s vector
angular momentum relative to a wheat farmer on the
ground directly below the airplane? (b) Does this value
change as the airplane continues its motion along a
straight line? (c) What If? What is its angular momen-
tum relative to the summit of Pike’s Peak?

Review. A projectile of mass m is launched with an ini-

16.

17.

tial velocity ¥; making an angle 6 with the horizontal as
shown in Figure P11.15. The projectile moves in the
gravitational field of the Earth. Find the angular
momentum of the projectile about the origin (a) when
the projectile is at the origin, (b) when it is at the high-
est point of its trajectory, and (c) just before it hits the
ground. (d) What torque causes its angular momen-
tum to change?

y m =2 _ %
P
_ ~
7
7 \\
7 N
e N
7 N
vi \
\
i N— %
&k R -
N

Figure P11.15

Review. A conical pendulum consists
of a bob of mass m in motion in a cir- N\
cular path in a horizontal plane as :79
l
|

shown in Figure P11.16. During the W
motion, the supporting wire of length

¢ maintains a constant angle 0 with ~___|__\
the vertical. Show that the magnitude ~ <__ ‘—— @™

of the angular momentum of the bob
about the vertical dashed line is

m’gl® sin* 9\ 1/2
()

cos 0

Figure P11.16

A particle of mass m moves in a circle of radius Rat a
constant speed vas shown in Figure P11.17. The motion
begins at point ) at time ¢ = 0. Determine the angular
momentum of the particle about the axis perpendicu-
lar to the page through point Pas a function of time.

)
\4
//
/ R A"
X
P\ /Q
/
7

~ -
~ -

Figure P11.17 Problems 17 and 32.

18. A counterweight of mass m = 4.00 kg is attached to
¥l a light cord that is wound around a pulley as in Fig-
[ ure P11.18. The pulley is a thin hoop of radius R =

21. A ball having mass m is fas-

8.00 cm and mass M = 2.00 kg. The spokes have neg-
ligible mass. (a) What is the magnitude of the net
torque on the system about the axle of the pulley?
(b) When the counterweight has a speed v, the pulley
has an angular speed @ = v/R. Determine the mag-
nitude of the total angular momentum of the system
about the axle of the pulley. (¢) Using your result from
part (b) and 7 = dL /dt, calculate the acceleration of
the counterweight.

Figure P11.18

The position vector of a particle of mass 2.00 kg as
[Ma function of time is given by ¥ = (6.001 + 5.00¢j),

where T is in meters and ¢ is in seconds. Determine the
angular momentum of the particle about the origin as
a function of time.

20. A 5.00-kg particle starts from the origin at time zero.

Its velocity as a function of time is given by
v =601+ 2

where V is in meters per second and { is in seconds.
(a) Find its position as a function of time. (b) Describe
its motion qualitatively. Find (c) its acceleration as a
function of time, (d) the net force exerted on the par-
ticle as a function of time, (e) the net torque about the
origin exerted on the particle as a function of time,
(f) the angular momentum of the particle as a func-
tion of time, (g) the kinetic energy of the particle as a
function of time, and (h) the power injected into the
system of the particle as a function of time.

tened at the end of a flagpole
that is connected to the side
of a tall building at point P as
shown in Figure P11.21. The
length of the flagpole is €, and
it makes an angle 6 with the x
axis. The ball becomes loose
and starts to fall with accelera-
tion —gj. (a) Determine the
angular momentum of the
ball about point P as a function of time. (b) For what
physical reason does the angular momentum change?
(c) What is the rate of change of the angular momen-
tum of the ball about point P?

Figure P11.21



Section 11.3 Angular Momentum of a Rotating Rigid Object

22. A uniform solid sphere of radius r = 0.500 m and mass
m = 15.0 kg turns counterclockwise about a vertical axis
through its center. Find its vector angular momentum
about this axis when its angular speed is 3.00 rad/s.

23. Big Ben (Fig. P10.49, page 328), the Parliament tower
clock in London, has hour and minute hands with
lengths of 2.70 m and 4.50 m and masses of 60.0 kg
and 100 kg, respectively. Calculate the total angular
momentum of these hands about the center point.
(You may model the hands as long, thin rods rotating
about one end. Assume the hour and minute hands
are rotating at a constant rate of one revolution per
12 hours and 60 minutes, respectively.)

