Rotation of a Rigid Object
About a Fixed Axis

When an extended object such as a wheel rotates about its axis, the motion cannot be

analyzed by modeling the object as a particle because at any given time different parts of the
object have different linear velocities and linear accelerations. We can, however, analyze the
motion of an extended object by modeling it as a system of many particles, each of which has
its own linear velocity and linear acceleration as discussed in Section 9.7.

In dealing with a rotating object, analysis is greatly simplified by assuming the object is
rigid. A rigid object is one that is nondeformable; that is, the relative locations of all particles
of which the object is composed remain constant. All real objects are deformable to some
extent; our rigid-object model, however, is useful in many situations in which deformation is
negligible. We have developed analysis models based on particles and systems. In this chapter,
we introduce another class of analysis models based on the rigid-object model.

Angular Position, Velocity, and Acceleration

We will develop our understanding of rotational motion in a manner parallel to
that used for translational motion in previous chapters. We began in Chapter 2 by

CHAPTER

10

10.1 Angular Position,
Velocity, and
Acceleration

10.2 Analysis Model: Rigid
Object Under Constant
Angular Acceleration

10.3 Angular and Translational
Quantities

10.4 Torque

10.5 Analysis Model:
Rigid Object Under
a Net Torque

10.6 Calculation of Moments
of Inertia

10.7 Rotational Kinetic Energy

10.8 Energy Considerations in
Rotational Motion

10.9 Rolling Motion of
a Rigid Object

The Malaysian pastime of gasing
involves the spinning of tops

that can have masses up to 5 kg.
Professional spinners can spin their
tops so that they might rotate for
more than an hour before stopping.
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To define angular position
for the disc, a fixed reference
line is chosen. A particle at P
is located at a distance r from
the rotation axis through O.

n_ AL I

] P Reference
line

As the disc rotates, a particle at
P moves through an arc length
son a circular path of radius .
The angular position of Pis 6.

2
o \
rfe \I
0 Reference
line

Figure 10.1 A compact disc
rotating about a fixed axis
through O perpendicular to the
plane of the figure.

Pitfall Prevention 10.1

Remember the Radian In rota-
tional equations, you must use
angles expressed in radians.
Don’t fall into the trap of using
angles measured in degrees in
rotational equations.

o

Figure 10.2 A particle on a rotat-
ing rigid object moves from ® to
along the arc of a circle. In the
time interval At = L=, the radial
line of length rmoves through an
angular displacement A0 = 0, — 0,.

Average angular speed P>

Rotation of a Rigid Object About a Fixed Axis

defining kinematic variables: position, velocity, and acceleration. We do the same
here for rotational motion.

Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The
disc rotates about a fixed axis perpendicular to the plane of the figure and passing
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at Pis at a fixed distance r from the origin and rotates about it in a circle of
radius . (In fact, every element of the disc undergoes circular motion about 0.) Itis
convenient to represent the position of Pwith its polar coordinates (1, 8), where ris
the distance from the origin to Pand 6 is measured counterclockwisefrom some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle 0
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle 6§ = 0, it moves through an arc of
length s as in Figure 10.1b. The arc length s is related to the angle 6 through the
relationship

s=1r0 (10.1a)
oy (10.1b)
7

Because 0 is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give 6 the artificial unit radian (rad), where one radian is
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 27y, it follows from Equation 10.1b that 360° corresponds
to an angle of (271/r) rad = 27 rad. Hence, 1 rad = 360°/27 = 57.3°. To convert an
angle in degrees to an angle in radians, we use that 7 rad = 180°, so

f(rad) = O(deg)

T
180°
For example, 60° equals 7/3 rad and 45° equals 7/4 rad.

Because the disc in Figure 10.1 is a rigid object, as the particle moves through an
angle 6 from the reference line, every other particle on the object rotates through
the same angle 0. Therefore, we can associate the angle 6 with the entire rigid
object as well as with an individual particle, which allows us to define the angular
position of a rigid object in its rotational motion. We choose a reference line on
the object, such as a line connecting O and a chosen particle on the object. The
angular position of the rigid object is the angle 6 between this reference line on
the object and the fixed reference line in space, which is often chosen as the x axis.
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position,
which is the origin, x = 0. Therefore, the angle 6 plays the same role in rotational
motion that the position x does in translational motion.

As the particle in question on our rigid object travels from position ® to posi-
tion ® in a time interval A/ as in Figure 10.2, the reference line fixed to the object
sweeps out an angle A = 6, — 6,. This quantity A6 is defined as the angular dis-
placement of the rigid object:

AG=0,—9,

The rate at which this angular displacement occurs can vary. If the rigid object
spins rapidly, this displacement can occur in a short time interval. If it rotates
slowly, this displacement occurs in a longer time interval. These different rotation
rates can be quantified by defining the average angular speed w,,, (Greek letter
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val At during which the displacement occurs:

=t At

Wy = (10.2)



10.1 Angular Position, Velocity, and Acceleration

In analogy to translational speed, the instantaneous angular speed w is defined
as the limit of the average angular speed as A/ approaches zero:
Ao do

w=lim — =

10.3
A0 At dt ( )

Angular speed has units of radians per second (rad/s), which can be written as s

because radians are not dimensional. We take w to be positive when @ is increasing
(counterclockwise motion in Fig. 10.2) and negative when 0 is decreasing (clock-
wise motion in Fig. 10.2).

(Y uick Quiz 10.1 A rigid object rotates in a counterclockwise sense around a fixed
- axis. Each of the following pairs of quantities represents an initial angular posi-
tion and a final angular position of the rigid object. (i) Which of the sets can
only occur if the rigid object rotates through more than 180°? (a) 3 rad, 6 rad

(b) —1 rad, I rad (c) 1 rad, 5 rad (ii) Suppose the change in angular position for
each of these pairs of values occurs in 1 s. Which choice represents the lowest
s average angular speed?

If the instantaneous angular speed of an object changes from w, to w,in the time
interval A/, the objecthas an angular acceleration. The average angular acceleration
a,,, (Greek letter alpha) of a rotating rigid object is defined as the ratio of the
change in the angular speed to the time interval A/ during which the change in the
angular speed occurs:

avg

©;T O Aw

= — 10.4
b= A¢ ( )

(0%

In analogy to translational acceleration, the instantaneous angular acceleration
is defined as the limit of the average angular acceleration as Az approaches zero:

(10.5)

Angular acceleration has units of radians per second squared (rad/s?), or simply
s72. Notice that a is positive when a rigid object rotating counterclockwise is speed-
ing up or when a rigid object rotating clockwise is slowing down during some time
interval.

When a rigid object is rotating about a fixed axis, every particle on the object
rotates through the same angle in a given time interval and has the same angular
speed and the same angular acceleration. Therefore, like the angular position 0,
the quantities w and « characterize the rotational motion of the entire rigid object
as well as individual particles in the object.

Angular position (0), angular speed (w), and angular acceleration («) are analo-
gous to translational position (x), translational speed (v), and translational accel-
eration (a). The variables 0, w, and « differ dimensionally from the variables x, v,
and « only by a factor having the unit of length. (See Section 10.3.)

We have not specified any direction for angular speed and angular acceleration.
Strictly speaking, w and « are the magnitudes of the angular velocity and the angu-
lar acceleration vectors' @ and @, respectively, and they should always be positive.
Because we are considering rotation about a fixed axis, however, we can use non-
vector notation and indicate the vectors’ directions by assigning a positive or nega-
tive sign to w and « as discussed earlier with regard to Equations 10.3 and 10.5. For
rotation about a fixed axis, the only direction that uniquely specifies the rotational
motion is the direction along the axis of rotation. Therefore, the directions of @
and @ are along this axis. If a particle rotates in the xy plane as in Figure 10.2, the

IAlthough we do not verify it here, the instantaneous angular velocity and instantaneous angular acceleration are
vector quantities, but the corresponding average values are not because angular displacements do not add as vector
quantities for finite rotations.
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4 Instantaneous angular speed

<4 Average angular acceleration

< Instantaneous angular
acceleration

Pitfall Prevention 10.2

Specify Your Axis In solving
rotation problems, you must
specify an axis of rotation. This
new feature does not exist in our
study of translational motion. The
choice is arbitrary, but once you
make it, you must maintain that
choice consistently throughout
the problem. In some problems,
the physical situation suggests a
natural axis, such as one along the
axle of an automobile wheel. In
other problems, there may not be
an obvious choice, and you must
exercise judgment.
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Figure 10.3 The right-hand rule
for determining the direction of the
angular velocity vector.

Rotational kinematic P
equations

Pitfall Prevention 10.3

Just Like Translation? Equations
10.6 to 10.9 and Table 10.1 might
suggest that rotational kinematics
is just like translational kinemat-
ics. That is almost true, with two
key differences. (1) In rotational
kinematics, you must specify a
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational
motion, the object keeps return-
ing to its original orientation;
therefore, you may be asked for
the number of revolutions made
by a rigid object. This concept has
no analog in translational motion.

Chapter 10 Rotation of a Rigid Object About a Fixed Axis

direction of @& for the particle is out of the plane of the diagram when the rotation
is counterclockwise and into the plane of the diagram when the rotation is clock-
wise. To illustrate this convention, it is convenient to use the right-hand rule demon-
strated in Figure 10.3. When the four fingers of the right hand are wrapped in the
direction of rotation, the extended right thumb points in the direction of ®. The
direction of & follows from its definition @ = d& /dt. It is in the same direction as
& if the angular speed is increasing in time, and it is antiparallel to @ if the angular
speed is decreasing in time.

Analysis Model: Rigid Object Under
Constant Angular Acceleration

In our study of translational motion, after introducing the kinematic variables, we
considered the special case of a particle under constant acceleration. We follow the
same procedure here for a rigid object under constant angular acceleration.

Imagine a rigid object such as the CD in Figure 10.1 rotates about a fixed axis
and has a constant angular acceleration. In parallel with our analysis model of the
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We
develop kinematic relationships for this model in this section. Writing Equation
10.5 in the form dw = « diand integrating from ¢, = 0 to ¢, = i gives

w;= w; + at (for constant a) (10.6)

where w;, is the angular speed of the rigid object at time ¢ = 0. Equation 10.6 allows
us to find the angular speed w, of the object at any later time /. Substituting Equa-
tion 10.6 into Equation 10.3 and integrating once more, we obtain

0,=10,+ w;it + sat®  (for constant a) (10.7)

where 6, is the angular position of the rigid object at time ¢ = 0. Equation 10.7
allows us to find the angular position 6,of the object at any later time . Eliminating
tfrom Equations 10.6 and 10.7 gives

wf = o +2a0,—0,) (for constant a) (10.8)

This equation allows us to find the angular speed w,of the rigid object for any value of
its angular position 6. If we eliminate a between Equations 10.6 and 10.7, we obtain

0,=06;+ sw; + w,)t (for constant a) (10.9)

Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under
constant acceleration (Chapter 2). They can be generated from the equations for
translational motion by making the substitutions x — 6, v — w, and ¢ — «. Table
10.1 compares the kinematic equations for the rigid object under constant angular
acceleration and particle under constant acceleration models.

uick Quiz 10.2 Consider again the pairs of angular positions for the rigid
object in Quick Quiz 10.1. If the object starts from rest at the initial angular
position, moves counterclockwise with constant angular acceleration, and

¢ arrives at the final angular position with the same angular speed in all three
» cases, for which choice is the angular acceleration the highest?

IELURDAR  Kinematic Equations for Rotational and Translational Motion

Rigid Object Under Constant Angular Acceleration Particle Under Constant Acceleration

W= w; + at (10.6) v = v, + at (2.13)
0,=0,+ wl+ 5o (10.7) %= %+ vl + zal (2.16)
wa =w?+ 2(1(0] —0) (10.8) 1}/2 =2+ 2(1,(xf— x,) (2.17)
0,=06,+ 3(w, + w1 (10.9) %= x+ g(u; + vt (2.15)
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AUELWSTRVOLGE  Rigid Object Under Constant Angular Acceleration

Imagine an object that undergoes a spin- Examples:

ning motion such that its angular accelera- ® during its spin cycle, the tub of a clothes

tion is constant. The equations describing \ = constant washer begins from rest and accelerates up
its angular position and angula.r speed are to its final spin speed
analogous to those for the particle under o

a workshop grinding wheel is turned off

constant acceleration model: and comes to rest under the action of a

w, =+ al (10.6) constant friction force in the bearings of
. the wheel
0,=10,+ ot + sar’ (10.7) e a gyroscope is powered up and approaches
wf? = w2+ 2a(6, — 6,) (10.8) its operating speed (Chapter 11)
¢ the crankshaft of a diesel engine changes
0,=0,+ 3w, + 0)t (10.9) to a higher angular speed (Chapter 22)

Example 10.1 Rotating Wheel

A wheel rotates with a constant angular acceleration of 3.50 rad/s’.

(A) If the angular speed of the wheel is 2.00 rad/s at ¢, = 0, through what angular displacement does the wheel rotate
in 2.00 s?

SOLUTION

Conceptualize Look again at Figure 10.1. Imagine that the compact disc rotates with its angular speed increasing at
a constant rate. You start your stopwatch when the disc is rotating at 2.00 rad/s. This mental image is a model for the
motion of the wheel in this example.

Categorize The phrase “with a constant angular acceleration” tells us to apply the rigid object under constant angular
acceleration model to the wheel.

Analyze From the rigid object under constant angular A0 =0,—0,= ot + saul?
acceleration model, choose Equation 10.7 and rearrange it
so that it expresses the angular displacement of the wheel:

Substitute the known values to find the angular displace- A0 = (2.00 rad/s)(2.00 s) + %(3.50 rad/s?)(2.00 s)?
mentat /= 2.00s: = 11.0rad = (11.0 rad)(180% rad) = 630°

(B) Through how many revolutions has the wheel turned during this time interval?

SOLUTION

1 rev

Multiply the angular displacement found in part (A) by a A6 = 630° 1e: = 1.75rev

. . . 360
conversion factor to find the number of revolutions:
(C) Whatis the angular speed of the wheel at = 2.00 s?
Use Equation 10.6 from the rigid object under constant W=+ at= 2.00 rad/s + (3.50 rad/s2)(2.00 s)
angular acceleration model to find the angular speed at = 9.00 rad/s
t=2.00s:

Finalize We could also obtain this result using Equation 10.8 and the results of part (A). (Try it!)

WEVNRFE]  Suppose a particle moves along a straight line with a constant acceleration of 3.50 m/s?. If the velocity of
the particle is 2.00 m/s at ¢, = 0, through what displacement does the particle move in 2.00 s? What is the velocity of the
particle at ¢ = 2.00 s? continued
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Answer Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathemat-
ical solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

and for the velocity,

Ax= xp— x; =

vt + ;-at2

(2.00m/s)(2.00's) + 5(3.50 m/s?)(2.005)* = 11.0 m

= v;+ at = 2.00 m/s + (3.50 m/5?)(2.00 s) = 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.
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Figure 10.4 Asa rigid object
rotates about the fixed axis (the
zaxis) through O, the point P

has a tangential velocity ¥ that is
always tangent to the circular path
of radius r.

Relation between tangential P>
velocity and angular velocity

Relation between tangential »>
acceleration and angular
acceleration

Angular and Translational Quantities

In this section, we derive some useful relationships between the angular speed and
acceleration of a rotating rigid object and the translational speed and acceleration
of a point in the object. To do so, we must keep in mind that when a rigid object
rotates about a fixed axis as in Figure 10.4, every particle of the object moves in a
circle whose center is on the axis of rotation.

Because point Pin Figure 10.4 moves in a circle, the translational velocity vector ¥
is always tangent to the circular path and hence is called tangential velocity. The mag-
nitude of the tangential velocity of the point Pis by definition the tangential speed
v = ds/dt, where s1is the distance traveled by this point measured along the circular
path. Recalling that s = 0 (Eq. 10.1a) and noting that ris constant, we obtain

ds do
===
dt di

Because d6/dt = w (see Eq. 10.3), it follows that

U= rw (10.10)

As we saw in Equation 4.17, the tangential speed of a point on a rotating rigid
object equals the perpendicular distance of that point from the axis of rotation
multiplied by the angular speed. Therefore, although every point on the rigid
object has the same angular speed, not every point has the same tangential speed
because ris not the same for all points on the object. Equation 10.10 shows that
the tangential speed of a point on the rotating object increases as one moves
outward from the center of rotation, as we would intuitively expect. For example,
the outer end of a swinging golf club moves much faster than a point near the
handle.

