Mechanics

The Honda FCX Clarity, a fuel-cell-
powered automobile available to the
public, albeit in limited quantities.
A fuel cell converts hydrogen fuel
into electricity to drive the motor
attached to the wheels of the car.
Automobiles, whether powered

by fuel cells, gasoline engines, or
batteries, use many of the concepts
and principles of mechanics that
we will study in this first part of the
book. Quantities that we can use to

describe the operation of vehicles
include position, velocity, acceleration,
force, energy, and momentum.
(PRNewsFoto/American Honda)

Physics, the most fundamental physical science, is concerned with the fundamental
principles of the Universe. It is the foundation upon which the other sciences—astronomy,
biology, chemistry, and geology—are based. It is also the basis of a large number of engineer-
ing applications. The beauty of physics lies in the simplicity of its fundamental principles and in the
manner in which just a small number of concepts and models can alter and expand our view of the
world around us.

The study of physics can be divided into six main areas:

1. classical mechanics, concerning the motion of objects that are large relative to atoms and
move at speeds much slower than the speed of light

2. relativity, a theory describing objects moving at any speed, even speeds approaching the
speed of light

3. thermodynamics, dealing with heat, work, temperature, and the statistical behavior of sys-
tems with large numbers of particles

4. electromagnetism, concerning electricity, magnetism, and electromagnetic fields

o1

. optics, the study of the behavior of light and its interaction with materials
6. quantum mechanics, a collection of theories connecting the behavior of matter at the submi-
croscopic level to macroscopic observations

The disciplines of mechanics and electromagnetism are basic to all other branches of classical physics
(developed before 1900) and modern physics (c. 1900-present). The first part of this textbook deals
with classical mechanics, sometimes referred to as Newtonian mechanics or simply mechanics. Many
principles and models used to understand mechanical systems retain their importance in the theories
of other areas of physics and can later be used to describe many natural phenomena. Therefore,
classical mechanics is of vital importance to students from all disciplines. =
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Stonehenge, in southern England,
was built thousands of years ago.
Various theories have been proposed
about its function, including a

burial ground, a healing site, and

a place for ancestor worship. One

of the more intriguing theories
suggests that Stonehenge was an
observatory, allowing measurements
of some of the quantities discussed
in this chapter, such as position of
objects in space and time intervals
between repeating celestial events.
(Stephen Inglis/Shutterstock.com)

WebAssign Interactive content
from this and other chapters may
be assigned online in Enhanced
WebAssign.

Physics and
Measurement

Like all other sciences, physics is based on experimental observations and quantitative

measurements. The main objectives of physics are to identify a limited number of funda-
mental laws that govern natural phenomena and use them to develop theories that can pre-
dict the results of future experiments. The fundamental laws used in developing theories are
expressed in the language of mathematics, the tool that provides a bridge between theory
and experiment.

When there is a discrepancy between the prediction of a theory and experimental
results, new or modified theories must be formulated to remove the discrepancy. Many
times a theory is satisfactory only under limited conditions; a more general theory might be
satisfactory without such limitations. For example, the laws of motion discovered by Isaac
Newton (1642-1727) accurately describe the motion of objects moving at normal speeds but
do not apply to objects moving at speeds comparable to the speed of light. In contrast, the
special theory of relativity developed later by Albert Einstein (1879-1955) gives the same
results as Newton's laws at low speeds but also correctly describes the motion of objects at
speeds approaching the speed of light. Hence, Einstein's special theory of relativity is a more
general theory of motion than that formed from Newton's laws.

Classical physics includes the principles of classical mechanics, thermodynamics, optics,
and electromagnetism developed before 1900. Important contributions to classical physics
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were provided by Newton, who was also one of the originators of calculus as a mathemati-
cal tool. Major developments in mechanics continued in the 18th century, but the fields of
thermodynamics and electromagnetism were not developed until the latter part of the 19th
century, principally because before that time the apparatus for controlled experiments in
these disciplines was either too crude or unavailable.