24. Show that the kinetic energy of an object rotating
about a fixed axis with angular momentum L = Jw can
be written as K = 1.2/21.

25. A uniform solid disk of mass m = 3.00 kg and radius

r = 0.200 m rotates about a fixed axis perpendicular
to its face with angular frequency 6.00 rad/s. Calcu-
late the magnitude of the angular momentum of the
disk when the axis of rotation (a) passes through its
center of mass and (b) passes through a point midway
between the center and the rim.

26. Model the Earth as a uniform sphere. (a) Calculate
the angular momentum of the Earth due to its spin-
ning motion about its axis. (b) Calculate the angu-
lar momentum of the Earth due to its orbital motion
about the Sun. (c) Explain why the answer in part (b) is
larger than that in part (a) even though it takes signifi-
cantly longer for the Earth to go once around the Sun
than to rotate once about its axis.

A particle of mass 0.400 kg is attached to the 100-cm

[ mark of a meterstick of mass 0.100 kg. The meterstick
rotates on the surface of a frictionless, horizontal
table with an angular speed of 4.00 rad/s. Calculate
the angular momentum of the system when the stick
is pivoted about an axis (a) perpendicular to the table
through the 50.0-cm mark and (b) perpendicular to
the table through the 0-cm mark.

28. The distance between the centers of the wheels of a
motorcycle is 155 cm. The center of mass of the motor-
cycle, including the rider, is 88.0 cm above the ground
and halfway between the wheels. Assume the mass of
each wheel is small compared with the body of the
motorcycle. The engine drives the rear wheel only.
What horizontal acceleration of the motorcycle will
make the front wheel rise off the ground?

29. A space station is constructed in the shape of a hollow
ring of mass 5.00 X 10* kg. Members of the crew walk
on a deck formed by the inner surface of the outer
cylindrical wall of the ring, with radius » = 100 m. At

rest when constructed, the ring is set rotating about

its axis so that the people inside experience an effec-

tive free-fall acceleration equal to g (See Fig. P11.29.)

The rotation is achieved by firing two small rockets
attached tangentially to opposite points on the rim of

Problems 357

the ring. (@) What angular momentum does the space
station acquire? (b) For what time interval must the
rockets be fired if each exerts a thrust of 125 N?

Figure P11.29 Problems 29 and 40.

Section 11.4 Analysis Model: Isolated System
(Angular Momentum)

30.

A disk with moment of inertia /; rotates about a fric-

tionless, vertical axle with angular speed ;. A second

31.

disk, this one having moment of inertia /, and initially
not rotating, drops onto the first disk (Fig. P11.30).
Because of friction between the surfaces, the two even-
tually reach the same angular speed w,. (a) Calculate
o (b) Calculate the ratio of the final to the initial
rotational energy.

Ao,
8
Iy
A s
Before After

Figure P11.30

A playground merry-go-round of radius R = 2.00 m

has a moment of inertia / = 250 kg - m? and is rotating
M at 10.0 rev/min about a frictionless, vertical axle. Fac-

32.

ing the axle, a 25.0-kg child hops onto the merry-go-
round and manages to sit down on the edge. What is
the new angular speed of the merry-go-round?

Figure P11.17 represents a small, flat puck with mass
m = 2.40 kg sliding on a frictionless, horizontal sur-
face. It is held in a circular orbit about a fixed axis by
a rod with negligible mass and length R = 1.50 m, piv-
oted at one end. Initially, the puck has a speed of v =
5.00 m/s. A 1.830-kg ball of putty is dropped verti-
cally onto the puck from a small distance above it and
immediately sticks to the puck. (a) What is the new
period of rotation? (b) Is the angular momentum of
the puck-putty system about the axis of rotation con-
stant in this process? (c) Is the momentum of the sys-
tem constant in the process of the putty sticking to
the puck? (d) Is the mechanical energy of the system
constant in the process?
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A 60.0-kg woman stands at the western rim of a
[l horizontal turntable having a moment of inertia of

34.