We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v:

dv dw
a =—=r—
o dt
(77, = (e (10.11)

That is, the tangential component of the translational acceleration of a point on
a rotating rigid object equals the point’s perpendicular distance from the axis of
rotation multiplied by the angular acceleration.

In Section 4.4, we found that a point moving in a circular path undergoes a
radial acceleration a, directed toward the center of rotation and whose magnitude
is that of the centripetal acceleration v?/r (Fig. 10.5). Because v = rw for a point
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P on a rotating object, we can express the centripetal acceleration at that point in )
The total acceleration

terms of angular speed as we did in Equation 4.18: of point Pis@ =3, + 3,
_v
@, =" =10 (10.12) y \
o
The total acceleration vector at the point is @ = @, + a,, where the magnitude Y
of @, is the centripetal acceleration a,. Because @ is a vector having a radial and '
a tangential component, the magnitude of @ at the point P on the rotating rigid AN o
object is .
\
a = \/a,2 + af = \/1’2 o’ + r2et = 1’\/a2 + ot (10.13) 'l .
0 j
uick Quiz 10.3 Ethan and Joseph are riding on a merry-go-round. Ethan rides
on a horse at the outer rim of the circular platform, twice as far from the cen-

ter of the circular platform as Joseph, who rides on an inner horse. (i) When
the merry-go-round is rotating at a constant angular speed, what is Ethan’s
angular speed? (a) twice Joseph’s (b) the same as Joseph’s (c) half of Joseph’s

Figure 10.5 Asa rigid object
rotates about a fixed axis (the z
axis) through O, the point P expe-

(d) impossible to determine (ii) When the merry-go-round is rotating at a con- riences a tangential componentof
stant angular speed, describe Ethan’s tangential speed from the same list of translational acceleration ¢,and a
» choices. radial component of translational

acceleration a,.

On a compact disc (Fig. 10.6), audio information is stored digitally in a series of pits and flat areas on the surface of
the disc. The alternations between pits and flat areas on the surface represent binary ones and zeros to be read by the
CD player and converted back to sound waves. The pits and flat areas are detected by a system consisting of a laser and
lenses. The length of a string of ones and zeros representing one piece of information is the same everywhere on the
disc, whether the information is near the center of the disc or near its outer edge. So that this length of ones and zeros
always passes by the laser-lens system in the same time interval, the tangential speed of the disc surface at the location
of the lens must be constant. According to Equation 10.10, the angular speed must therefore vary as the laser-lens
system moves radially along the disc. In a typical CD player, the constant speed of the surface at the point of the laser—
lens system is 1.3 m/s.

(A) Find the angular speed of the disc in revolutions per minute when information is being read from the innermost
first track (r = 23 mm) and the outermost final track (» = 58 mm).

SOLUTION

Conceptualize Figure 10.6 shows a photograph of a compact disc. Trace your fin-
ger around the circle marked “23 mm” and mentally estimate the time interval
to go around the circle once. Now trace your finger around the circle marked
“568 mm,” moving your finger across the surface of the page at the same speed as
you did when tracing the smaller circle. Notice how much longer in time it takes
your finger to go around the larger circle. If your finger represents the laser read-
ing the disc, you can see that the disc rotates once in a longer time interval when
the laser reads the information in the outer circle. Therefore, the disc must rotate
more slowly when the laser is reading information from this part of the disc.

© Cengage Learning/George Semple

Categorize This part of the example is categorized as a simple substitution prob- Figure 10.6 (Example 10.2) A
lem. In later parts, we will need to identify analysis models. compact disc.
. . v 1.3 m/s
Use Equation 10.10 to find the angular speed that iy S = 93 % 102m = 57 rad/s
gives the required tangential speed at the position of ! ’ m
the inner track: 1 rev 60 s -
= (57 rad/s)(—)( - ) = 5.4 X 10° rev/min
2 rad /\ 1 min

continued
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b 10.2

v 1.3 m/s
Do the same for the outer track: w,=—=

e W =92%2rad/s = 2.1 X 102 rev/ min
r g m

The CD player adjusts the angular speed o of the disc within this range so that information moves past the objective
lens at a constant rate.

(B) The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc
make during that time?

SOLUTION

Categorize From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with «
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze If ¢ = 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time ¢ is
(74 min) (60 s/min) + 33 s = 4 473 s. We are looking for the angular displacement Af during this time interval.

Use Equation 10.9 to find the angular displacement of A0 =0,—0,= s(w; + a)/)t

the discat ¢ = 4 473 s: — 1(57rad/s + 22 rad/s)(4 473 s) = 1.8 X 10° rad
; : ; 5 1 rev 7
Convert this angular displacement to revolutions: Af = (1.8 X 10° rad) ) 2.8 X 10* rev
T

(C) What s the angular acceleration of the compact disc over the 4 473-s time interval?

SOLUTION

Categorize We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both
equations; only the interpretation of the result is different.

Analyze Use Equation 10.6 to find the angular @y~ ®;  29rad/s — 57 rad/s
acceleration: 13 B 4473 s

= —7.6 X 10" %rad/s?

Finalize The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

The component Fsin ¢ Torque

tends to rotate the wrench

Eonan o tionchG: In our study of translational motion, after investigating the description of motion,

we studied the cause of changes in motion: force. We follow the same plan here:
What is the cause of changes in rotational motion?

Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the
hinges. You will achieve a more rapid rate of rotation for the door by applying the
force near the doorknob than by applying it near the hinges.

When a force is exerted on a rigid object pivoted about an axis, the object tends
to rotate about that axis. The tendency of a force to rotate an object about some
axis is measured by a quantity called torque 7 (Greek letter tau). Torque is a vector,
but we will consider only its magnitude here; we will explore its vector nature in
Chapter 11.

Figure 10.7 The force ¥ hasa

greater rotating tendency about an . . . . : .
s thirough O Finoreasesant Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is

as the moment arm d increases. perpendicular to the page and passes through the center of the bolt. The applied



force F actsatan angle ¢ to the horizontal. We define the magnitude of the torque
associated with the force F around the axis passing through O by the expression

T=7Fsin ¢ = I'd (10.14)

where ris the distance between the rotation axis and the point of application of i‘)
and d is the perpendicular distance from the rotation axis to the line of action of
F. (The line of action of a force is an imaginary line extending out both ends of the
vector representing the force. The dashed line extending from the tail of F in Fig.
10.7 is part of the line of action of F. ) From the right triangle in Figure 10.7 that
has the wrench as its hypotenuse, we see that d = rsin ¢. The quantity d is called
the moment arm (or lever arm) of F.

In Figure 10.7, the only component of F that tends to cause rotation of the
wrench around an axis through O is F'sin ¢, the component perpendicular to a
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos ¢, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition
of torque, the rotating tendency increases as Fincreases and as d increases, which
explains why it is easier to rotate a door if we push at the doorknob rather than ata
point close to the hinges. We also want to apply our push as closely perpendicular
to the door as we can so that ¢ is close to 90°. Pushing sideways on the doorknob
(¢ = 0) will not cause the door to rotate.

If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, Fz tends to rotate the
object clockwise and Fl tends to rotate it counterclockwise. We use the convention
that the sign of the torque resulting from a force is positive if the turning tendency
of the force is counterclockwise and negative if the turning tendency is clockwise.
For Example, in Figure 10.8, the torque resulting from Fl, which has a moment arm
dy, is positive and equal to +F,d;; the torque from Fz is negative and equal to —f,d,.
Hence, the net torque about an axis through O is

27271+72=F1d,1—F2d2

Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change
in rotational motion, but the effectiveness of the forces in causing this change
depends on both the magnitudes of the forces and the moment arms of the forces,
in the combination we call torque. Torque has units of force times length—newton
meters (N - m) in SI units—and should be reported in these units. Do not confuse
torque and work, which have the same units but are very different concepts.

uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of

- wood with a screwdriver and fail, should you find a screwdriver for which the

: handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn
bolt from a piece of metal with a wrench and fail, should you find a wrench for

® Wthh the handle is (a) longer or (b) fatter?

Example 10.3 The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis
shown in the drawing. A rope wrapped around the drum, which has radius R,,
exerts a force T, to the right on the cylinder. A rope wrapped around the core,
which has radius R,, exerts a force Ty downward on the cylinder.

(A) Whatis the net torque acting on the cylinder about the rotation axis (which is
the zaxis in Fig. 10.9)?

continued
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Pitfall Prevention 10.4

Torque Depends on Your Choice
of Axis There is no unique value
of the torque on an object. Its
value depends on your choice of
rotation axis.

< Moment arm

Fy

Figure 10.8 The force fl tends
to rotate the object counterclock-
vlése about an axis through O, and
F, tends to rotate it clockwise.

Figure 10.9 (Example 10.8) A
solid cylinder pivoted about the 22 axis
through O. The moment arm | of T1 is
R, and the moment arm of T2 is Ry.
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SOLUTION

Conceptualize Imagine that the cylinder in Flgure 10.9 is a shaft in a machine. The force T] could be applied by a
drive belt wrapped around the drum. The force TQ could be applied by a friction brake at the surface of the core.

Categorize This example is a substitution problem in which we evaluate the net torque using Equation 10.14.

The torque due to TI about the 1otat10n axis is —R,T;. (The sign is negative because the torque tends to produce
clockwise rotation.) The torque due to Tz is +R,T,. (The sign is positive because the torque tends to produce counter-
clockwise rotation of the cylinder.)

Evaluate the net torque about the rotation axis: E T=T7 T 79= RT, — BT}

As a quick check, notice that if the two forces are of equal magnitude, the net torque is negative because R, > §2. Start-
ing from rest with both forces of equal ma&rlitude acting on it, the cylinder would rotate clockwise because T, would
be more effective at turning it than would T,.

(B) Suppose 7; =5.0N, R, = 1.0 m, 7, = 15 N, and R, = 0.50 m. What is the net torque about the rotation axis, and
which way does the cylinder rotate starting from rest?

Substitute the given values: E 7= (050m)(I5N) — (1.0m)(5.0N) = 25N m

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.

The tangential force on the Analysis Model: Rigid Object Under a Net Torque

particle results in a torque on the
particle about an axis through In Chapter 5, we learned that a net force on an object causes an acceleration of the
the center of the circle. object and that the acceleration is proportional to the net force. These facts are the

basis of the particle under a net force model whose mathematical representation

I is Newton’s second law. In this section, we show the rotational analog of Newton’s
\ second law: the angular acceleration of a rigid object rotating about a fixed axis is
ra R proportional to the net torque acting about that axis. Before discussing the more
i [ complex case of rigid-object rotation, however, it is instructive first to discuss the
’ iF, case of a particle moving in a circular path about some fixed point under the influ-
\ i ence of an external force.
\ r // Consider a particle of mass m rotating in a circle of radius runder the influence
NS g of a tangential net force X F, and a radial net force 3 F, as shown in Figure 10.10.
T The radial net force causes the particle to move in the circular path with a centrip-
Figure 10.10 A particle rotating etal acceleration. The tangential force provides a tangential acceleration @,, and
in a circle under the 1nf1uence ofa
tangential net force > F A radial E Ff, = ma,

net force > F also must be present

. =2 . .
to maintain the circular motion. The magnitude of the net torque due to 2 F, on the particle about an axis perpen-

dicular to the page through the center of the circle is

E T= E For= (ma,)r
Because the tangential acceleration is related to the angular acceleration through
the relationship ¢, = ra (Eq. 10.11), the net torque can be expressed as

2 7= (mra)yr= (mrda (10.15)

Let us denote the quantity mr? with the symbol 7 for now. We will say more about
this quantity below. Using this notation, Equation 10.15 can be written as

>Sr=1Ia (10.16)

That is, the net torque acting on the particle is proportional to its angular accelera-
tion. Notice that 2 7 = Ia has the same mathematical form as Newton’s second law
of motion, 2 F = ma.
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Now let us extend this discussion to a rigid object of arbitrary shape rotating
about a fixed axis passing through a point O as in Figure 10.11. The object can be
regarded as a collection of particles of mass m,. If we impose a Cartesian coordi-
nate system on the object, each particle rotates in a circle about the origin and each
has a tangential acceleration a, produced by an external tangential force of magni-
tude I;. For any given particle, we know from Newton’s second law that

F=m;a
The external torque 7; associated with the force 17), acts about the origin and its
magnitude is given by
T, =11 =7rma,
Because a; = r; a, the expression for 7, becomes

T, = m;ria
Although each particle in the rigid object may have a different translational
acceleration a;, they all have the sameangular acceleration a. With that in mind, we
can add the torques on all of the particles making up the rigid object to obtain the
net torque on the object about an axis through O due to all external forces:

ETCXI = 271 = Emz/"iga = <Emm2>a
[ i [

where a can be taken outside the summation because it is common to all particles.
Calling the quantity in parentheses 7, the expression for X 7., becomes

ext
2 Tt o

This equation for a rigid object is the same as that found for a particle moving in
a circular path (Eq. 10.16). The net torque about the rotation axis is proportional
to the angular acceleration of the object, with the proportionality factor being I,
a quantity that we have yet to describe fully. Equation 10.18 is the mathematical
representation of the analysis model of a rigid object under a net torque, the rota-
tional analog to the particle under a net force.

Let us now address the quantity 7, defined as follows:

1= Em,-rf
i

This quantity is called the moment of inertia of the object, and depends on the
masses of the particles making up the object and their distances from the rotation
axis. Notice that Equation 10.19 reduces to 7 = mr? for a single particle, consistent
with our use of the notation 7 that we used in going from Equation 10.15 to Equa-
tion 10.16. Note that moment of inertia has units of kg - m? in SI units.

Equation 10.18 has the same form as Newton’s second law for a system of par-
ticles as expressed in Equation 9.39:

Efext = M?‘)(:M

(10.17)

(10.18)

(10.19)

Consequently, the moment of inertia / must play the same role in rotational motion
as the role that mass plays in translational motion: the moment of inertia is the
resistance to changes in rotational motion. This resistance depends not only on the
mass of the object, but also on how the mass is distributed around the rotation axis.
Table 10.2 on page 304 gives the moments of inertia® for a number of objects about
specific axes. The moments of inertia of rigid objects with simple geometry (high
symmetry) are relatively easy to calculate provided the rotation axis coincides with
an axis of symmetry, as we show in the next section.

2Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such structures as loaded
beams. Hence, it is often useful even in a nonrotational context.
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The particle of mass m; of the
rigid object experiences a
torque in the same way that the
particle in Figure 10.10 does.

Figure 10.11 A rigid object
rotating about an axis through O.
Each particle of mass m; rotates
about the axis with the same
angular acceleration a.

<4 Torque on a rigid object
is proportional to angular
acceleration

Pitfall Prevention 10.5

No Single Moment of Inertia
There is one major difference
between mass and moment of
inertia. Mass is an inherent prop-
erty of an object. The moment

of inertia of an object depends

on your choice of rotation axis.
Therefore, there is no single value
of the moment of inertia for an
object. There is a minimum value
of the moment of inertia, which is
that calculated about an axis pass-
ing through the center of mass of
the object.
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IELNIYA Moments of Inertia of Homogeneous Rigid Objects
with Different Geometries

Hoop or thin
cylmdrlcal shell
Iem = MR?

Solid cylinder
or disk

Topp= éMRQ

Long, thin rod
with rotation axis
through center

<ULS

@

Hollow cylinder

- -«
1
Ien = §M(R12 + Ry?)

i
Ry

- |-

Rectangular plate

To= éM(a? + )

Long, thin
rod with
rotation axis

1 9 through end
Ioy = = MIL? ¢
12 =< mr2
3
Solid sphere - | ) Thin spherical
T — 2 VIR2 1 shell
oVealre 2 °
Ien = EJWR
—

. uick Quiz 10.5 You turn off your electric drill and find that the time interval
. for the rotating bit to come to rest due to frictional torque in the drill is Az. You
. replace the bit with a larger one that results in a doubling of the moment of
inertia of the drill’s entire rotating mechanism. When this larger bit is rotated
. at the same angular speed as the first and the drill is turned off, the frictional
. torque remains the same as that for the previous situation. What is the time
interval for this second bit to come to rest? (a) 4A¢ (b) 2A¢ (c) At (d) 0.5A¢
é (e) 0.25A¢ (f) impossible to determine

PUELWSTHYOLSE  Rigid Object Under a Net Torque

Imagine you are analyzing the motion of an object that is free to rotate about a fixed axis. The cause

of changes in rotational motion of this object is torque applied to the object and, in parallel to New- [
ton’s second law for translation motion, the torque is equal to the product of the moment of inertia of 7 f _f\\

the object and the angular acceleration: ( % b \ &

D T = I (10.18) -l

The torque, the moment of inertia, and the angular acceleration must all be evaluated around the
same rotation axis.
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GBSV OGN  Rigid Object Under a Net Torque (continued)
Examples:

e a bicycle chain around the sprocket of a bicycle causes the rear wheel of the bicycle to rotate

e an electric dipole moment in an electric field rotates due to the electric force from the field (Chapter 23)

® a magnetic dipole moment in a magnetic field rotates due to the magnetic force from the field (Chapter 30)
e the armature of a motor rotates due to the torque exerted by a surrounding magnetic field (Chapter 31)

Example 10.4 Rotating Rod

A uniform rod of length L and mass M is attached at one end to a frictionless pivot ‘L I J‘

and is free to rotate about the pivot in the vertical plane as in Figure 10.12. The

rod is released from rest in the horizontal position. What are the initial angular ?
J

acceleration of the rod and the initial translational acceleration of its right end?