A major revolution in physics, usually referred to as modern physics, began near the end
of the 19th century. Modern physics developed mainly because many physical phenomena
could not be explained by classical physics. The two most important developments in this
modern era were the theories of relativity and quantum mechanics. Einstein's special the-
ory of relativity not only correctly describes the motion of objects moving at speeds com-
parable to the speed of light; it also completely modifies the traditional concepts of space,
time, and energy. The theory also shows that the speed of light is the upper limit of the
speed of an object and that mass and energy are related. Quantum mechanics was formu-
lated by a number of distinguished scientists to provide descriptions of physical phenomena
at the atomic level. Many practical devices have been developed using the principles of
quantum mechanics.

Scientists continually work at improving our understanding of fundamental laws.
Numerous technological advances in recent times are the result of the efforts of many
scientists, engineers, and technicians, such as unmanned planetary explorations, a vari-
ety of developments and potential applications in nanotechnology, microcircuitry and
high-speed computers, sophisticated imaging techniques used in scientific research and
medicine, and several remarkable results in genetic engineering. The effects of such devel-
opments and discoveries on our society have indeed been great, and it is very likely that
future discoveries and developments will be exciting, challenging, and of great benefit to
humanity.

Standards of Length, Mass, and Time

To describe natural phenomena, we must make measurements of various aspects
of nature. Each measurement is associated with a physical quantity, such as the
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the
book. In mechanics, the three fundamental quantities are length, mass, and time.
All other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to repro-
duce this measurement, a standard must be defined. It would be meaningless if a
visitor from another planet were to talk to us about a length of 8 “glitches” if we do
not know the meaning of the unit glitch. On the other hand, if someone familiar
with our system of measurement reports that a wall is 2 meters high and our unit
of length is defined to be 1 meter, we know that the height of the wall is twice our
basic length unit. Whatever is chosen as a standard must be readily accessible and
must possess some property that can be measured reliably. Measurement standards
used by different people in different places—throughout the Universe—must yield
the same result. In addition, standards used for measurements must not change
with time.

In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Systéme International), and its
fundamental units of length, mass, and time are the meter, kilogram, and second,
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kelvin), electric current (the ampere), luminous
intensity (the candela), and the amount of substance (the mole).
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Reasonable Values Generating
intuition about typical values of
quantities when solving problems
is important because you must
think about your end result and
determine if it seems reasonable.
For example, if you are calculating
the mass of a housefly and arrive
at a value of 100 kg, this answer is
unreasonable and there is an error
somewhere.

Physics and Measurement

Length

We can identify length as the distance between two points in space. In 1120, the
king of England decreed that the standard of length in his country would be named
the yard and would be precisely equal to the distance from the tip of his nose to the
end of his outstretched arm. Similarly, the original standard for the foot adopted
by the French was the length of the royal foot of King Louis XIV. Neither of these
standards is constant in time; when a new king took the throne, length measure-
ments changed! The French standard prevailed until 1799, when the legal standard
of length in France became the meter (m), defined as one ten-millionth of the
distance from the equator to the North Pole along one particular longitudinal line
that passes through Paris. Notice that this value is an Earth-based standard that
does not satisfy the requirement that it can be used throughout the Universe.

As recently as 1960, the length of the meter was defined as the distance between
two lines on a specific platinum-iridium bar stored under controlled conditions
in France. Current requirements of science and technology, however, necessitate
more accuracy than that with which the separation between the lines on the bar
can be determined. In the 1960s and 1970s, the meter was defined as 1 650 763.73
wavelengths! of orange-red light emitted from a krypton-86 lamp. In October 1983,
however, the meter was redefined as the distance traveled by light in vacuum dur-
ing a time of 1/299 792 458 second. In effect, this latest definition establishes that
the speed of light in vacuum is precisely 299 792 458 meters per second. This defi-
nition of the meter is valid throughout the Universe based on our assumption that
light is the same everywhere.

Table 1.1 lists approximate values of some measured lengths. You should study
this table as well as the next two tables and begin to generate an intuition for what
is meant by, for example, a length of 20 centimeters, a mass of 100 kilograms, or a
time interval of 3.2 X 107 seconds.