500 kg - m? and a radius of 2.00 m. The turntable is
initially at rest and is free to rotate about a friction-
less, vertical axle through its center. The woman then
starts walking around the rim clockwise (as viewed
from above the system) at a constant speed of 1.50 m/s
relative to the Earth. Consider the woman-turntable
system as motion begins. (a) Is the mechanical energy
of the system constant? (b) Is the momentum of the
system constant? (c) Is the angular momentum of the
system constant? (d) In what direction and with what
angular speed does the turntable rotate? (e) How much
chemical energy does the woman’s body convert into
mechanical energy of the woman—turntable system as
the woman sets herself and the turntable into motion?

A student sits on a freely rotating stool holding two

M dumbbells, each of mass 3.00 kg (Fig. P11.34). When

35.

36.

his arms are extended horizontally (Fig. P11.34a), the
dumbbells are 1.00 m from the axis of rotation and the
student rotates with an angular speed of 0.750 rad/s.
The moment of inertia of the student plus stool is
3.00 kg - m? and is assumed to be constant. The student
pulls the dumbbells inward horizontally to a position
0.300 m from the rotation axis (Fig. P11.34b). (a) Find
the new angular speed of the student. (b) Find the
kinetic energy of the rotating system before and after
he pulls the dumbbells inward.

Figure P11.34

A uniform cylindrical turntable of radius 1.90 m and
mass 30.0 kg rotates counterclockwise in a horizontal
plane with an initial angular speed of 47 rad/s. The
fixed turntable bearing is frictionless. A lump of clay
of mass 2.25 kg and negligible size is dropped onto the
turntable from a small distance above it and immedi-
ately sticks to the turntable at a point 1.80 m to the
east of the axis. (a) Find the final angular speed of the
clay and turntable. (b) Is the mechanical energy of
the turntable—clay system constant in this process?
Explain and use numerical results to verify your
answer. (c¢) Is the momentum of the system constant in
this process? Explain your answer.

A puck of mass m; = 80.0 g and radius r;, = 4.00 cm
glides across an air table at a speed of v = 1.50 m/s as
shown in Figure P11.36a. It makes a glancing collision
with asecond puck of radius r, = 6.00 cm and mass m, =
120 g (initially at rest) such that their rims just touch.
Because their rims are coated with instant-acting glue,

the pucks stick together and rotate after the collision
(Fig. P11.36b). (a) What is the angular momentum of
the system relative to the center of mass? (b) What is
the angular speed about the center of mass?

-

) =

Figure P11.36

A wooden block of mass M resting on a frictionless,

38.

horizontal surface is attached to a rigid rod of length €
and of negligible mass (Fig. P11.37). The rod is pivoted
at the other end. A bullet of mass m traveling parallel
to the horizontal surface and perpendicular to the rod
with speed v hits the block and becomes embedded in
it. (@) What is the angular momentum of the bullet—
block system about a vertical axis through the pivot?
(b) What fraction of the original kinetic energy of the
bullet is converted into internal energy in the system
during the collision?

Figure P11.37

Review. A thin, uniform, rectangular signboard hangs
vertically above the door of a shop. The sign is hinged
to a stationary horizontal rod along its top edge. The
mass of the sign is 2.40 kg, and its vertical dimension
is 50.0 cm. The sign is swinging without friction, so it
is a tempting target for children armed with snowballs.
The maximum angular displacement of the sign is
25.0° on both sides of the vertical. At a moment when
the sign is vertical and moving to the left, a snowball
of mass 400 g, traveling horizontally with a velocity of
160 cm/s to the right, strikes perpendicularly at the
lower edge of the sign and sticks there. (a) Calculate
the angular speed of the sign immediately before the
impact. (b) Calculate its angular speed immediately
after the impact. (c) The spattered sign will swing up
through what maximum angle?

A wad of sticky clay with mass m and velocity ¥, is fired

at a solid cylinder of mass M and radius R (Fig. P11.39).
The cylinder is initially at rest and is mounted on a
fixed horizontal axle that runs through its center of
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d < R from the cen-
ter. (a) Find the angular speed of the system just after
the clay strikes and sticks to the surface of the cylin-
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der. (b) Is the mechanical energy of the clay—cylinder
system constant in this process? Explain your answer.
(c) Is the momentum of the clay—cylinder system con-
stant in this process? Explain your answer.