SOLUTION

Conceptualize Imagine what happens to the rod in Figure 10.12 when it is released.

It rotates clockwise around the pivot at the left end. Figure 10.12 (Example 10.4) A

. . . - . . rod is free to rotate around a pivot at
Categorize The rod is categorized as a rigid object under a net torque. The torque is the left end. The gravitational force

due only to the gravitational force on the rod if the rotation axis is chosen to pass on the rod acts at its center of mass.
through the pivot in Figure 10.12. We cannot categorize the rod as a rigid object

under constant angular acceleration because the torque exerted on the rod and therefore the angular acceleration of
the rod vary with its angular position.

Mg

Analyze The only force contributing to the torque about an axis through the pivot is the gravitational force Mg’
exerted on the rod. (The force exerted by the pivot on the rod has zero torque about the pivot because its moment arm
is zero.) To compute the torque on the rod, we assume the gravitational force acts at the center of mass of the rod as
shown in Figure 10.12.

Write an expression for the magnitude of the net external 2 Text = Mg(é)
torque due to the gravitational force about an axis through
the pivot:

. . . D7 _ Mg(l/2) _ 3g
Use Equation 10.18 to obtain the angular acceleration of the 1) a= 7 = Y75 = 27
rod, using the moment of inertia for the rod from Table 10.2: 3
Use Equation 10.11 with » = L to find the initial translational a,=La= 3g

acceleration of the right end of the rod:

Finalize These values are the initial values of the angular and translational accelerations. Once the rod begins to
rotate, the gravitational force is no longer perpendicular to the rod and the values of the two accelerations decrease,
going to zero at the moment the rod passes through the vertical orientation.

WSS What if we were to place a penny on the end of the rod and then release the rod? Would the penny stay in
contact with the rod?

Answer The result for the initial acceleration of a point on the end of the rod shows that ¢, > ¢. An unsupported
penny falls at acceleration g So, if we place a penny on the end of the rod and then release the rod, the end of the
rod falls faster than the penny does! The penny does not stay in contact with the rod. (Try this with a penny and a
meterstick!)

The question now is to find the location on the rod  from the pivot point, we combine Equation (1) with
at which we can place a penny that will stay in contact  Equation 10.11:
as both begin to fall. To find the translational accelera- 3g

tion of an arbitrary point on the rod at a distance r < L G=ra =g’

continued
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For the penny to stay in contact with the rod, the limiting
case is that the translational acceleration must be equal
to that due to gravity:

Chapter 10 Rotation of a Rigid Object About a Fixed Axis

r= %L
Therefore, a penny placed closer to the pivot than two-

thirds of the length of the rod stays in contact with the
falling rod, but a penny farther out than this point loses

2L contact.

Conceptual Example 10.5 Falling Smokestacks and Tumbling Blocks

When a tall smokestack falls over, it often breaks somewhere along its length before
it hits the ground as shown in Figure 10.13. Why?

SOLUTION

Asthesmokestackrotatesaroundits base, each higher portion of the smokestack falls
with alarger tangential acceleration than the portion belowitaccording to Equation
10.11. The angular acceleration increases as the smokestack tips farther. Eventu-
ally, higher portions of the smokestack experience an acceleration greater than the
acceleration that could result from gravity alone; this situation is similar to that
described in Example 10.4. That can happen only if these portions are being
pulled downward by a force in addition to the gravitational force. The force that
causes that to occur is the shear force from lower portions of the smokestack. Even-
tually, the shear force that provides this acceleration is greater than the smoke-

Kevin Spreekmeester/AGE fotostock

Figure 10.13 (Conceptual
Example 10.5) A falling smoke-
stack breaks at some point along
its length.

stack can withstand, and the smokestack breaks. The same thing happens with a tall tower of children’s toy blocks.
Borrow some blocks from a child and build such a tower. Push it over and watch it come apart at some point before it

strikes the floor.

Example 10.6 Angular Acceleration of a Wheel

A wheel of radius R, mass M, and moment of inertia / is mounted on a frictionless,
horizontal axle as in Figure 10.14. A light cord wrapped around the wheel supports an
object of mass m. When the wheel is released, the object accelerates downward, the cord
unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expres-
sions for the angular acceleration of the wheel, the translational acceleration of the

object, and the tension in the cord.

SOLUTION

Conceptualize Imagine that the object is a bucket in an
old-fashioned water well. It is tied to a cord that passes
around a cylinder equipped with a crank for raising the
bucket. After the bucket has been raised, the system is
released and the bucket accelerates downward while the
cord unwinds off the cylinder.

Categorize We apply two analysis models here. The object
is modeled as a particle under a nel force. The wheel is mod-
eled as a rigid object under a net torque.

Figure 10.14 (Example 10.6)
An object hangs from a cord
wrapped around a wheel.

v mg

Analyze The magnitude of the torque acting on the wheel about its axis of rotation is 7 = TR, where T'is the force
exerted by the cord on the rim of the wheel. (The gravitational force exerted by the Earth on the wheel and the
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normal force exerted by the axle on the wheel both pass through the axis of rotation and therefore produce no
torque.)

From the rigid object under a net torque model, write E Tee = 1t
Equation 10.18:

_ DTex TR

Solve for o and substitute the net torque: 1) «a 7 T
From the particle under a net force model, apply New- E F,=mg—T=ma
ton’s second law to the motion of the object, taking the
downward direction to be positive:

mg— T

Solve for the acceleration a: 2) a=

m
Equations (1) and (2) have three unknowns: «, a, and 7. Because the object and wheel are connected by a cord that
does not slip, the translational acceleration of the suspended object is equal to the tangential acceleration of a point
on the wheel’s rim. Therefore, the angular acceleration a of the wheel and the translational acceleration of the object
are related by @ = Ra.

. . . TR? mg—T
Use this fact together with Equations (1) and (2): (8) a= Ra = 7 = —
m
: mg
Solve for the tension T 4 T= ————
1+ (mR?/1)
. . . . g
Substitute Equation (4) into Equation (2) and solve for a: B, ol
q *) q 2) ®) a 1+ (1) mR)
3 a g
Use a = Ra and Equation (5) to solve for a: a=—=

Finalize We finalize this problem by imagining the behavior of the system in some extreme limits.

UIEENEIE What if the wheel were to become very massive so that / becomes very large? What happens to the accel-
eration a of the object and the tension 7'?

Answer If the wheel becomes infinitely massive, we can imagine that the object of mass m will simply hang from the
cord without causing the wheel to rotate.
We can show that mathematically by taking the limit / — . Equation (5) then becomes

g

= 0
“ 1 + (I/ mR?) -

which agrees with our conceptual conclusion that the object will hang at rest. Also, Equation (4) becomes
mg

T= Y, 5 L —> g
1+ (mR?/1)

S
which is consistent because the object simply hangs at rest in equilibrium between the gravitational force and the ten-
sion in the string.

0NN Calculation of Moments of Inertia

The moment of inertia of a system of discrete particles can be calculated in a
straightforward way with Equation 10.19. We can evaluate the moment of iner-
tia of a continuous rigid object by imagining the object to be divided into many
small elements, each of which has mass Am,. We use the definition I = =, r? Am,
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Moment of inertia P>
of a rigid object

Example 10.7
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and take the limit of this sum as Am; — 0. In this limit, the sum becomes an inte-
gral over the volume of the object:
JrQ dm

It is usually easier to calculate moments of inertia in terms of the volume of
the elements rather than their mass, and we can easily make that change by using
Equation 1.1, p = m/V, where p is the density of the object and Vis its volume. From
this equation, the mass of a small element is dm = p dV. Substituting this result into
Equation 10.20 gives

I= lim >r? Am; =

Am;—»0 ~;

(10.20)

1= JprQ av (10.21)
If the object is homogeneous, p is constant and the integral can be evaluated for a
known geometry. If p is not constant, its variation with position must be known to
complete the integration.

The density given by p = m/V sometimes is referred to as volumetric mass density
because it represents mass per unit volume. Often we use other ways of express-
ing density. For instance, when dealing with a sheet of uniform thickness ¢, we can
define a surface mass density o = pt, which represents mass per unit area. Finally, when
mass is distributed along a rod of uniform cross-sectional area A, we sometimes use
linear mass density A = M/L = pA, which is the mass per unit length.

Uniform Rigid Rod

y Y
Calculate the moment of inertia of a uniform thin rod of length L and mass M (Fig. |
10.15) about an axis perpendicular to the rod (the y’ axis) and passing through its |
center of mass. I
: dx’
[
SOLUTION ! ﬂ h
. . . - Figure 10.15 (Example 10.7) — _—
Conceptuall.ze Imagu?e twirling the. 10d.1n I.*“lg- A uniform rigid rod of length . 0
ure 10.15 with your fingers around its midpoint. The moment of inertia about the -
If you have a meterstick handy, use it to simulate

the spinning of a thin rod and feel the resistance it

offers to being spun.

y" axis is less than that about the y
axis. The latter axis is examined in
Example 10.9.

L |

Categorize This example is a substitution problem, using the definition of moment of inertia in Equation 10.20. As
with any integration problem, the solution involves reducing the integrand to a single variable.
The shaded length element dx’ in Figure 10.15 has a mass dm equal to the mass per unit length A multiplied by dx'.

M
Express dm in terms of dx": dm = Adx' = 7 dx’
L/2 M L/2
Substitute this expression into Equation 10.20, with I, = JTQ dm = J (x')?—dx' = 7J' (x)? dx’
r2 = (x)% -L/2 L L)_;)
M (x,)?, L2 1 9
A RE - uME
-1/2

Check this result in Table 10.2.

Uniform Solid Cylinder

A uniform solid cylinder has a radius R, mass M, and length L. Calculate its moment of inertia about its central axis

(the zaxis in Fig. 10.16).



10.6 Calculation of Moments of Inertia 309

D 10.8

SOLUTION X

Conceptualize To simulate this situation, imagine twirling a can of
frozen juice around its central axis. Don’t twirl a nonfrozen can of

vegetable soup; it is not a rigid object! The liquid is able to move rela- dr ‘ |
tive to the metal can. 1 ! i

Il R
Categorize This example is a substitution problem, using the defini- 1 E\H\
tion of moment of inertia. As with Example 10.7, we must reduce the L } } : : :
integrand to a single variable. }‘l,,:_—::—: -4

It is convenient to divide the cylinder into many cylindrical shells, Figure 10.16 (Exam- 4 ‘(ﬂ;;" i 3 :}')l\\
each having radius # thickness dr, and length L as shown in Figure ple 10.8) Calculating I N EE
10.16. The density of the cylinder is p. The volume dV of each shell js ~ 2P°ut the zaxis fora |
K X L g uniform solid cylinder.
its cross-sectional area multiplied by its length: dV = L dA = L(2rv) dr.
Express dm in terms of dr: dm = p dV = pL2mr) dr
R
Substitute this expression into Equation 10.20: I = Jr‘z dm = JTQ[,DL(QW?’) dr] = 27T,DLJ r®dr=SmpLR"
0
. , M _ M
Use the total volume 7R*L of the cylinder to express P=7= 5
its density: mRL
. . . . 1 M 4_ 1 2
Substitute this value into the expression for 7; I =5m ReL LR* = MR
T

Check this result in Table 10.2.

WSS What if the length of the cylinder in Figure 10.16 is increased to 2L, while the mass M and radius R are
held fixed? How does that change the moment of inertia of the cylinder?

Answer Notice that the result for the moment of inertia of a cylinder does not depend on L, the length of the cylinder.
It applies equally well to a long cylinder and a flat disk having the same mass M and radius R. Therefore, the moment
of inertia of the cylinder is not affected by how the mass is distributed along its length.

The calculation of moments of inertia of an object about an arbitrary axis can be
cumbersome, even for a highly symmetric object. Fortunately, use of an important
theorem, called the parallel-axis theorem, often simplifies the calculation.

To generate the parallel-axis theorem, suppose the object in Figure 10.17a on
page 310 rotates about the z axis. The moment of inertia does not depend on how
the mass is distributed along the z axis; as we found in Example 10.8, the moment
of inertia of a cylinder is independent of its length. Imagine collapsing the three-
dimensional object into a planar object as in Figure 10.17b. In this imaginary pro-
cess, all mass moves parallel to the zaxis until it lies in the xy plane. The coordinates
of the object’s center of mass are now xcy;, Yo, and zqy = 0. Let the mass element
dm have coordinates (x, y, 0) as shown in the view down the z axis in Figure 10.17c.
Because this element is a distance r = Vx? + y? from the z axis, the moment of
inertia of the entire object about the zaxis is

1= JTQ dm = J(XQ + yQ) dm

We can relate the coordinates x, y of the mass element dm to the coordinates of
this same element located in a coordinate system having the object’s center of mass
as its origin. If the coordinates of the center of mass are xqy, You, and zgy = 0
in the original coordinate system centered on O, we see from Figure 10.17c¢ that
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Z

Rotation Axis through
axis CM

Rotation Axis through
axis CM

4 =
. > X
|

Figure 10.17 (a) An arbitrarily shaped rigid object. The origin of the coordinate system is not at
the center of mass of the object. Imagine the object rotating about the zaxis. (b) All mass elements
of the object are collapsed parallel to the zaxis to form a planar object. (c) An arbitrary mass element
dm is indicated in blue in this view down the z axis. The parallel axis theorem can be used with the
geometry shown to determine the moment of inertia of the original object around the z axis.

y

O

— R ——
7\
x___

the relationships between the unprimed and primed coordinates are x = x" + xqy,
y=19%"+ yom> and z = 2’ = 0. Therefore,

I= J[(x, + xCM)2 + (y’ + )’01\1)2 ] dm

= J[(Jc’)2 + (y)? ] dm + 2xcy Jx’ dm + 2ycm Jy’dm + (xor + me)J dm

The first integral is, by definition, the moment of inertia I, about an axis that is
parallel to the z axis and passes through the center of mass. The second two inte-
grals are zero because, by definition of the center of mass, [ x' dm = [ y" dm = 0.
The last integral is simply MD? because [ dm = Mand D? = x.\% + ycy>- Therefore,
we conclude that

Parallel-axis theorem P> I="To " MD? (10.22)

Applying the Parallel-Axis Theorem

Consider once again the uniform rigid rod of mass M and length L shown in Figure 10.15. Find the moment of inertia
of the rod about an axis perpendicular to the rod through one end (the y axis in Fig. 10.15).

SOLUTION

Conceptualize Imagine twirling the rod around an endpoint rather than the midpoint. If you have a meterstick
handy, try it and notice the degree of difficulty in rotating it around the end compared with rotating it around the
center.

Categorize This example is a substitution problem, involving the parallel-axis theorem.

Intuitively, we expect the moment of inertia to be greater than the result Iy = 75ML? from Example 10.7 because
there is mass up to a distance of L away from the rotation axis, whereas the farthest distance in Example 10.7 was only
L/2. The distance between the center-of-mass axis and the yaxisis D = L/2.



10.7 Rotational Kinetic Energy 311

» 10.9

y 5 Ly :
Use the parallel-axis theorem: I=1Iy + MD?=5MI? + M<§> = SMIL*

Check this result in Table 10.2.

Rotational Kinetic Energy

After investigating the role of forces in our study of translational motion, we turned
our attention to approaches involving energy. We do the same thing in our current
study of rotational motion.

In Chapter 7, we defined the kinetic energy of an object as the energy associated
with its motion through space. An object rotating about a fixed axis remains station-
ary in space, so there is no kinetic energy associated with translational motion. The
individual particles making up the rotating object, however, are moving through
space; they follow circular paths. Consequently, there is kinetic energy associated
with rotational motion.