Mass

The SIfundamental unit of mass, the kilogram (kg), is defined as the mass of a spe-
cific platinum-iridium alloy cylinder kept at the International Bureau of Weights
and Measures at Sévres, France. This mass standard was established in 1887 and

IELIIGNEEY Approximate Values of Some Measured Lengths

Length (m)
Distance from the Earth to the most remote known quasar 1.4 X 10%
Distance from the Earth to the most remote normal galaxies 9 X 10%°
Distance from the Earth to the nearest large galaxy (Andromeda) 2 X 1022
Distance from the Sun to the nearest star (Proxima Centauri) 4 X 1016
One light-year 9.46 x 101
Mean orbit radius of the Earth about the Sun 1.50 x 10"
Mean distance from the Earth to the Moon 3.84 X 108
Distance from the equator to the North Pole 1.00 X 107
Mean radius of the Earth 6.37 X 108
Typical altitude (above the surface) of a satellite orbiting the Earth 2 X 10°
Length of a football field 9.1 x 10!
Length of a housefly 5% 1073
Size of smallest dust particles ~1071
Size of cells of most living organisms ~107°
Diameter of a hydrogen atom ~ 10710
Diameter of an atomic nucleus ~ 1071
Diameter of a proton ~107%

IWe will use the standard international notation for numbers with more than three digits, in which groups of three
digits are separated by spaces rather than commas. Therefore, 10 000 is the same as the common American notation
of 10,000. Similarly, = = 3.14159265 is written as 3.141 592 65.
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Approximate Masses of
Various Objects

Approximate Values of

Some Time Intervals

Time Interval (s)

Mass (kg) Age of the Universe 4 % 10"
Observable Age of the Earth 1.3 X 107
Universe ~ 10%2 Average age of a college student 6.3 X 108
Milky Way One year 3.2 X 107
galaxy ~ 1012 One day 8.6 X 101
Sun 1.99 X 103 One class period 3.0 X 103
Earth 5.98 X 102 Time interval between normal
Moon 7.36 X 1022 heartbeats 8 X 107!
Shark ~ 103 Period of audible sound waves ~1073
Human ~10? Period of typical radio waves ~ 1076
Frog ~ 107! Period of vibration of an atom
Mosquito ~107° in a solid ~ 10713
Bacterium ~1Xx1071% Period of visible light waves ~ 10710
Hydrogen atom  1.67 X 10727 Duration of a nuclear collision ~ 10722
Electron 9.11 X 1073 Time interval for light to cross
a proton ~ 1072

has not been changed since that time because platinum—iridium is an unusually
stable alloy. A duplicate of the Sévres cylinder is kept at the National Institute of
Standards and Technology (NIST) in Gaithersburg, Maryland (Fig. 1.1a). Table 1.2
lists approximate values of the masses of various objects.

Time

Before 1967, the standard of time was defined in terms of the mean solar day. (A solar
day is the time interval between successive appearances of the Sun at the highest point
it reaches in the sky each day.) The fundamental unit of a second (s) was defined as
(37)(55)(31) of a mean solar day. This definition is based on the rotation of one planet,
the Earth. Therefore, this motion does not provide a time standard that is universal.

In 1967, the second was redefined to take advantage of the high precision attain-
able in a device known as an atomic clock (Fig. 1.1b), which measures vibrations of
cesium atoms. One second is now defined as 9 192 631 770 times the period of
vibration of radiation from the cesium-133 atom.?> Approximate values of time
intervals are presented in Table 1.3.

In addition to SI, another system of units, the U.S. customary system, is still used in
the United States despite acceptance of SI by the rest of the world. In this system,
the units of length, mass, and time are the foot (ft), slug, and second, respectively.
In this book, we shall use SI units because they are almost universally accepted in
science and industry. We shall make some limited use of U.S. customary units in
the study of classical mechanics.