Figure P11.39

Why is the following situation impossible? A space station
shaped like a giant wheel has a radius of » = 100 m and
a moment of inertia of 5.00 X 108 kg - m?. A crew of
150 people of average mass 65.0 kg is living on the rim,
and the station’s rotation causes the crew to experience
an apparent free-fall acceleration of g (Fig. P11.29).
A research technician is assigned to perform an experi-
ment in which a ball is dropped at the rim of the station
every 15 minutes and the time interval for the ball to
drop a given distance is measured as a test to make sure
the apparent value of g is correctly maintained. One
evening, 100 average people move to the center of the
station for a union meeting. The research technician,
who has already been performing his experiment for an
hour before the meeting, is disappointed that he cannot
attend the meeting, and his mood sours even further by
his boring experiment in which every time interval for
the dropped ball is identical for the entire evening.

A 0.005 00-kg bullet traveling horizontally with speed

1.00 X 10% m/s strikes an 18.0-kg door, embedding itself
10.0 cm from the side opposite the hinges as shown in
Figure P11.41. The 1.00-m wide door is free to swing
on its frictionless hinges. (a) Before it hits the door,
does the bullet have angular momentum relative to the
door’s axis of rotation? (b) If so, evaluate this angu-
lar momentum. If not, explain why there is no angular
momentum. (c) Is the mechanical energy of the bullet—
door system constant during this collision? Answer
without doing a calculation. (d) At what angular speed
does the door swing open immediately after the colli-
sion? (e) Calculate the total energy of the bullet-door
system and determine whether it is less than or equal
to the kinetic energy of the bullet before the collision.

Hinge

18.0 kg

0.005 00 kg
=

Figure P11.41 An overhead view of a bullet striking a door.

Section 11.5 The Motion of Gyroscopes and Tops

42.

A spacecraft is in empty space. It carries on board a
gyroscope with a moment of inertia of /, = 20.0 kg - m?
about the axis of the gyroscope. The moment of inertia

43.
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of the spacecraft around the same axis is /. = 5.00 X
10° kg - m?. Neither the spacecraft nor the gyroscope
is originally rotating. The gyroscope can be powered
up in a negligible period of time to an angular speed
of 100 rad/s. If the orientation of the spacecraft is to
be changed by 30.0° for what time interval should the
gyroscope be operated?

The angular momentum vector of a precessing gyro-
scope sweeps out a cone as shown in Figure P11.43. The
angular speed of the tip of the angular momentum vec-
tor, called its precessional frequency, is given by w, =
7/L, where 7 is the magnitude of the torque on the gyro-
scope and L is the magnitude of its angular momen-
tum. In the motion called precession of the equinoxes, the
Earth’s axis of rotation precesses about the perpendicu-
lar to its orbital plane with a period of 2.58 X 10% yr.
Model the Earth as a uniform sphere and calculate the
torque on the Earth that is causing this precession.

|
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Figure P11.43 A precessing
angular momentum vector
sweeps out a cone in space.

Additional Problems
44. A light rope passes over a light,

45.

46.

frictionless pulley. One end is fas-
tened to a bunch of bananas of
mass M, and a monkey of mass M
clings to the other end (Fig. P11.44).
The monkey climbs the rope in
an attempt to reach the bananas.
(a) Treating the system as consist-

ing of the monkey, bananas, rope, M (

and pulley, find the net torque on

the system about the pulley axis.

(b) Using the result of part (a), .

determine the total angular momen-  [19ure P11.44
tum about the pulley axis and describe the motion of
the system. (c) Will the monkey reach the bananas?

&
fu

Comet Halley moves about the Sun in an elliptical
orbit, with its closest approach to the Sun being about
0.590 AU and its greatest distance 35.0 AU (1 AU = the
Earth—Sun distance). The angular momentum of the
comet about the Sun is constant, and the gravitational
force exerted by the Sun has zero moment arm. The
comet’s speed at closest approach is 54.0 km/s. What is
its speed when it is farthest from the Sun?