Let us consider an object as a system of particles and assume it rotates about a
fixed z axis with an angular speed w. Figure 10.18 shows the rotating object and
identifies one particle on the object located at a distance 7, from the rotation axis.
If the mass of the ith particle is m; and its tangential speed is v,, its kinetic energy is

e L 2
K; = gmu,

To proceed further, recall that although every particle in the rigid object has the
same angular speed w, the individual tangential speeds depend on the distance 7,
from the axis of rotation according to Equation 10.10. The totalkinetic energy of the
rotating rigid object is the sum of the kinetic energies of the individual particles:

— — 1 2 _ 1 9 9
Kr = EKi— EQmiyi —227”;"1'“)
i i i

We can write this expression in the form

Ky=3 <E mm2> w? (10.23)

where we have factored w? from the sum because it is common to every particle.
We recognize the quantity in parentheses as the moment of inertia of the object,
introduced in Section 10.5.

Therefore, Equation 10.23 can be written

Ky = slw* (10.24)

Although we commonly refer to the quantity j/w? as rotational kinetic energy,
it is not a new form of energy. It is ordinary kinetic energy because it is derived
from a sum over individual kinetic energies of the particles contained in the rigid
object. The mathematical form of the kinetic energy given by Equation 10.24 is
convenient when we are dealing with rotational motion, provided we know how to
calculate 1.

uick Quiz 10.6 A section of hollow pipe and a solid cylinder have the same
radius, mass, and length. They both rotate about their long central axes with
the same angular speed. Which object has the higher rotational kinetic energy?
(a) The hollow pipe does. (b) The solid cylinder does. (c) They have the same

s rotational kinetic energy. (d) It is impossible to determine.

zaxis

Figure 10.18 A rigid object
rotating about the z axis with
angular speed w. The kinetic
energy of the particle of mass m; is
$m;v;2. The total kinetic energy of
the object is called its rotational
kinetic energy.

<« Rotational kinetic energy
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SEHSNIRIN An Unusual Baton i

Four tiny spheres are fastened to the ends of two rods of
negligible mass lying in the xy plane to form an unusual (ll ]

baton (Fig. 10.19). We shall assume the radii of the spheres '

are small compared with the dimensions of the rods. — M- — 1

(A) If the system rotates about the y axis (Fig. 10.19a)
with an angular speed o, find the moment of inertia and ‘
the rotational kinetic energy of the system about this axis.

SOLUTION

Conceptualize Figure 10.19 is a pictorial representation
that helps conceptualize the system of spheres and how
it spins. Model the spheres as particles.

Categorize This example is a substitution problem Figure 10.19 (Example 10.10) Four spheres form an unusual

because it is a straightforward application of the defini- baton. (a) The baton is rotated about the yaxis. (b) The baton is
tions discussed in this section. rotated about the zaxis.

Apply Equation 10.19 to the system: I, = Emlrf = Ma* + Ma* = 2Ma*

5 i i 3 _— 2 1 2y 2 9. 9
Evaluate the rotational kinetic energy using Ky = 30" = 5(2Ma*)0* = Ma*w

Equation 10.24:

That the two spheres of mass m do not enter into this result makes sense because they have no motion about the axis
of rotation; hence, they have no rotational kinetic energy. By similar logic, we expect the moment of inertia about the
xaxis to be I, = 2mb? with a rotational kinetic energy about that axis of K, = mb?w?.

(B) Suppose the system rotates in the xy plane about an axis (the zaxis) through the center of the baton (Fig. 10.19b).
Calculate the moment of inertia and rotational kinetic energy about this axis.

SOLUTION

Apply Equation 10.19 for this new rotation axis: L= Y mr’=Md+ Md* + mb* + mb* = 2Ma®> + 2mb?

Evaluate the rotational kinetic energy using Kp = 5L’ = §(2Md® + 2mb?)w® = (Ma? + mb2)w?
Equation 10.24:

Comparing the results for parts (A) and (B), we conclude that the moment of inertia and therefore the rotational
kinetic energy associated with a given angular speed depend on the axis of rotation. In part (B), we expect the result to
include all four spheres and distances because all four spheres are rotating in the xy plane. Based on the work—kinetic
energy theorem, the smaller rotational kinetic energy in part (A) than in part (B) indicates it would require less work
to set the system into rotation about the yaxis than about the z axis.

What if the mass M is much larger than m? How do the answers to parts (A) and (B) compare?

Answer If M >> m, then m can be neglected and the moment of inertia and the rotational kinetic energy in part (B)
become
I =2Ma* and K= Mda’w?

which are the same as the answers in part (A). If the masses m of the two tan spheres in Figure 10.19 are negligible,
these spheres can be removed from the figure and rotations about the y and z axes are equivalent.

Energy Considerations in Rotational Motion

Having introduced rotational kinetic energy in Section 10.7, let us now see how an
energy approach can be useful in solving rotational problems. We begin by consid-
ering the relationship between the torque acting on a rigid object and its resulting
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rotational motion so as to generate expressions for power and a rotational analog
to the work-kinetic energy theorem. Consider the rigid object pivoted at O in Fig-
ure 10.20. Suppose a single external force F is applied at P, where F lies in the
plane of the page. The work done on the object by F as its point of application
rotates through an infinitesimal distance ds = r d0 is

AW= F -ds = (Fsin ¢)rdo

where F'sin ¢ is the tangential component of T?), or, in other words, the component
of the force along the displacement. Notice that the radial component vector of F
does no work on the object because it is perpendicular to the displacement of
the point of application of F.

Because the magnitude of the torque due to F about an axis through O is
defined as r/'sin ¢ by Equation 10.14, we can write the work done for the infinitesi-
mal rotation as

dW =1 do (10.25)

The rate at which work is being done by F as the object rotates about the fixed axis
through the angle d0 in a time interval dt is

aw_ o

dt dt

Because dW/dlis the instantaneous power P (see Section 8.5) delivered by the force
and d6/di = w, this expression reduces to

P=—=10 (10.26)
di
This equation is analogous to P> = Fvin the case of translational motion, and Equa-
tion 10.25 is analogous to dW = F, dx.

In studying translational motion, we have seen that models based on an energy
approach can be extremely useful in describing a system’s behavior. From what we
learned of translational motion, we expect that when a symmetric object rotates
about a fixed axis, the work done by external forces equals the change in the rota-
tional energy of the object.

To prove that fact, let us begin with the rigid object under a net torque model,
whose mathematical representation is > 7., = lo. Using the chain rule from calcu-
lus, we can express the net torque as

CX

dw do db dw
Stw=la=1—=1———=]—w
dt do dt do

Rearranging this expression and noting that = 7, d

= dWgives
E Tep d0 = dW = lw dw

Integrating this expression, we obtain for the work Wdone by the net external force
acting on a rotating system

@y

W= J lo do = 3lof - 3lo] (10.27)

;
where the angular speed changes from ; to ;. Equation 10.27 is the work—Kkinetic
energy theorem for rotational motion. Similar to the work—kinetic energy theorem
in translational motion (Section 7.5), this theorem states that the net work done by
external forces in rotating a symmetric rigid object about a fixed axis equals the
change in the object’s rotational energy.

This theorem is a form of the nonisolated system (energy) model discussed in
Chapter 8. Work is done on the system of the rigid object, which represents a trans-
fer of energy across the boundary of the system that appears as an increase in the
object’s rotational kinetic energy.

Figure 10.20 A rigid object
rotates about an axis through O
underﬁthe action of an external
force F applied at P.

4 Power delivered to a rotating

rigid object

4 Work-kinetic energy theorem
for rotational motion
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IELIGR DR Useful Equations in Rotational and Translational Motion

Rotational Motion About a Fixed Axis Translational Motion

Angular speed w = d0/d! Translational speed v = dx/di

Angular acceleration o = dw/dt Translational acceleration a = dv/dt

Net torque =7, = la Net force 2F = ma

If o, =w;+at If v=v+al

a = constant 0,= 0, + wit + 5o a = constant X = x;+ v+ sal’

w? =+ 2a(0,—0,) u? = v? + 2a(x,— x;)

9 X

Work W= Jjﬂrd(-) Work W= Jjdex
o, %

Rotational kinetic energy K, = §/w? Kinetic energy K = smu?

Power P = tw Power P = Fv

Angular momentum L = Jw Linear momentum p = mv

Net torque 27 = dL/dt Net force 2F = dp/dt

In general, we can combine this theorem with the translational form of the work—
kinetic energy theorem from Chapter 7. Therefore, the net work done by external
forces on an object is the change in its total kinetic energy, which is the sum of the
translational and rotational kinetic energies. For example, when a pitcher throws a
baseball, the work done by the pitcher’s hands appears as kinetic energy associated
with the ball moving through space as well as rotational kinetic energy associated
with the spinning of the ball.

In addition to the work-kinetic energy theorem, other energy principles can
also be applied to rotational situations. For example, if a system involving rotating
objects is isolated and no nonconservative forces act within the system, the isolated
system model and the principle of conservation of mechanical energy can be used
to analyze the system as in Example 10.11 below. In general, Equation 8.2, the con-
servation of energy equation, applies to rotational situations, with the recognition
that the change in kinetic energy AK will include changes in both translational and
rotational kinetic energies.

Finally, in some situations an energy approach does not provide enough infor-
mation to solve the problem and it must be combined with a momentum approach.
Such a case is illustrated in Example 10.14 in Section 10.9.

Table 10.3 lists the various equations we have discussed pertaining to rotational
motion together with the analogous expressions for translational motion. Notice
the similar mathematical forms of the equations. The last two equations in the left-
hand column of Table 10.3, involving angular momentum L, are discussed in Chap-
ter 11 and are included here only for the sake of completeness.

EIGRUREN Rotating Rod Revisited

A uniform rod of length L and mass M is free to rotate on a frictionless pin passing
through one end (Fig 10.21). The rod is released from rest in the horizontal position.

(A) What is its angular speed when the rod reaches its lowest position?

SOLUTION

Conceptualize Consider Figure 10.21 and imagine the rod rotating downward
through a quarter turn about the pivot at the left end. Also look back at Example
10.8. This physical situation is the same.

Categorize As mentioned in Example 10.4, the angular acceleration of the rod is
not constant. Therefore, the kinematic equations for rotation (Section 10.2) can-

Figure 10.21 (Example 10.11)
A uniform rigid rod pivoted at O
rotates in a vertical plane under the
action of the gravitational force.
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» 10.11

not be used to solve this example. We categorize the system of the rod and the Earth as an isolated system in terms of
energy with no nonconservative forces acting and use the principle of conservation of mechanical energy.

Analyze We choose the configuration in which the rod is hanging straight down as the reference configuration for
gravitational potential energy and assign a value of zero for this configuration. When the rod is in the horizontal
position, it has no rotational kinetic energy. The potential energy of the system in this configuration relative to the
reference configuration is Mgl/2 because the center of mass of the rod is at a height L/2 higher than its position in
the reference configuration. When the rod reaches its lowest position, the energy of the system is entirely rotational
energy slw®, where Iis the moment of inertia of the rod about an axis passing through the pivot.

Using the isolated system (energy) model, write an AK+AU=0
appropriate reduction of Equation 8.2:

Substitute for each of the final and initial energies: (3l0® —0) + (0 — §MgL) = 0

. Mgl MgL 3
Solve for w and use I = TML? (see Table 10.2) for the rod: w = e 71 & _ N
) (A w2 N L

(B) Determine the tangential speed of the center of mass and the tangential speed of the lowest point on the rod
when it is in the vertical position.

SOLUTION

L —
Use Equation 10.10 and the result from part (A): Uom = TW = 9 w = %\/3gL
Because rfor the lowest point on the rod is twice what it =200y = \/@

is for the center of mass, the lowest point has a tangen-
tial speed twice that of the center of mass:

Finalize The initial configuration in this example is the same as that in Example 10.4. In Example 10.4, however, we
could only find the initial angular acceleration of the rod. Applying an energy approach in the current example allows
us to find additional information, the angular speed of the rod at the lowest point. Convince yourself that you could
find the angular speed of the rod at any angular position by knowing the location of the center of mass at this position.

What if we want to find the angular speed of the rod when the angle it makes with the horizontal is 45.0°?
Because this angle is half of 90.0°, for which we solved the problem above, is the angular speed at this configuration
half the answer in the calculation above, that is, %\/Sg/L?

Answer Imagine the rod in Figure 10.21 at the 45.0° position. Use a pencil or a ruler to represent the rod at this posi-
tion. Notice that the center of mass has dropped through more than half of the distance /2 in this configuration.
Therefore, more than half of the initial gravitational potential energy has been transformed to rotational kinetic
energy. So, we should not expect the value of the angular speed to be as simple as proposed above.

Note that the center of mass of the rod drops through a distance of 0.500L as the rod reaches the vertical configu-
ration. When the rod is at 45.0° to the horizontal, we can show that the center of mass of the rod drops through a
distance of 0.354 L. Continuing the calculation, we find that the angular speed of the rod at this configuration is 0.841

V3g/L, (not5V3g/L).

SEMURPA Energy and the Atwood Machine

Two blocks having different masses m; and m, are connected by a string passing over a pulley as shown in Figure 10.22
on page 316. The pulley has a radius R and moment of inertia /about its axis of rotation. The string does not slip on
the pulley, and the system is released from rest. Find the translational speeds of the blocks after block 2 descends
through a distance % and find the angular speed of the pulley at this time.

conlinued
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b 10.12

SOLUTION

Conceptualize We have already seen examples involving the l )
Atwood machine, so the motion of the objects in Figure 10.22 /‘
should be easy to visualize. 1

Categorize Because the string does notslip, the pulley rotates
about the axle. We can neglect friction in the axle because
the axle’s radius is small relative to that of the pulley. Hence, | i
the frictional torque is much smaller than the net torque TI———-J ﬂ
applied by the two blocks provided that their masses are sig- h

nificantly different. Consequently, the system consisting of

the two blocks, the pulley, and the Earth is an isolated system in
terms of energy with no nonconservative forces acting; there-
fore, the mechanical energy of the system is conserved.

Figure 10.22 (Example i
10.12) An Atwood machine with : :
a massive pulley. [

Analyze We define the zero configuration for gravitational potential energy as that which exists when the system is
released. From Figure 10.22, we see that the descent of block 2 is associated with a decrease in system potential energy
and that the rise of block 1 represents an increase in potential energy.

Using the isolated system (energy) model, write AK+AU=0
an appropriate reduction of the conservation of

energy equation:

Substitute for each of the energies: [(émlvf2 + émgvf‘z + é]wf) - 0]+ [(mlgh - 1n2gh) -0]=0

2
v

Use v, = Rw,to substitute for w,: %mlvf + %mwﬁ + ]Z]R_/z = mogh — mgh

1 U 9

2 m1+m2+E v = (mg — my)gh

2(my — my)gh V2
Solve for vy D v= [ e g - }
m; + my + I/R
2 — 172
Use v, = Rw, o solve for w=d_ B { 2(my — my)gh }
"R Rlm +m + IR

Finalize Each block can be modeled as a particle under constant acceleration because it experiences a constant net force.
Think about what you would need to do to use Equation (1) to find the acceleration of one of the blocks. Then imag-
ine the pulley becoming massless and determine the acceleration of a block. How does this result compare with the
result of Example 5.9?

Rolling Motion of a Rigid Object

In this section, we treat the motion of a rigid object rolling along a flat surface. In
general, such motion is complex. For example, suppose a cylinder is rolling on a
straight path such that the axis of rotation remains parallel to its initial orienta-
tion in space. As Figure 10.23 shows, a point on the rim of the cylinder moves in a
complex path called a ¢ycloid. We can simplify matters, however, by focusing on the
center of mass rather than on a point on the rim of the rolling object. As shown
in Figure 10.23, the center of mass moves in a straight line. If an object such as a
cylinder rolls without slipping on the surface (called pure rolling motion), a simple
relationship exists between its rotational and translational motions.

Consider a uniform cylinder of radius R rolling without slipping on a horizontal
surface (Fig. 10.24). As the cylinder rotates through an angle 0, its center of mass
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One light source at the center of a The center
rolling cylinder and another at one
point on the rim illustrate the

different paths these two points take.