Review. Two boys are sliding toward each other on a
frictionless, ice-covered parking lot. Jacob, mass 45.0 kg,
is gliding to the right at 8.00 m/s, and Ethan, mass
31.0 kg, is gliding to the left at 11.0 m/s along the same
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line. When they meet, they grab each other and hang
on. (a) What is their velocity immediately thereafter?
(b) What fraction of their original kinetic energy is
still mechanical energy after their collision? That was
so much fun that the boys repeat the collision with the
same original velocities, this time moving along paral-
lel lines 1.20 m apart. At closest approach, they lock
arms and start rotating about their common center of
mass. Model the boys as particles and their arms as a
cord that does not stretch. (c) Find the velocity of their
center of mass. (d) Find their angular speed. (e) What
fraction of their original kinetic energy is still mechani-
cal energy after they link arms? (f) Why are the answers
to parts (b) and (e) so different?

We have all complained that there aren’t enough hours
in a day. In an attempt to fix that, suppose all the peo-
ple in the world line up at the equator and all start
running east at 2.50 m/s relative to the surface of the
Earth. By how much does the length of a day increase?
Assume the world population to be 7.00 X 10° people
with an average mass of 55.0 kg each and the Earth to
be a solid homogeneous sphere. In addition, depend-
ing on the details of your solution, you may need to use
the approximation 1/(1 — x) = 1 + xfor small x.

A skateboarder with his board can be modeled as a
particle of mass 76.0 kg, located at his center of mass,
0.500 m above the ground. As shown in Figure P11.48,
the skateboarder starts from rest in a crouching posi-
tion at one lip of a half-pipe (point ®). The half-pipe
forms one half of a cylinder of radius 6.80 m with its
axis horizontal. On his descent, the skateboarder moves
without friction and maintains his crouch so that his
center of mass moves through one quarter of a circle.
(a) Find his speed at the bottom of the half-pipe (point
®). (b) Find his angular momentum about the center
of curvature at this point. (c) Immediately after passing
point ®, he stands up and raises his arms, lifting his
center of gravity to 0.950 m above the concrete (point
©). Explain why his angular momentum is constant in
this maneuver, whereas the kinetic energy of his body
is not constant. (d) Find his speed immediately after he
stands up. (e) How much chemical energy in the skate-
boarder’s legs was converted into mechanical energy in
the skateboarder—Earth system when he stood up?

fho

©
Figure P11.48

A rigid, massless rod has three particles with equal
massesattached toitasshown in Figure P11.49. The rod
is free to rotate in a vertical plane about a frictionless
axle perpendicular to the rod through the point Pand
is released from rest in the horizontal position at = 0.

Assuming m and d are known, find (a) the moment
of inertia of the system of three particles about the
pivot, (b) the torque acting on the system at ¢ = 0,
(c) the angular acceleration of the system at ¢ = 0,
(d) the linear acceleration of the particle labeled 3 at
t =0, (e) the maximum kinetic energy of the system,
(f) the maximum angular speed reached by the rod,
(g) the maximum angular momentum of the system,
and (h) the maximum speed reached by the particle

labeled 2.
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Figure P11.49

50. Two children are playing on stools at a restaurant coun-

ter. Their feet do not reach the footrests, and the tops
of the stools are free to rotate without friction on ped-
estals fixed to the floor. One of the children catches a
tossed ball, in a process described by the equation

(0.730 kg - mz)(2.40j rad/s)
+ (0.120 kg)(0.350im) X (4.30k m/s)
=[0.730 kg - m? + (0.120 kg)(0.850 m)?]&

(@) Solve the equation for the unknown @. (b) Com-
plete the statement of the problem to which this
equation applies. Your statement must include the
given numerical information and specification of the
unknown to be determined. (¢) Could the equation
equally well describe the other child throwing the ball?
Explain your answer.