The point on the
rim moves in the
path called a cycloid
(red curve).

moves in a
straight line
(green line).

moves a linear distance s = RO (see Eq. 10.1a). Therefore, the translational speed of
the center of mass for pure rolling motion is given by

ds ﬁ_

T Na T

=—= Rw
dt

YoM (10.28)

where o is the angular speed of the cylinder. Equation 10.28 holds whenever a cyl-
inder or sphere rolls without slipping and is the condition for pure rolling motion.
The magnitude of the linear acceleration of the center of mass for pure rolling
motion is

_ ducy do
acv — di E = Ra
where a is the angular acceleration of the cylinder.

Imagine that you are moving along with a rolling object at speed v, staying
in a frame of reference at rest with respect to the center of mass of the object. As
you observe the object, you will see the object in pure rotation around its center
of mass. Figure 10.25a shows the velocities of points at the top, center, and bottom
of the object as observed by you. In addition to these velocities, every point on the
object moves in the same direction with speed v, relative to the surface on which
it rolls. Figure 10.25b shows these velocities for a nonrotating object. In the refer-
ence frame at rest with respect to the surface, the velocity of a given point on the
objectis the sum of the velocities shown in Figures 10.25a and 10.25b. Figure 10.25¢
shows the results of adding these velocities.

Notice that the contact point between the surface and object in Figure 10.25¢
has a translational speed of zero. At this instant, the rolling object is moving in
exactly the same way as if the surface were removed and the object were pivoted at
point Pand spun about an axis passing through P. We can express the total kinetic
energy of this imagined spinning object as

(10.29)

—1 2
K= 21[1(1)

where [,is the moment of inertia about a rotation axis through P.

(10.30)

Combination of
translation and rotation

Pure rotation Pure translation

&——> v =Rw > u ) .
v=vcyt Row =2vcy
CMX v=10 CMH CM
UcMm U =YcMm
U = Rt g Q= V() o v=0
P P P

Henry Leap and Jim Lehman
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Figure 10.23 Two points on a
rolling object take different paths
through space.

”~

‘ s=R#6

Figure 10.24 For pure rolling
motion, as the cylinder rotates
through an angle 0 its center
moves a linear distance s = R6.

Pitfall Prevention 10.6

Equation 10.28 Looks Familiar
Equation 10.28 looks very similar
to Equation 10.10, so be sure to
be clear on the difference. Equa-
tion 10.10 gives the tangential
speed of a point on a rotating
object located a distance r from

a fixed rotation axis if the object
is rotating with angular speed w.
Equation 10.28 gives the trans-
lational speed of the center of
mass of a rolling object of radius R
rotating with angular speed w.

Figure 10.25 The motion of a
rolling object can be modeled as
a combination of pure translation
and pure rotation.
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Total kinetic energy P>
of a rolling object

T

h
S -
0/ SN VeM

Figure 10.26 A sphere roll-

ing down an incline. Mechanical
energy of the sphere-Earth system
is conserved if no slipping occurs.

Because the motion of the imagined spinning object is the same at this instant as
our actual rolling object, Equation 10.30 also gives the kinetic energy of the rolling
object. Applying the parallel-axis theorem, we can substitute I, = Iy, + MR? into
Equation 10.30 to obtain

9

K = ono® + $MR%w?

Using vy = R, this equation can be expressed as
= %I(}MwQ + %M'U(JMQ (10.31)

The term § I’ represents the rotational kinetic energy of the object about its
center of mass, and the term %MvCM2 represents the kinetic energy the object would
have if it were just translating through space without rotating. Therefore, the total
kinetic energy of a rolling object is the sum of the rotational kinetic energy about
the center of mass and the translational kinetic energy of the center of mass. This
statement is consistent with the situation illustrated in Figure 10.25, which shows
that the velocity of a point on the object is the sum of the velocity of the center of
mass and the tangential velocity around the center of mass.

Energy methods can be used to treat a class of problems concerning the roll-
ing motion of an object on a rough incline. For example, consider Figure 10.26,
which shows a sphere rolling without slipping after being released from rest at the
top of the incline. Accelerated rolling motion is possible only if a friction force
is present between the sphere and the incline to produce a net torque about the
center of mass. Despite the presence of friction, no loss of mechanical energy
occurs because the contact point is at rest relative to the surface at any instant.
(On the other hand, if the sphere were to slip, mechanical energy of the sphere—
incline—Earth system would decrease due to the nonconservative force of kinetic
friction.)

In reality, rolling friction causes mechanical energy to transform to internal
energy. Rolling friction is due to deformations of the surface and the rolling object.
For example, automobile tires flex as they roll on a roadway, representing a trans-
formation of mechanical energy to internal energy. The roadway also deforms a
small amount, representing additional rolling friction. In our problem-solving
models, we ignore rolling friction unless stated otherwise.

Using vy = Rw for pure rolling motion, we can express Equation 10.31 as
Yem

P
1 9
R > + s Mugy

K= éICM <

I t
K= §< ;{“2‘ + M>UGM2 (10.32)

For the sphere-Earth system in Figure 10.26, we define the zero configuration of

gravitational potential energy to be when the sphere is at the bottom of the incline.
Therefore, Equation 8.2 gives

AK+AU=0

I k
{%( =+ M>UCM2 — o} + (0 — Mgh) =0

{ 2gh 172 ( |
Y Bl e ——— 10.33
T4 (o / M)

uick Quiz 10.7 A ball rolls without slipping down incline A, starting from rest.

- At the same time, a box starts from rest and slides down incline B, which is iden-
. tical to incline A except that it is frictionless. Which arrives at the bottom first?

¢ (a) The ball arrives first. (b) The box arrives first. (c) Both arrive at the same

o time. (d) It is impossible to determine.
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Sphere Rolling Down an Incline

For the solid sphere shown in Figure 10.26, calculate the translational speed of the center of mass at the bottom of the
incline and the magnitude of the translational acceleration of the center of mass.

SOLUTION

Conceptualize Imagine rolling the sphere down the incline. Compare it in your mind to a book sliding down a fric-
tionless incline. You probably have experience with objects rolling down inclines and may be tempted to think that the
sphere would move down the incline faster than the book. You do not, however, have experience with objects sliding
down frictionless inclines! So, which object will reach the bottom first? (See Quick Quiz 10.7.)

Categorize We model the sphere and the Earth as an isolated system in terms of energy with no nonconservative forces
acting. This model is the one that led to Equation 10.33, so we can use that result.

20h 172
L1+ MR2/ MR?)

Analyze Evaluate the speed of the center of mass of the 1) vey
sphere from Equation 10.33:

This result is less than V2gh, which is the speed an object would have if it simply slid down the incline without rotat-
ing. (Eliminate the rotation by setting I; = 0 in Eq. 10.33.)

To calculate the translational acceleration of the center of mass, notice that the vertical displacement of the sphere
is related to the distance x it moves along the incline through the relationship 2 = xsin 6.
Use this relationship to rewrite Equation (1): vey® = Hgxsin 0
Write Equation 2.17 for an object starting from rest and Vor® = 2acyx
moving through a distance x under constant acceleration:

Equate the preceding two expressions to find aqy,: dey = 3g sin 0

Finalize Both the speed and the acceleration of the center of mass are independent of the mass and the radius of the
sphere. That is, all homogeneous solid spheres experience the same speed and acceleration on a given incline. Try to
verify this statement experimentally with balls of different sizes, such as a marble and a croquet ball.

If we were to repeat the acceleration calculation for a hollow sphere, a solid cylinder, or a hoop, we would obtain
similar results in which only the factor in front of gsin 6 would differ. The constant factors that appear in the expres-
sions for vy and acy depend only on the moment of inertia about the center of mass for the specific object. In all
cases, the acceleration of the center of mass is less than gsin 6, the value the acceleration would have if the incline were
frictionless and no rolling occurred.

SENTIBOREN  Pulling on a Spool®

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizontal

table with friction (Fig. 10.27). With your hand on a light string wrapped around }i\;g—— - // 7 —>:f\\
the axle of radius 1 you pull on the spool with a constant horizontal force of mag- 4 a ! \ \l
nitude 7 to the right. As a result, the spool rolls without slipping a distance L ‘\\_// \ y
along the table with no rolling friction. N S

(A) Find the final translational speed of the center of mass of the spool.

SOLUTION Figure 10.27 (Example 10.14)

. . A spool rests on a horizontal table.
Conceptualize Use Figure 10.27 to visualize the motion of the spool when you A string is wrapped around the axle

pull the string. For the spool to roll through a distance L, notice that your hand and is pulled to the right by a hand.
on the string must pull through a distance different from L.
continued

5Example 10.14 was inspired in part by C. E. Mungan, “A primer on work—energy relationships for introductory physics,” The Physics Teacher, 43:10, 2005.
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P 10.14

Categorize The spoolis a rigid object under a net torque, but the net torque includes that due to the friction force at
the bottom of the spool, about which we know nothing. Therefore, an approach based on the rigid object under a
net torque model will not be successful. Work is done by your hand on the spool and string, which form a noniso-
lated system in terms of energy. Let’s see if an approach based on the nonisolated system (energy) model is fruitful.

Analyze The only type of energy that changes in the system is the kinetic energy of the spool. There is no rolling fric-
tion, so there is no change in internal energy. The only way that energy crosses the system’s boundary is by the work
done by your hand on the string. No work is done by the static force of friction on the bottom of the spool (to the left
in Fig. 10.27) because the point of application of the force moves through no displacement.

Write the appropriate reduction of the conservation of (I) W=AK=AK,,,, + AK,,

energy equation, Equation 8.2:

rans

where Wis the work done on the string by your hand. To find this work, we need to find the displacement of your hand
during the process.

We first find the length of string that has unwound off the spool. If the spool rolls through a distance L, the total
angle through which it rotates is § = L/R. The axle also rotates through this angle.

Use Equation 10.1a to find the total arc length through {=r6=—1L

r
. R
which the axle turns:

This result also gives the length of string pulled off the axle. Your hand will move through this distance plus the dis-
tance L through which the spool moves. Therefore, the magnitude of the displacement of the point of application of
the force applied by your hand is € + L = L(1 + v/R).

Evaluate the work done by your hand on the string: (2) w= TL(] + é)

,
Substitute Equation (2) into Equation (1): TL<1 + E) = dmoen? + Slw?

where /is the moment of inertia of the spool about its center of mass and v, and w are the final values after the wheel
rolls through the distance L.

2
Uem
R2

| ' 9TL(1 + r/R)
Sohe fOr Uom- (3) WCM - 7n(1+—[/7nR2)

(B) Find the value of the friction force f.

SOLUTION

Categorize Because the friction force does no work, we cannot evaluate it from an energy approach. We model the
spool as a nonisolated system, but this time in terms of momenium. The string applies a force across the boundary of the
system, resulting in an impulse on the system. Because the forces on the spool are constant, we can model the spool’s
center of mass as a particle under constant acceleration.

Apply the nonslip rolling condition w = v,/ R: TL(I + Ei) = smuey® + 51

Analyze Write the impulse-momentum theorem (Eq. mey — 0) = (T — [)AL
9.40) for th I:

) for the spoo ) mogy = (T— /)AL
For a particle under constant acceleration starting from rest, Equation 2.14 tells us that the average velocity of the cen-
ter of mass is half the final velocity.

L L
Use Equation 2.2 to find the time interval for the center (5) At= = 2—

. VM av e
of mass of the spool to move a distance L from rest to a CM.avg M
final speed vy
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Substitute Equation (5) into Equation (4):

Solve for the friction force f:

Substitute v, from Equation (3): f=

9L
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2L
muem = (T_f) v
M

771'(/(;]\/[2

=T —
/ 2L

m [QTL(I + 1r/R) }

m(1 + I/ mR?)
(1+7r/R) [[— er]
(1+1/mR2) LI+ mR®

Finalize Notice that we could use the impulse-momentum theorem for the translational motion of the spool while ignor-
ing that the spool is rotating! This fact demonstrates the power of our growing list of approaches to solving problems.

Definitions

The angular position of a rigid object is defined as the angle
0 between a reference line attached to the object and a refer-
ence line fixed in space. The angular displacement of a particle
moving in a circular path or a rigid object rotating about a
fixed axis is A6 =6, — 6,.

The instantaneous angular speed of a particle moving in a
circular path or of a rigid object rotating about a fixed axis is

do

w=—

di

The instantaneous angular acceleration of a particle moving in
a circular path or of a rigid object rotating about a fixed axis is

dw
=— 10.5
T e

When a rigid object rotates about a fixed axis, every part of
the object has the same angular speed and the same angular
acceleration.

Concepts and Principles

When a rigid object rotates about a
fixed axis, the angular position, angu-
lar speed, and angular acceleration are
related to the translational position,
translational speed, and translational
acceleration through the relationships

(10.3)

s= 10 (10.1a)
U= rw (10.10)
a,=ra (10.11)

The magn_i)tude of the torque associated
with a force F acting on an object at a dis-
tance rfrom the rotation axis is

T = rFsin ¢ = Fd (10.14)
where ¢ is the angle between the position vec-
tor of the point of application of the force and
the force vector, and d is the moment arm of
the force, which is the perpendicular distance
from the rotation axis to the line of action of
the force.

The moment of inertia of a system of par-
ticles is defined as

I= > ma? (10.19)

where m;, is the mass of the ith particle and r;is
its distance from the rotation axis.

If a rigid object rotates about a fixed axis with angular speed w, its
rotational kinetic energy can be written

Ky = 3lo® (10.24)

where /is the moment of inertia of the object about the axis of rotation.

The moment of inertia of a rigid object is

I= JTQ dm (10.20)

where ris the distance from the mass element dm to the axis of rotation.

conlinued
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The rate at which work is
done by an external force in
rotating a rigid object about
a fixed axis, or the power
delivered, is

P =10 (10.26)

Chapter 10 Rotation of a Rigid Object About a Fixed Axis

If work is done on a rigid object
and the only result of the work is rota-
tion about a fixed axis, the net work
done by external forces in rotating the
object equals the change in the rota-
tional kinetic energy of the object:

W = %ijg — %]w? (10-27)

Analysis Models for Problem Solving

Rigid Object Under Constant Angu-
lar Acceleration. If a rigid object rotates

about a fixed axis under constant angular
acceleration, one can apply equations of

\ « = constant

kinematics that are analogous to those for

translational motion of a particle under

constant acceleration:

The total kinetic energy of a rigid
object rolling on a rough surface
without slipping equals the rotational
kinetic energy about its center of
mass plus the translational kinetic
energy of the center of mass:

_1 9 4 1 2
K= 3lcqw” + 5 Mugy

(10.31)

Rigid Object Under
a Net Torque. If a rigid
object free to rotate
about a fixed axis has
a net external torque
acting on it, the object
undergoes an angular

\.

o= w; + al
0,=0,+ wit + %at2
wf? = w? + 2a(0,— 6))
0,=0,+ é(w, aF wf)t

Objective Questions

1. A cyclist rides a bicycle with a wheel radius of 0.500 m

across campus. A piece of plastic on the front rim makes
a clicking sound every time it passes through the fork.
If the cyclist counts 320 clicks between her apartment
and the cafeteria, how far has she traveled? (a) 0.50 km
(b) 0.80 km (c) 1.0 km (d) 1.5 km (e) 1.8 km

. Consider an object on a rotating disk a distance rfrom
its center, held in place on the disk by static friction.
Which of the following statements is not true concern-
ing this object? (a) If the angular speed is constant,
the object must have constant tangential speed. (b) If
the angular speed is constant, the object is not accel-
erated. (c) The object has a tangential acceleration
only if the disk has an angular acceleration. (d) If the
disk has an angular acceleration, the object has both a
centripetal acceleration and a tangential acceleration.
(e) The object always has a centripetal acceleration
except when the angular speed is zero.

. A wheel is rotating about a fixed axis with constant
angular acceleration 3 rad/s?. At different moments, its
angular speed is —2 rad/s, 0, and +2 rad/s. For a point
on the rim of the wheel, consider at these moments
the magnitude of the tangential component of accel-
eration and the magnitude of the radial component of
acceleration. Rank the following five items from larg-
est to smallest: (a) |a,| when w = —2 rad/s, (b)|a,| when

acceleration «, where

(10.6)

(107) M= I (10.18)
This equation is the rotational analog

(10.8) to Newton’s second law in the particle

(10.9) under a net force model.

denotes answer available in Student Solutions Manual/Study Guide

o = —2 rad/s, (c)|a] when @ = 0, (d) |a| when & =
2 rad/s, and (e) |a,.| when w = 2 rad/s. If two items are
equal, show them as equal in your ranking. If a quan-
tity is equal to zero, show that fact in your ranking.

. Agrindstone increases in angular speed from 4.00 rad/s

to 12.00 rad/s in 4.00 s. Through what angle does it
turn during that time interval if the angular accelera-
tion is constant? (a) 8.00 rad (b) 12.0 rad (c) 16.0 rad
(d) 32.0 rad (e) 64.0 rad

. Suppose a car’s standard tires are replaced with tires

1.30 times larger in diameter. (i) Will the car’s speed-
ometer reading be (a) 1.69 times too high, (b) 1.30
times too high, (c) accurate, (d) 1.30 times too low,
(e) 1.69 times too low, or (f) inaccurate by an unpre-
dictable factor? (ii) Will the car’s fuel economy in miles
per gallon or km/L appear to be (a) 1.69 times better,
(b) 1.80 times better, (c) essentially the same, (d) 1.30
times worse, or (e) 1.69 times worse?

. Figure OQ10.6 shows a system of four particles joined

by light, rigid rods. Assume ¢ = band M is larger than
m. About which of the coordinate axes does the sys-
tem have (i) the smallest and (ii) the largest moment
of inertia? (a) the x axis (b) the y axis (c) the z axis.
(d) The moment of inertia has the same small value for
two axes. (e) The moment of inertia is the same for all
three axes.
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Figure 0Q10.6

7. As shown in Figure OQ10.7, a cord is wrapped onto a

cylindrical reel mounted on a fixed, frictionless, hori-
zontal axle. When does the reel have a greater mag-
nitude of angular acceleration? (a) When the cord is
pulled down with a constant force of 50 N. (b) When
an object of weight 50 N is hung from the cord and
released. (c) The angular accelerations in parts (a) and
(b) are equal. (d) It is impossible to determine.

Y
/ 4
/ D\
/(i

i/

Figure 0Q10.7 Objective Question 7 and Conceptual Question 4.

Conceptual Questions

. Is it possible to change the translational kinetic energy
of an object without changing its rotational energy?

. Must an object be rotating to have a nonzero moment
of inertia?

. Suppose just two external forces act on a stationary,
rigid object and the two forces are equal in magnitude
and opposite in direction. Under what condition does
the object start to rotate?

. Explain how you might use the apparatus described in
Figure OQ10.7 to determine the moment of inertia of
the wheel. Note: If the wheel does not have a uniform
mass density, the moment of inertia is not necessarily
equal to }MR>.

. Using the results from Example 10.6, how would you
calculate the angular speed of the wheel and the linear
speed of the hanging object at ¢ = 2 s, assuming the
system is released from rest at ¢ = 0?

. Explain why changing the axis of rotation of an object
changes its moment of inertia.

. Suppose you have two eggs, one hard-boiled and the
other uncooked. You wish to determine which is the
hard-boiled egg without breaking the eggs, which

8.

323

Conceptual Questions

A constant net torque is exerted on an object. Which
of the following quantities for the object cannot be
constant? Choose all that apply. (a) angular position
(b) angular velocity (c) angular acceleration (d) moment
of inertia (e) kinetic energy

A basketball rolls across a classroom floor without slip-

10.

11.

ping, with its center of mass moving at a certain speed.
A block of ice of the same mass is set sliding across the
floor with the same speed along a parallel line. Which
object has more (i) kinetic energy and (ii) momentum?
(a) The basketball does. (b) The ice does. (c) The two
quantities are equal. (iii) The two objects encounter a
ramp sloping upward. Which object will travel farther
up the ramp? (a) The basketball will. (b) The ice will.
(c) They will travel equally far up the ramp.

A toy airplane hangs from the ceiling at the bottom
end of a string. You turn the airplane many times to
wind up the string clockwise and release it. The air-
plane starts to spin counterclockwise, slowly at first
and then faster and faster. Take counterclockwise as
the positive sense and assume friction is negligible.
When the string is entirely unwound, the airplane has
its maximum rate of rotation. (i) At this moment, is
its angular acceleration (a) positive, (b) negative, or
(c) zero? (ii) The airplane continues to spin, winding
the string counterclockwise as it slows down. At the
moment it momentarily stops, is its angular accelera-
tion (a) positive, (b) negative, or (c) zero?

Assolid aluminum sphere of radius Rhas moment of iner-
tia /about an axis through its center. Will the moment of
inertia about a central axis of a solid aluminum sphere
of radius 2R be (a) 21, (b) 41, (c) 81, (d) 167, or (e) 321?

denotes answer available in Student Solutions Manual/Study Guide

can be done by spinning the two eggs on the floor
and comparing the rotational motions. (a) Which egg
spins faster? (b) Which egg rotates more uniformly?
(c) Which egg begins spinning again after being
stopped and then immediately released? Explain your
answers to parts (a), (b), and (c).

. Suppose you set your textbook sliding across a gymna-

sium floor with a certain initial speed. It quickly stops
moving because of a friction force exerted on it by the
floor. Next, you start a basketball rolling with the same
initial speed. It keeps rolling from one end of the gym
to the other. (a) Why does the basketball roll so far?
(b) Does friction significantly affect the basketball’s
motion?

(a) What is the angular speed of the second hand of

10.

an analog clock? (b) What is the direction of @ as you
view a clock hanging on a vertical wall? (c) What is the
magnitude of the angular acceleration vector & of the
second hand?

One blade of a pair of scissors rotates counterclockwise
in the xy plane. (a) What is the direction of @& for the
blade? (b) What is the direction of & if the magnitude
of the angular velocity is decreasing in time?
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IElIf you see an object rotating, is there necessarily a net

12.

13.

14.

15.

torque acting on it?

If a small sphere of mass M were placed at the end
of the rod in Figure 10.21, would the result for w be
greater than, less than, or equal to the value obtained
in Example 10.11?

Three objects of uniform density—a solid sphere,
a solid cylinder, and a hollow cylinder—are placed
at the top of an incline (Fig. CQ10.13). They are all
released from rest at the same elevation and roll with-
out slipping. (a) Which object reaches the bottom first?
(b) Which reaches it last? Note: The result is indepen-
dent of the masses and the radii of the objects. (Try
this activity at home!)

*

Figure CQ10.13

Which of the entries in Table 10.2 applies to finding
the moment of inertia (a) of a long, straight sewer pipe
rotating about its axis of symmetry? (b) Of an embroi-
dery hoop rotating about an axis through its center
and perpendicular to its plane? (c) Of a uniform door
turning on its hinges? (d) Of a coin turning about an
axis through its center and perpendicular to its faces?

Figure CQ10.15 shows a side view of a child’s tricycle
with rubber tires on a horizontal concrete sidewalk.
If a string were attached to the upper pedal on the

Chapter 10 Rotation of a Rigid Object About a Fixed Axis

far side and pulled forward horizontally, the tricycle
would start to roll forward. (a) Instead, assume a string
is attached to the lower pedal on the near side and
pulled forward horizontally as shown by A. Will the tri-
cycle start to roll? If so, which way? Answer the same
questions if (b) the string is pulled forward and upward
as shown by B, (c) if the string is pulled straight down
as shown by C, and (d) if the string is pulled forward
and downward as shown by D. (e) What If? Suppose
the string is instead attached to the rim of the front
wheel and pulled upward and backward as shown by E.
Which way does the tricycle roll? (f) Explain a pattern
of reasoning, based on the figure, that makes it easy to
answer questions such as these. What physical quantity

must you evaluate?
? E

= 4

Figure CQ10.15

16. A person balances a meterstick in a horizontal posi-
tion on the extended index fingers of her right and
left hands. She slowly brings the two fingers together.
The stick remains balanced, and the two fingers always
meet at the 50-cm mark regardless of their original
positions. (Try it!) Explain why that occurs.

<  The problems found in this Analysis Model tutorial available in
WebAssign chapter may be assigned Enhanced WebAssign
online in Enhanced WebAssign [(d Guided Problem

1. straightforward; 2. intermediate;

3. challenging WebAssign

full solution available in the Student

VB Master It tutorial available in Enhanced

Watch It video solution available in

Solutions Manual/Study Guide Enhanced WebAssign

Section 10.1 Angular Position, Velocity, and Acceleration

1.

3.

(a) Find the angular speed of the Earth’s rotation about
its axis. (b) How does this rotation affect the shape of
the Earth?

. A potter’s wheel moves uniformly from rest to an angu-

lar speed of 1.00 rev/s in 30.0 s. (a) Find its average
angular acceleration in radians per second per second.
(b) Would doubling the angular acceleration during
the given period have doubled the final angular speed?

During a certain time interval, the angular position

M of a swinging door is described by 6 = 5.00 + 10.07 +

2.00¢2, where 0 is in radians and ¢ is in seconds. Deter-

mine the angular position, angular speed, and angu-
lar acceleration of the door (a) at ¢t = 0 and (b) at ¢ =
3.00s.

4. A bar on a hinge starts from rest and rotates with an
angular acceleration @ = 10 + 64, where « is in rad/s?
and ¢ is in seconds. Determine the angle in radians
through which the bar turns in the first 4.00 s.

Section 10.2 Analysis Model: Rigid Object
Under Constant Angular Acceleration

A wheel starts from rest and rotates with constant
[ angular acceleration to reach an angular speed of
12.0 rad/s in 3.00 s. Find (a) the magnitude of the angu-



6.

lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates
through 50.0 revolutions before coming to rest. Find
the constant angular acceleration of the centrifuge.

An electric motor rotating a workshop grinding wheel
[ at 1.00 X 102 rev/min is switched off. Assume the wheel

10.

11.

has a constant negative angular acceleration of magni-
tude 2.00 rad/s?. (a) How long does it take the grinding
wheel to stop? (b) Through how many radians has the
wheel turned during the time interval found in part (a)?

. A machine part rotates at an angular speed of

0.060 rad/s; its speed is then increased to 2.2 rad/s
at an angular acceleration of 0.70 rad/s?. (a) Find the
angle through which the part rotates before reaching
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration
remains the same, by what factor is the angular dis-
placement changed? Why?

. A dentist’s drill starts from rest. After 3.20 s of con-

stant angular acceleration, it turns at a rate of 2.51 X
10* rev/min. (a) Find the drill’s angular acceleration.
(b) Determine the angle (in radians) through which
the drill rotates during this period.

Why is the following situation impossible? Starting from
rest, a disk rotates around a fixed axis through an
angle of 50.0 rad in a time interval of 10.0 s. The
angular acceleration of the disk is constant during the
entire motion, and its final angular speed is 8.00 rad/s.

A rotating wheel requires 3.00 s to rotate through

il 37.0 revolutions. Its angular speed at the end of the
7} 3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

12.

13.

14.

The tub of a washer goes into its spin cycle, starting
from rest and gaining angular speed steadily for 8.00 s,
at which time it is turning at 5.00 rev/s. At this point,
the person doing the laundry opens the lid, and a
safety switch turns off the washer. The tub smoothly
slows to rest in 12.0 s. Through how many revolutions
does the tub turn while it is in motion?

A spinning wheel is slowed down by a brake, giving it
a constant angular acceleration of —5.60 rad/s?. Dur-
ing a 4.20-s time interval, the wheel rotates through
62.4 rad. What is the angular speed of the wheel at the
end of the 4.20-s interval?

Review. Consider a tall building located on the Earth’s
equator. As the Earth rotates, a person on the top floor of
the building moves faster than someone on the ground
with respect to an inertial reference frame because the
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to
the ground a distance % below, it lands east of the point
vertically below where it was dropped. (a) How far to the
east will the object land? Express your answer in terms
of h, g, and the angular speed w of the Earth. Ignore air
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for = 50.0 m. (c) In your judgment,
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were we justified in ignoring this aspect of the Coriolis
effect in our previous study of free fall? (d) Suppose the
angular speed of the Earth were to decrease due to tidal
friction with constant angular acceleration. Would the
eastward displacement of the dropped object increase
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities

15. A racing car travels on a circular track of radius 250 m.
Assuming the car moves with a constant speed of
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

16. Make an order-of-magnitude estimate of the number
of revolutions through which a typical automobile tire
turns in one year. State the quantities you measure or
estimate and their values.

17. A discus thrower (Fig. P4.33, page 104) accelerates a

M discus from rest to a speed of 25.0 m/s by whirling it
through 1.25 rev. Assume the discus moves on the arc
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude
of the angular acceleration of the discus, assuming it
to be constant. (c) Calculate the time interval required
for the discus to accelerate from rest to 25.0 m/s.

18. Figure P10.18 shows the drive train of a bicycle that

has wheels 67.3 cm in diameter and pedal cranks
17.5 ¢cm long. The cyclist pedals at a steady cadence of
76.0 rev/min. The chain engages with a front sprocket
15.2 cm in diameter and a rear sprocket 7.00 cm in
diameter. Calculate (a) the speed of a link of the chain
relative to the bicycle frame, (b) the angular speed of
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not
necessary for the calculations?

Rear \
sprocket

|
N, /-

I((u% ._’{/7/..:)

S Pedal crank
Front sprocket

Chain

Figure P10.18

A wheel 2.00 m in diameter lies in a vertical plane and

[/}l rotates about its central axis with a constant angular

acceleration of 4.00 rad/s?. The wheel starts at rest at

t = 0, and the radius vector of a certain point P on the

rim makes an angle of 57.3° with the horizontal at this

time. At ¢t = 2.00 s, find (a) the angular speed of the

wheel and, for point P, (b) the tangential speed, (c) the
total acceleration, and (d) the angular position.

20. A car accelerates uniformly from rest and reaches a

M speed of 22.0 m/s in 9.00 s. Assuming the diameter of
a tire is 58.0 cm, (a) find the number of revolutions the
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a
tire in revolutions per second?
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A disk 8.00 cm in radius rotates at a constant rate of
71 1 200 rev/min about its central axis. Determine (a) its

22.

23.

angular speed in radians per second, (b) the tangen-
tial speed at a point 3.00 cm from its center, (c) the
radial acceleration of a point on the rim, and (d) the
total distance a point on the rim moves in 2.00 s.

A straight ladder is leaning against the wall of a house.
The ladder has rails 4.90 m long, joined by rungs
0.410 m long. Its bottom end is on solid but sloping
ground so that the top of the ladder is 0.690 m to the
left of where it should be, and the ladder is unsafe to
climb. You want to put a flat rock under one foot of
the ladder to compensate for the slope of the ground.
(a) What should be the thickness of the rock? (b) Does
using ideas from this chapter make it easier to explain
the solution to part (a)? Explain your answer.

A car traveling on a flat (unbanked), circular track

accelerates uniformly from rest with a tangential accel-

24.

25.

26.

eration of 1.70 m/s?. The car makes it one-quarter of
the way around the circle before it skids off the track.
From these data, determine the coefficient of static
friction between the car and the track.

A car traveling on a flat (unbanked), circular track
accelerates uniformly from rest with a tangential accel-
eration of a. The car makes it one-quarter of the way
around the circle before it skids off the track. From
these data, determine the coefficient of static friction
between the car and the track.

In a manufacturing process, a large, cylindrical roller
is used to flatten material fed beneath it. The diam-
eter of the roller is 1.00 m, and, while being driven into
rotation around a fixed axis, its angular position is
expressed as

0 = 2.50¢> — 0.600¢°

where 6 is in radians and ¢ is in seconds. (a) Find the
maximum angular speed of the roller. (b) What is the
maximum tangential speed of a point on the rim of
the roller? (c) At what time ¢ should the driving force
be removed from the roller so that the roller does not
reverse its direction of rotation? (d) Through how
many rotations has the roller turned between ¢ = 0 and
the time found in part (c)?

Review. A small object with mass 4.00 kg moves coun-
terclockwise with constant angular speed 1.50 rad/s in
a circle of radius 3.00 m centered at the origin. It starts
at the point with position vector 3.001 m. It then under-
goes an angular displacement of 9.00 rad. (a) What is its
new position vector? Use unit-vector notation for all vec-
tor answers. (b) In what quadrant is the particle located,
and what angle does its position vector make with the
positive xaxis? (c) What is its velocity? (d) In what direc-
tion is it moving? (e) What is its acceleration? (f) Make a
sketch of its position, velocity, and acceleration vectors.
(g) What total force is exerted on the object?

Section 10.4 Torque

Find the net torque on the wheel in Figure P10.27 about
I} the axle through O, taking ¢ = 10.0 cm and b = 25.0 cm.
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10.0 N

9.00 N

Figure P10.27

28. The fishing pole in Figure P10.28 makes an angle of
20.0° with the horizontal. What is the torque exerted

by the fish about an axis perpendicular to the page
and passing through the angler’s hand if the fish pulls
on the fishing line with a force ¥ = 100 N at an angle
37.0° below the horizontal? The force is applied at a
point 2.00 m from the angler’s hands.