51. A projectile of mass m moves to the right with a speed v,
(GP| (Fig. P11.51a). The projectile strikes and sticks to the end

of a stationary rod of mass M, length d, pivoted about
a frictionless axle perpendicular to the page through
O (Fig. P11.51b). We wish to find the fractional change
of kinetic energy in the system due to the collision.
(a) What is the appropriate analysis model to describe
the projectile and the rod? (b) What is the angular
momentum of the system before the collision about an
axis through O? (c) What is the moment of inertia of
the system about an axis through O after the projectile
sticks to the rod? (d) If the angular speed of the system
after the collision is w, what is the angular momentum
of the system after the collision? (e) Find the angular
speed w after the collision in terms of the given quanti-
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Figure P11.51



ties. (f) What is the kinetic energy of the system before
the collision? (g) What is the kinetic energy of the sys-
tem after the collision? (h) Determine the fractional
change of kinetic energy due to the collision.

A puck of mass m = 50.0 gis attached to a taut cord pass-
ing through a small hole in a frictionless, horizontal
"l surface (Fig. P11.52). The puck is initially orbiting with

53.

54.

speed v; = 1.50 m/s in a circle of radius r; = 0.300 m.
The cord is then slowly pulled from below, decreasing
the radius of the circle to » = 0.100 m. (a) What is the
puck’s speed at the smaller radius? (b) Find the tension
in the cord at the smaller radius. (¢c) How much work is
done by the hand in pulling the cord so that the radius
of the puck’s motion changes from 0.300 m to 0.100 m?

Figure P11.52 Problems 52 and 53.

A puck of mass m is attached to a taut cord passing
through a small hole in a frictionless, horizontal sur-
face (Fig. P11.52). The puck is initially orbiting with
speed v; in a circle of radius r,. The cord is then slowly
pulled from below, decreasing the radius of the circle
to . (@) What is the puck’s speed when the radius is 7?
(b) Find the tension in the cord as a function of ~
(c) How much work is done by the hand in pulling the
cord so that the radius of the puck’s motion changes
from 7, to r?

Why is the following situation impossible? A meteoroid strikes
the Earth directly on the equator. At the time it lands,
it is traveling exactly vertical and downward. Due to the
impact, the time for the Earth to rotate once increases
by 0.5s, so the day is 0.5 s longer, undetectable to layper-
sons. After the impact, people on the Earth ignore the
extra half-second each day and life goes on as normal.
(Assume the density of the Earth is uniform.)

55| Two astronauts (Fig. P11.55), each having a mass of
71 75.0 kg, are connected by a 10.0-m rope of negligible

mass. They are isolated in space, orbiting their center

Figure P11.55 Problems 55 and 56.

56.

57.
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Problems

of mass at speeds of 5.00 m/s. Treating the astronauts
as particles, calculate (a) the magnitude of the angu-
lar momentum of the two-astronaut system and (b) the
rotational energy of the system. By pulling on the rope,
one astronaut shortens the distance between them to
5.00 m. (c) What is the new angular momentum of
the system? (d) What are the astronauts’ new speeds?
(e) What is the new rotational energy of the system?
(f) How much chemical potential energy in the body
of the astronaut was converted to mechanical energy in
the system when he shortened the rope?

Two astronauts (Fig. P11.55), each having a mass M,
are connected by a rope of length d having negligible
mass. They are isolated in space, orbiting their center
of mass at speeds v. Treating the astronauts as particles,
calculate (a) the magnitude of the angular momen-
tum of the two-astronaut system and (b) the rotational
energy of the system. By pulling on the rope, one of the
astronauts shortens the distance between them to d/2.
(c) What is the new angular momentum of the system?
(d) What are the astronauts’ new speeds? (e) What is
the new rotational energy of the system? (f) How much
chemical potential energy in the body of the astronaut
was converted to mechanical energy in the system
when he shortened the rope?