900 m/\4:1:20~0°
= 7.0°
Y/ 500 37.0

Figure P10.28

Section 10.5 Analysis Model: Rigid Object Under a Net Torque

29. An electric motor turns a flywheel through a drive belt

that joins a pulley on the motor and a pulley that is rig-
idly attached to the flywheel as shown in Figure P10.29.
The flywheel is a solid disk with a mass of 80.0 kg and
a radius R = 0.625 m. It turns on a frictionless axle.
Its pulley has much smaller mass and a radius of r =
0.230 m. The tension 7, in the upper (taut) segment
of the belt is 135 N, and the flywheel has a clockwise
angular acceleration of 1.67 rad/s®. Find the tension in
the lower (slack) segment of the belt.

Figure P10.29

30. A grinding wheel is in the form of a uniform solid disk
of radius 7.00 cm and mass 2.00 kg. It starts from rest
and accelerates uniformly under the action of the con-

stant torque of 0.600 N - m that the motor exerts on
the wheel. (a) How long does the wheel take to reach its
final operating speed of 1 200 rev/min? (b) Through
how many revolutions does it turn while accelerating?



31. A 150-kg merry-go-round in the shape of a uniform,

7] solid, horizontal disk of radius 1.50 m is set in motion
by wrapping a rope about the rim of the disk and pull-
ing on the rope. What constant force must be exerted
on the rope to bring the merry-go-round from rest to
an angular speed of 0.500 rev/s in 2.00 s?

32. Review. A block of mass m; = 2.00 kg and a block of

M mass my, = 6.00 kg are connected by a massless string
over a pulley in the shape of a solid disk having radius
R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-
shaped ramp makes an angle of & = 30.0° as shown
in Figure P10.32. The coefficient of kinetic friction is
0.360 for both blocks. (a) Draw force diagrams of both
blocks and of the pulley. Determine (b) the accelera-
tion of the two blocks and (c) the tensions in the string
on both sides of the pulley.

M, R
my @

2y

Figure P10.32

A model airplane with mass 0.750 kg is tethered to the

7] ground by a wire so that it flies in a horizontal circle
30.0 m in radius. The airplane engine provides a net
thrust of 0.800 N perpendicular to the tethering wire.
() Find the torque the net thrust produces about the
center of the circle. (b) Find the angular acceleration
of the airplane. (c) Find the translational acceleration
of the airplane tangent to its flight path.

34. A disk having moment of inertia 100 kg - m? is free to
rotate without friction, starting from rest, about a fixed
axis through its center. A tangential force whose magni-
tude can range from F= 0 to /= 50.0 N can be applied
at any distance ranging from R = 0 to R = 3.00 m from
the axis of rotation. (a) Find a pair of values of I'and R
that cause the disk to complete 2.00 rev in 10.0 s. (b) Is
your answer for part (a) a unique answer? How many
answers exist?

35. The combination of an applied force and a friction
force produces a constant total torque of 36.0 N - m on
a wheel rotating about a fixed axis.

The applied force acts for 6.00 s.

During this time, the angular

speed of the wheel increases from

0 to 10.0 rad/s. The applied force ’
is then removed, and the wheel M
comes to rest in 60.0 s. Find (a) the

moment of inertia of the wheel,

(b) the magnitude of the torque

due to friction, and (c) the total my
number of revolutions of the wheel

during the entire interval of 66.0 s.

36. Review. Consider the system shown
in Figure P10.36 with m; = 20.0 kg,
my = 12.5 kg, R = 0.200 m, and the
mass of the pulley M = 5.00 kg.

el

Figure P10.36
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Object m, is resting on the floor, and object , is 4.00 m
above the floor when it is released from rest. The pulley
axis is frictionless. The cord is light, does not stretch,
and does not slip on the pulley. (a) Calculate the time
interval required for m; to hit the floor. (b) How would
your answer change if the pulley were massless?

37. A potter’s wheel—a thick stone disk of radius 0.500 m

[ and mass 100 kg—is freely rotating at 50.0 rev/min.
The potter can stop the wheel in 6.00 s by pressing a
wet rag against the rim and exerting a radially inward
force of 70.0 N. Find the effective coefficient of kinetic
friction between wheel and rag.

Section 10.6 Calculation of Moments of Inertia

38. Imagine that you stand tall and turn about a verti-
cal axis through the top of your head and the point
halfway between your ankles. Compute an order-of-
magnitude estimate for the moment of inertia of your
body for this rotation. In your solution, state the quan-
tities you measure or estimate and their values.

39. A uniform, thin, solid door has height 2.20 m, width
0.870 m, and mass 23.0 kg. (a) Find its moment of iner-
tia for rotation on its hinges. (b) Is any piece of data
unnecessary?

40. Two balls with masses M and m are connected by a
rigid rod of length I and negligible mass as shown in
Figure P10.40. For an axis perpendicular to the rod,
(a) show that the system has the minimum moment
of inertia when the axis passes through the center of
mass. (b) Show that this moment of inertia is I = wl?,
where u = mM/(m + M).

e | s

‘ L .
e .

Figure P10.40

41. Figure P10.41 shows a side view of a car tire before it
is mounted on a wheel. Model it as having two side-
walls of uniform thickness 0.635 cm and a tread wall of
uniform thickness 2.50 cm and width 20.0 cm. Assume
the rubber has uniform density 1.10 X 10% kg/m?. Find
its moment of inertia about an axis perpendicular to
the page through its center.

Figure P10.41

42. Following the procedure used in Example 10.7, prove
that the moment of inertia about the y axis of the rigid
rod in Figure 10.15 is $ML2.
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43.

Section 10.7 Rotational

Three identical thin rods, each z
of length L and mass m, are
welded perpendicular to one
another as shown in Figure

P10.48. The assembly is rotated —
about an axis that passes
through the end of one rod and -

is parallel to another. Deter-
mine the moment of inertia of
this structure about this axis.

‘J
7 \
Axis of
rotation

Figure P10.43

Kinetic Energy

44. Rigid rods of negligible mass lying along the y axis con-
M nect three particles (Fig. P10.44). The system rotates

about the x axis with an y
angular speed of 2.00 rad/s.

Find (a) the moment of iner- 4,00 kg 6y =3.00m
tia about the x axis, (b) the

total rotational kinetic energy N
evaluated from §/w® (c) the ~— o )
tangential speed of each 2.00kg @y =—-9.00m

particle, and (d) the total
kinetic energy evaluated from  $.00 kg ?y = —4.00 m
Figure P10.44

——x

> mu? (e) Compare the
answers for kinetic energy in
parts (a) and (b).

The four particles in Figure P10.45 are connected by
M rigid rods of negligible mass. The origin is at the cen-

46.

ter of the rectangle. The system rotates in the xy plane
about the zaxis with an angular speed of 6.00 rad/s. Cal-
culate (a) the moment of inertia of the system about the
zaxis and (b) the rotational kinetic energy of the system.

y
‘%OOkg | 200kg

600m

Tl

400kg

2.00kg @ i
«—4.00 m—]
Figure P10.45
Many machines employ cams for various purposes,
such as opening and closing valves. In Figure P10.46,

the cam is a circular disk of radius R with a hole of
diameter R cut through it. As shown in the figure, the

>y

Figure P10.46

47.
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hole does not pass through the center of the disk. The
cam with the hole cut out has mass M. The cam is
mounted on a uniform, solid, cylindrical shaft of diam-
eter Rand also of mass M. What is the kinetic energy of
the cam-shaft combination when it is rotating with
angular speed w about the shaft’s axis?

A war-wolf or trebuchet is a device used during the Mid-
dle Ages to throw rocks at castles and now sometimes
used to fling large vegetables and pianos as a sport. A
simple trebuchet is shown in Figure P10.47. Model it
as a stiff rod of negligible mass, 3.00 m long, joining
particles of mass m; = 0.120 kg and m, = 60.0 kg at its
ends. It can turn on a frictionless, horizontal axle per-
pendicular to the rod and 14.0 cm from the large-mass
particle. The operator releases the trebuchet from rest
in a horizontal orientation. (a) Find the maximum
speed that the small-mass object attains. (b) While the
small-mass object is gaining speed, does it move with
constant acceleration? (¢) Does it move with constant
tangential acceleration? (d) Does the trebuchet move
with constant angular acceleration? (e) Does it have
constant momentum? (f) Does the trebuchet—Earth
system have constant mechanical energy?

Figure P10.47

Section 10.8 Energy Considerations in Rotational Motion

48.

49.

A horizontal 800-N merry-go-round is a solid disk of
radius 1.50 m and is started from rest by a constant
horizontal force of 50.0 N applied tangentially to the
edge of the disk. Find the kinetic energy of the disk
after 3.00 s.

Big Ben, the nickname for the clock in Elizabeth Tower
(named after the Queen in 2012) in London, has an
hour hand 2.70 m long with a mass of 60.0 kg and a
minute hand 4.50 m long with a mass of 100 kg (Fig.
P10.49). Calculate the total rotational kinetic energy of
the two hands about the axis of rotation. (You may

Travelpix Ltd/Stone/Getty Images

Figure P10.49 Problems 49 and 72.



50.

51.

52.

53.

model the hands as long, thin rods rotated about one
end. Assume the hour and minute hands are rotating
at a constant rate of one revolution per 12 hours and
60 minutes, respectively.)

Consider two objects with m; >
my, connected by a light string
that passes over a pulley having
a moment of inertia of 7 about
its axis of rotation as shown in
Figure P10.50. The string does
not slip on the pulley or stretch.
The pulley turns without fric- ﬂ
tion. The two objects are

released from rest separated by

a vertical distance 2h. (a) Use my
the principle of conservation of
energy to find the translational
speeds of the objects as they
pass each other. (b) Find the angular speed of the pul-
ley at this time.

2h

Figure P10.50

The top in Figure P10.51 has a moment of inertia of
4.00 X 10* kg - m? and is initially at rest. It is free to
rotate about the stationary axis AA". A string, wrapped
around a peg along the axis
of the top, is pulled in such
a manner as to maintain a
constant tension of 5.57 N. If
the string does not slip while
it is unwound from the peg,
what is the angular speed
of the top after 80.0 cm
of string has been pulled off A
the peg?

A
zl>
=

<o =

.l

Figure P10.51
Why s the following situation

impossible? In a large city with an air-pollution problem,
a bus has no combustion engine. It runs over its citywide
route on energy drawn from a large, rapidly rotating fly-
wheel under the floor of the bus. The flywheel is spun
up to its maximum rotation rate of 3 000 rev/min by an
electric motor at the bus terminal. Every time the bus
speeds up, the flywheel slows down slightly. The bus is
equipped with regenerative braking so that the flywheel
can speed up when the bus slows down. The flywheel is
a uniform solid cylinder with mass 1 200 kg and radius
0.500 m. The bus body does work against air resistance
and rolling resistance at the average rate of 25.0 hp as it
travels its route with an average speed of 35.0 km/h.

In Figure P10.53, the hanging object has a mass of m; =
0.420 kg; the sliding block has a mass of my, = 0.850 kg;

» RQ Rl

my

Figure P10.53

54. Review. A thin, cylindri-
cal rod ¢ = 24.0 cm long
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and the pulley is a hollow cylinder with a mass of M =
0.350 kg, an inner radius of R, = 0.020 0 m, and an
outer radius of R, = 0.030 0 m. Assume the mass of the
spokes is negligible. The coefficient of kinetic friction
between the block and the horizontal surface is u;, =
0.250. The pulley turns without friction on its axle. The
light cord does not stretch and does not slip on the pul-
ley. The block has a velocity of v; = 0.820 m/s toward
the pulley when it passes a reference point on the table.
(a) Use energy methods to predict its speed after it has
moved to a second point, 0.700 m away. (b) Find the
angular speed of the pulley at the same moment.

t

d M
with mass m = 1.20 kg has _y
a ball of diameter d =
8.00 cm and mass M =
2.00 kg attached to one
end. The arrangement ¢
is originally vertical and
stationary, with the ball
at the top as shown in
Figure P10.54. The com-
bination is free to pivot
about the bottom end of
the rod after being given a
slight nudge. (a) After the combination rotates through
90 degrees, what is its rotational kinetic energy? (b) What
is the angular speed of the rod and ball? (c) What is the
linear speed of the center of mass of the ball? (d) How
does it compare with the speed had the ball fallen freely
through the same distance of 28 cm?

\

m

=
Figure P10.54

Review. An object with a mass of m = 5.10 kg is
M attached to the free end of a light string wrapped

around a reel of radius R = 0.250 m and mass M =
3.00 kg. The reel is a solid disk, free to rotate in a ver-
tical plane about the horizontal axis passing through
its center as shown in Figure P10.55. The suspended
object is released from rest 6.00 m above the floor.
Determine (a) the tension in the string, (b) the accel-
eration of the object, and (c) the speed with which the
object hits the floor. (d) Verify your answer to part
(c) by using the isolated system (energy) model.

Figure P10.55
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This problem describes one

mining the moment of inertia
of an irregularly shaped object

such as the payload for a satel- =1 P

lite. Figure P10.56 shows a

experimental method for deter- ﬂ
L
é

counterweight of mass m sus-
pended by a cord wound
around a spool of radius
forming part of a turntable sup- Figure P10.56
porting the object. The turnta-

ble can rotate without friction. When the counter-
weight is released from rest, it descends through a
distance h, acquiring a speed v. Show that the moment
of inertia I of the rotating apparatus (including the
turntable) is mr2(2gh/v2 — 1).

[57.JA uniform solid disk of

58.

radius R and mass M is free .

.. Pivot 03
to rotate on a frictionless o=

e

pivot through a point on its - N

rim (Fig. P10.57). If the disk ! i .
is released from rest in the I gl
position shown by the copper- /

colored circle, (a) what is the ~——-

speed of its center of mass Figure P10.57
when the disk reaches the

position indicated by the dashed circle? (b) What
is the speed of the lowest point on the disk in the
dashed position? (c) What If? Repeat part (a) using a
uniform hoop.

The head of a grass string trimmer has 100 g of cord
wound in a light, cylindrical spool with inside diam-
eter 3.00 cm and outside diameter 18.0 cm as shown
in Figure P10.58. The cord has a linear density of
10.0 g/m. A single strand of the cord extends 16.0 cm
from the outer edge of the spool. (a) When switched
on, the trimmer speeds up from 0 to 2 500 rev/min
in 0.215 s. What average power is delivered to the
head by the trimmer motor while it is accelerating?
(b) When the trimmer is cutting grass, it spins at
2 000 rev/min and the grass exerts an average tan-
gential force of 7.65 N on the outer end of the cord,
which is still at a radial distance of 16.0 cm from the
outer edge of the spool. What is the power delivered
to the head under load?

Figure P10.58
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Section 10.9 Rolling Motion of a Rigid Object

A cylinder of mass 10.0 kg rolls without slipping on a
[/ horizontal surface. At a certain instant, its center of
mass has a speed of 10.0 m/s. Determine (a) the trans-
lational kinetic energy of its center of mass, (b) the
rotational kinetic energy about its center of mass, and

(c) its total energy.

60. A solid sphere is released from height /. from the top
of an incline making an angle 6 with the horizontal.
Calculate the speed of the sphere when it reaches the
bottom of the incline (a) in the case that it rolls with-
out slipping and (b) in the case that it slides friction-
lessly without rolling. (c¢) Compare the time intervals
required to reach the bottom in cases (a) and (b).

(a) Determine the acceleration of the center of mass
of a uniform solid disk rolling down an incline making
angle 0 with the horizontal. (b) Compare the accelera-
tion found in part (a) with that of a uniform hoop.
(c) What is the minimum coefficient of friction
required to maintain pure rolling motion for the disk?

62. A smooth cube of mass m and edge length rslides with
speed v on a horizontal surface with negligible friction.
The cube then moves up a smooth incline that makes
an angle 0 with the horizontal. A cylinder of mass m
and radius r rolls without slipping with its center of
mass moving with speed » and encounters an incline
of the same angle of inclination but with sufficient fric-
tion that the cylinder continues to roll without slipping.
(a) Which object will go the greater distance up the
incline? (b) Find the difference between the maximum
distances the objects travel up the incline. (c) Explain
what accounts for this difference in distances traveled.

63. A uniform solid disk and a uniform hoop are placed
side by side at the top of an incline of height . (a) If
they are released from rest and roll without slipping,
which object reaches the bottom first? (b) Verify your
answer by calculating their speeds when they reach the
bottom in terms of /.

A tennis ball is a hollow sphere with a thin wall. It is set
rolling without slipping at 4.03 m/s on a horizontal sec-
tion of a track as shown in Figure P10.64. It rolls around
the inside of a vertical circular loop of radius r =
45.0 cm. As the ball nears the bottom of the loop, the
shape of the track deviates from a perfect circle so that
the ball leaves the track ata point 2 = 20.0 cm below the
horizontal section. (a) Find the ball’s speed at the top
of the loop. (b) Demonstrate that the ball will not fall
from the track at the top of the loop. (c) Find the ball’s
speed as it leaves the track at the bottom. (d) What If?
Suppose that static friction between ball and track were

Figure P10.64
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negligible so that the ball slid instead of rolling. Would
its speed then be higher, lower, or the same at the top of
the loop? (e) Explain your answer to part (d).

A metal can containing condensed mushroom soup
has mass 215 g, height 10.8 cm, and diameter 6.38 cm.
It is placed at rest on its side at the top of a 3.00-m-long
incline that is at 25.0° to the horizontal and is then
released to roll straight down. It reaches the bottom
of the incline after 1.50 s. (a) Assuming mechanical
energy conservation, calculate the moment of inertia
of the can. (b) Which pieces of data, if any, are unnec-
essary for calculating the solution? (c) Why can’t the
moment of inertia be calculated from I = §mr? for the
cylindrical can?

Additional Problems

66.

As shown in Figure 10.13 on page 306, toppling chim-
neys often break apart in midfall because the mor-
tar between the bricks cannot withstand much shear
stress. As the chimney begins to fall, shear forces must
act on the topmost sections to accelerate them tangen-
tially so that they can keep up with the rotation of the
lower part of the stack. For simplicity, let us model
the chimney as a uniform rod of length ¢ pivoted at
the lower end. The rod starts at rest in a vertical posi-
tion (with the frictionless pivot at the bottom) and falls
over under the influence of gravity. What fraction of
the length of the rod has a tangential acceleration
greater than gsin 6, where 0 is the angle the chimney
makes with the vertical axis?

67.|Review. A 4.00-m length of light nylon cord is wound
Yij around a uniform cylindrical spool of radius 0.500 m
[ and mass 1.00 kg. The spool is mounted on a friction-

68.

less axle and is initially at rest. The cord is pulled from
the spool with a constant acceleration of magnitude
2.50 m/s%. (a) How much work has been done on the
spool when it reaches an angular speed of 8.00 rad/s?
(b) How long does it take the spool to reach this angu-
lar speed? (c) How much cord is left on the spool when
it reaches this angular speed?

An elevator system in a tall building consists of a
800-kg car and a 950-kg counterweight joined by a light
cable of constant length that passes over a pulley of
mass 280 kg. The pulley, called a sheave, is a solid cylin-
der of radius 0.700 m turning on a horizontal axle. The
cable does not slip on the sheave. A number » of peo-
ple, each of mass 80.0 kg, are riding in the elevator car,
moving upward at 3.00 m/s and approaching the floor
where the car should stop. As an energy-conservation
measure, a computer disconnects the elevator motor
at just the right moment so that the sheave—car—
counterweight system then coasts freely without fric-
tion and comes to rest at the floor desired. There it is
caught by a simple latch rather than by a massive brake.
(a) Determine the distance d the car coasts upward as
a function of n. Evaluate the distance for (b) n = 2,
(c) » =12, and (d) n = 0. (e) For what integer values
of n does the expression in part (a) apply? (f) Explain
your answer to part (e). (g) If an infinite number of
people could fit on the elevator, what is the value of d?

69.

70.

71.

72.
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A shaft is turning at 65.0 rad/s at time ¢ = 0. Thereaf-
ter, its angular acceleration is given by

a = -10.0 — 5.00¢

where « is in rad/s? and (is in seconds. (a) Find the
angular speed of the shaft at ¢ = 3.00 s. (b) Through
what angle does it turn between ¢ = 0 and ¢ = 3.00 s?

A shaft is turning at angular speed w at time ¢ = 0.
Thereafter, its angular acceleration is given by

a=A+ Bt

(@) Find the angular speed of the shaft at time ¢
(b) Through what angle does it turn between ¢ = 0 and ¢?

Review. A mixing beater consists of three thin rods,
each 10.0 cm long. The rods diverge from a central
hub, separated from each other by 120°, and all turn
in the same plane. A ball is attached to the end of each
rod. Each ball has cross-sectional area 4.00 cm? and is
so shaped that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at
1 000 rev/min (a) in air and (b) in water.

The hour hand and the minute hand of Big Ben, the
Elizabeth Tower clock in London, are 2.70 m and 4.50 m
long and have masses of 60.0 kg and 100 kg, respec-
tively (see Fig. P10.49). (a) Determine the total torque
due to the weight of these hands about the axis of rota-
tion when the time reads (i) 3:00, (ii) 5:15, (iii) 6:00,
(iv) 8:20, and (v) 9:45. (You may model the hands as
long, thin, uniform rods.) (b) Determine all times
when the total torque about the axis of rotation is zero.
Determine the times to the nearest second, solving a
transcendental equation numerically.

A long, uniform rod of length I and mass M is pivoted

74.

about a frictionless, horizontal pin through one end.
The rod is nudged from rest in a vertical position as
shown in Figure P10.73. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of
its angular acceleration, (c) the xand y components of
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

y

|
1N\

Pin @

Figure P10.73

A bicycle is turned upside down while its owner repairs
a flat tire on the rear wheel. A friend spins the front
wheel, of radius 0.381 m, and observes that drops
of water fly off tangentially in an upward direction
when the drops are at the same level as the center of
the wheel. She measures the height reached by drops
moving vertically (Fig. P10.74 on page 332). A drop
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75.

76.

that breaks loose from the tire on one turn rises 4 =
54.0 cm above the tangent point. A drop that breaks
loose on the next turn rises 51.0 cm above the tangent
point. The height to which the drops rise decreases
because the angular speed of the wheel decreases.
From this information, determine the magnitude of
the average angular acceleration of the wheel.

Figure P10.74 Problems 74 and 75.

A bicycle is turned upside down while its owner repairs
a flat tire on the rear wheel. A friend spins the front
wheel, of radius R, and observes that drops of water
fly off tangentially in an upward direction when the
drops are at the same level as the center of the wheel.
She measures the height reached by drops moving ver-
tically (Fig. P10.74). A drop that breaks loose from the
tire on one turn rises a distance /; above the tangent
point. A drop that breaks loose on the next turn rises
a distance hy, < h; above the tangent point. The height
to which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

(a) What is the rotational kinetic energy of the Earth
about its spin axis? Model the Earth as a uniform
sphere and use data from the endpapers of this book.
(b) The rotational kinetic energy of the Earth is
decreasing steadily because of tidal friction. Assuming
the rotational period decreases by 10.0 us each year,
find the change in one day.

Review. As shown in Figure P10.77, two blocks are con-

[(13 nected by a string of negligible mass passing over a pul-

ley of radius r= 0.250 m and moment of inertia I. The
block on the frictionless incline is moving with a con-
stant acceleration of magnitude a = 2.00 m/s%. From
this information, we wish to find the moment of inertia
of the pulley. (a) What analysis model is appropriate
for the blocks? (b) What analysis model is appropriate

Figure P10.77
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for the pulley? (c) From the analysis model in part (a),
find the tension 7';. (d) Similarly, find the tension 7.
(e) From the analysis model in part (b), find a symbolic
expression for the moment of inertia of the pulley in
terms of the tensions 7; and 75, the pulley radius 7 and
the acceleration «. (f) Find the numerical value of the
moment of inertia of the pulley.

Review. A string is wound around a

79.

uniform disk of radius R and mass
M. The disk is released from rest
with the string vertical and its top
end tied to a fixed bar (Fig. P10.78).
Show that (a) the tension in the
string is one third of the weight of
the disk, (b) the magnitude of the
acceleration of the center of mass is
2¢/3, and (c) the speed of the cen-
ter of mass is (4gh/3)"? after the disk has descended
through distance /. (d) Verify your answer to part (c)
using the energy approach.

The reel shown in Figure P10.79 has radius R and
moment of inertia /. One end of the block of mass m is
connected to a spring of force constant k, and the other
end is fastened to a cord wrapped around the reel. The
reel axle and the incline are frictionless. The reel is
wound counterclockwise so that the spring stretches a
distance d from its unstretched position and the reel is
then released from rest. Find the angular speed of the
reel when the spring is again unstretched.

]
LEA).

Figure P10.78

Figure P10.79

80. A common demonstration, illustrated in Figure P10.80,

consists of a ball resting at one end of a uniform board
of length ¢ that is hinged at the other end and elevated
at an angle 6. A light cup is attached to the board at
r. so that it will catch the ball when the support stick
is removed suddenly. (a) Show that the ball will lag
behind the falling board when 6 is less than 35.3°

Cup
AL
ey
\

¢ Support
stick

Hinged end

Figure P10.80



(b) Assuming the board is 1.00 m long and is sup-
ported at this limiting angle, show that the cup must be
18.4 cm from the moving end.

81. A uniform solid sphere of radius r is placed on the
inside surface of a hemispherical bowl with radius R.
The sphere is released from rest at an angle 6 to the
vertical and rolls without slipping (Fig. P10.81). Deter-
mine the angular speed of the sphere when it reaches
the bottom of the bowl.

I
I
I
I
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Figure P10.81

82.|Review. A spool of wire of mass M and radius R is
unwound under a constant force F (Fig. P10.82). Assum-
ing the spool is a uniform, solid cylinder that doesn’t
slipghow that (a) the acceleration of the center of mass
is4 F /3M and (b) the force of friction is to the right and
equal in magnitude to /3. (c) If the cylinder starts from
rest and rolls without slipping, what is the speed of its
center of mass after it has rolled through a distance d?

M

F
—~———
X

Figure P10.82

83. A solid sphere of mass m and radius rrolls without slip-
ping along the track shown in Figure P10.83. It starts
from rest with the lowest point of the sphere at height %
above the bottom of the loop of radius R, much larger
than . (a) What is the minimum value of % (in terms of
R) such that the sphere completes the loop? (b) What
are the force components on the sphere at the point P
if h = 3R?

Solid sphere of mass m
and radius r << R.

Figure P10.83

84. A thin rod of mass 0.630 kg and length 1.24 m is at
rest, hanging vertically from a strong, fixed hinge at its
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top end. Suddenly, a horizontal impulsive force 14.71 N
is applied to it. (a) Suppose the force acts at the bot-
tom end of the rod. Find the acceleration of its center
of mass and (b) the horizontal force the hinge exerts.
(c) Suppose the force acts at the midpoint of the rod.
Find the acceleration of this point and (d) the horizon-
tal hinge reaction force. (e) Where can the impulse
be applied so that the hinge will exert no horizontal
force? This point is called the center of percussion.

85. A thin rod of length / and mass M is held vertically
with its lower end resting on a frictionless, horizon-
tal surface. The rod is then released to fall freely.
(a) Determine the speed of its center of mass just
before it hits the horizontal surface. (b) What If?
Now suppose the rod has a fixed pivot at its lower end.
Determine the speed of the rod’s center of mass just
before it hits the surface.

86. Review. A clown balances a small spherical grape at
the top of his bald head, which also has the shape of
a sphere. After drawing sufficient applause, the grape
starts from rest and rolls down without slipping. It will
leave contact with the clown’s scalp when the radial
line joining it to the center of curvature makes what
angle with the vertical?

Challenge Problems

87. A plank with a mass M = 6.00 kg rests on top of two
identical, solid, cylindrical rollers that have R=5.00 cm
and m = 2.00 kg (Fig. P10.87). The plank is pulled by a
constant horizontal force F of magnitude 6.00 N
applied to the end of the plank and perpendicular to
the axes of the cylinders (which are parallel). The cyl-
inders roll without slipping on a flat surface. There is
also no slipping between the cylinders and the plank.
(a) Find the initial acceleration of the plank at the
moment the rollers are equidistant from the ends of
the plank. (b) Find the acceleration of the rollers at
this moment. (c) What friction forces are acting at this

moment?
M F
R R
m / m /

Figure P10.87

88. As a gasoline engine operates, a flywheel turning with
the crankshaft stores energy after each fuel explosion,
providing the energy required to compress the next
charge of fuel and air. For the engine of a certain lawn
tractor, suppose a flywheel must be no more than
18.0 cm in diameter. Its thickness, measured along its
axis of rotation, must be no larger than 8.00 cm. The
flywheel must release energy 60.0 ] when its angular
speed drops from 800 rev/min to 600 rev/min. Design
a sturdy steel (density 7.85 X 10° kg/m?) flywheel to
meet these requirements with the smallest mass you
can reasonably attain. Specify the shape and mass of
the flywheel.
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As a result of friction, the angular speed of a wheel

90.

91.

changes with time according to
do

— = wye

dt
where o, and o are constants. The angular speed
changes from 3.50 rad/s at ¢ = 0 to 2.00 rad/s at ¢ =
9.30 s. (a) Use this information to determine o and
w,. Then determine (b) the magnitude of the angular
acceleration at = 3.00 s, (c) the number of revolutions
the wheel makes in the first 2.50 s, and (d) the number
of revolutions it makes before coming to rest.

at

To find the total angular displacement during the
playing time of the compact disc in part (B) of Exam-
ple 10.2, the disc was modeled as a rigid object under
constant angular acceleration. In reality, the angular
acceleration of a disc is not constant. In this problem,
let us explore the actual time dependence of the angu-
lar acceleration. (a) Assume the track on the disc is a
spiral such that adjacent loops of the track are sepa-
rated by a small distance /. Show that the radius rof a
given portion of the track is given by

ho

2

where r; is the radius of the innermost portion of the
track and 0 is the angle through which the disc turns to

arrive at the location of the track of radius . (b) Show
that the rate of change of the angle 0 is given by

ﬁ _ v
dt v+ (h0/27)

where v is the constant speed with which the disc sur-
face passes the laser. (c) From the result in part (b), use
integration to find an expression for the angle 0 as a
function of time. (d) From the result in part (c), use
differentiation to find the angular acceleration of the
disc as a function of time.

r=r1+

A spool of thread consists of a cylinder of radius R, with
end caps of radius R, as depicted in the end view shown
in Figure P10.91. The mass of the spool, including the
thread, is m, and its moment of inertia about an axis
through its center is 1. The spool is placed on a rough,
horizontal surface so that it rolls without slipping when
a force T acting to the right is applied to the free end
of the thread. (a) Show that the magnitude of the fric-
tion force exerted by the surface on the spool is given by

I+ mR R,
S=\ v mrg )"
mRy

(b) Determine the direction of the force of friction.

Figure P10.91

92.

93.

94.

Chapter 10 Rotation of a Rigid Object About a Fixed Axis

A cord is wrapped around a pulley that is shaped like
a disk of mass m and radius ». The cord’s free end is
connected to a block of mass M. The block starts from
rest and then slides down an incline that makes an
angle 6 with the horizontal as shown in Figure P10.92.
The coefficient of kinetic friction between block and
incline is u. (@) Use energy methods to show that the
block’s speed as a function of position d down the
incline is

\/4Mgd(sin 0 — pcos0)

v m+ oM

(b) Find the magnitude of the acceleration of the block
in terms of u, m, M, g, and 6.

m
r

Figure P10.92

A merry-go-round is stationary. A dog is running
around the merry-go-round on the ground just out-
side its circumference, moving with a constant angu-
lar speed of 0.750 rad/s. The dog does not change his
pace when he sees what he has been looking for: a
bone resting on the edge of the merry-go-round one-
third of a revolution in front of him. At the instant the
dog sees the bone (¢ = 0), the merry-go-round begins
to move in the direction the dog is running, with a
constant angular acceleration of 0.015 0 rad/s?. (a) At
what time will the dog first reach the bone? (b) The
confused dog keeps running and passes the bone.
How long after the merry-go-round starts to turn do
the dog and the bone draw even with each other for
the second time?

A uniform, hollow, cylin-

drical spool has inside M
radius R/2, outside radius -

R, and mass M (Fig.

P10.94). It is mounted so o)
that it rotates on a fixed, /
horizontal axle. A coun-

o . R/2 m
terweight of mass m is
connected to the end of a
string wound around the
spool. The counterweight
falls from rest at { = 0 to
a position y at time . Show
that the torque due to the friction forces between spool

and axle is
2y 5y}
=R -=)-M=
7y {m(g tQ) 412

i

1
i

Figure P10.94