Native people throughout North and South America
used a bola to hunt for birds and animals. A bola can
consist of three stones, each with mass m, at the ends
of three light cords, each with length €. The other
ends of the cords are tied together to form a Y. The
hunter holds one stone and swings the other two above
his head (Figure P11.57a). Both these stones move
together in a horizontal circle of radius 2¢ with speed
15. At a moment when the horizontal component of
their velocity is directed toward the quarry, the hunter
releases the stone in his hand. As the bola flies through
the air, the cords quickly take a stable arrangement
with constant 120-degree angles between them (Fig.
P11.57b). In the vertical direction, the bola is in free
fall. Gravitational forces exerted by the Earth make
the junction of the cords move with the downward
acceleration g. You may ignore the vertical motion as
you proceed to describe the horizontal motion of the
bola. In terms of m, €, and v, calculate (a) the mag-
nitude of the momentum of the bola at the moment
of release and, after release, (b) the horizontal speed
of the center of mass of the bola and (c) the angu-
lar momentum of the bola about its center of mass.
(d) Find the angular speed of the bola about its center
of mass after it has settled into its Y shape. Calculate

Figure P11.57
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the kinetic energy of the bola (e) at the instant of
release and (f) in its stable Y shape. (g) Explain how
the conservation laws apply to the bola as its configu-
ration changes. Robert Beichner suggested the idea
for this problem.

A uniform rod of mass 300 g and length 50.0 cm
rotates in a horizontal plane about a fixed, frictionless,
vertical pin through its center. Two small, dense beads,
each of mass m, are mounted on the rod so that they
can slide without friction along its length. Initially,
the beads are held by catches at positions 10.0 cm on
each side of the center and the system is rotating at an
angular speed of 36.0 rad/s. The catches are released
simultaneously, and the beads slide outward along the
rod. (a) Find an expression for the angular speed w, of
the system at the instant the beads slide off the ends of
the rod as it depends on m. (b) What are the maximum
and the minimum possible values for w and the values
of m to which they correspond?

Global warming is a cause for concern because even
small changes in the Earth’s temperature can have sig-
nificant consequences. For example, if the Earth’s polar
ice caps were to melt entirely, the resulting additional
water in the oceans would flood many coastal areas.
Model the polar ice as having mass 2.30 X 10% kg and
forming two flat disks of radius 6.00 X 10° m. Assume
the water spreads into an unbroken thin, spherical shell
after it melts. Calculate the resulting change in the dura-
tion of one day both in seconds and as a percentage.

The puck in Figure P11.60 has a mass of 0.120 kg. The
distance of the puck from the center of rotation is
originally 40.0 cm, and the puck is sliding with a speed
of 80.0 cm/s. The string is pulled downward 15.0 cm
through the hole in the frictionless table. Determine
the work done on the puck. (Suggestion: Consider the
change of kinetic energy.)

Figure P11.60

Challenge Problems
A uniform solid disk of radius R is set into rotation

with an angular speed w,; about an axis through its cen-
ter. While still rotating at this speed, the disk is placed
into contact with a horizontal surface and immedi-
ately released as shown in Figure P11.61. (a) What is
the angular speed of the disk once pure rolling takes
place? (b) Find the fractional change in kinetic energy
from the moment the disk is set down until pure

62.
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rolling occurs. (c) Assume the coefficient of friction
between disk and surface is . What is the time inter-
val after setting the disk down before pure rolling
motion begins? (d) How far does the disk travel before
pure rolling begins?

Figure P11.61

In Example 11.9, we investigated an elastic collision
between a disk and a stick lying on a frictionless sur-
face. Suppose everything is the same as in the example
except that the collision is perfectly inelastic so that
the disk adheres to the stick at the endpoint at which it
strikes. Find (a) the speed of the center of mass of the
system and (b) the angular speed of the system after
the collision.

A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity v as shown in
Figure P11.63a. It hits a small obstacle at the end of
the table that causes the cube to tilt as shown in Fig-
ure P11.63b. Find the minimum value of the magni-
tude of ¥ such that the cube tips over and falls off the
table. Note: The cube undergoes an inelastic collision
at the edge.
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Figure P11.63

A solid cube of wood of side 24 and mass M is resting
on a horizontal surface. The cube is constrained to
rotate about a fixed axis AB (Fig. P11.64). A bullet of
mass m and speed v is shot at the face opposite ABCD at
a height of 4a/3. The bullet becomes embedded in the
cube. Find the minimum value of v required to tip the
cube so that it falls on face ABCD. Assume m << M.
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Figure P11.64