In addition to the fundamental SI units of meter, kilogram, and second, we can
also use other units, such as millimeters and nanoseconds, where the prefixes milli-
and nano- denote multipliers of the basic units based on various powers of ten.
Prefixes for the various powers of ten and their abbreviations are listed in Table 1.4
(page 6). For example, 107 m is equivalent to 1 millimeter (mm), and 10% m corre-
sponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 10 grams (g), and 1 mega
volt (MV) is 108 volts (V).

The variables length, time, and mass are examples of fundamental quantities. Most
other variables are derived quantities, those that can be expressed as a mathematical
combination of fundamental quantities. Common examples are area (a product of
two lengths) and speed (a ratio of a length to a time interval).

Period is defined as the time interval needed for one complete vibration.

Reproduced with permission of the BIPM, which
retains full internationally protected copyright.

AP Photo/Focke Strangmann

Figure 1.1 (a) The National
Standard Kilogram No. 20, an
accurate copy of the International
Standard Kilogram kept at Sévres,
France, is housed under a double
bell jar in a vault at the National
Institute of Standards and Tech-
nology. (b) A cesium fountain
atomic clock. The clock will nei-
ther gain nor lose a second in 20
million years.
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A table of the letters in the »
Greek alphabet is provided
on the back endpaper
of this book.
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A piece of
gold consists
of gold atoms.

At the center
of each atom
is a nucleus.

Inside the y
nucleus are

protons

(orange) and |
neutrons

(gray).

Protons and
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quarks. The L~

quark | ] u
composition 7 N
of'a proton is ( aB
shown here. -

Figure 1.2 Levels of organization
in matter.

Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation
107 yocto y 10° kilo k
1072 zepto z 108 mega M
10718 atto a 10° giga G
10715 femto f 1012 tera T
10712 pico p 101 peta P
107 nano n 10'8 exa E
1076 micro I 1021 zetta Z
1073 milli m 10 yotta Y
1072 centi ¢

107! deci d

Another example of a derived quantity is density. The density p (Greek letter
rho) of any substance is defined as its mass per unit volume:

P=7 (1.1)

In terms of fundamental quantities, density is a ratio of a mass to a product of three
lengths. Aluminum, for example, has a density of 2.70 X 10® kg/m?, and iron has a
density of 7.86 X 10° kg/m®. An extreme difference in density can be imagined by
thinking about holding a 10-centimeter (cm) cube of Styrofoam in one hand and a
10-cm cube of lead in the other. See Table 14.1 in Chapter 14 for densities of several
materials.

uick Quiz 1.1 In a machine shop, two cams are produced, one of aluminum
and one of iron. Both cams have the same mass. Which cam is larger? (a) The
aluminum cam is larger. (b) The iron cam is larger. (c) Both cams have the
same size.

[ ]

Matter and Model Building

If physicists cannot interact with some phenomenon directly, they often imagine
a model for a physical system that is related to the phenomenon. For example, we
cannot interact directly with atoms because they are too small. Therefore, we build
a mental model of an atom based on a system of a nucleus and one or more elec-
trons outside the nucleus. Once we have identified the physical components of the
model, we make predictions about its behavior based on the interactions among
the components of the system or the interaction between the system and the envi-
ronment outside the system.

As an example, consider the behavior of matter. A sample of solid gold is shown
at the top of Figure 1.2. Is this sample nothing but wall-to-wall gold, with no empty
space? If the sample is cut in half, the two pieces still retain their chemical iden-
tity as solid gold. What if the pieces are cut again and again, indefinitely? Will the
smaller and smaller pieces always be gold? Such questions can be traced to early
Greek philosophers. Two of them—Leucippus and his student Democritus—could
not accept the idea that such cuttings could go on forever. They developed a model
for matter by speculating that the process ultimately must end when it produces a
particle that can no longer be cut. In Greek, atomos means “not sliceable.” From this
Greek term comes our English word atom.

The Greek model of the structure of matter was that all ordinary matter consists
of atoms, as suggested in the middle of Figure 1.2. Beyond that, no additional struc-
ture was specified in the model; atoms acted as small particles that interacted with
one another, but internal structure of the atom was not a part of the model.
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In 1897, J. J. Thomson identified the electron as a charged particle and as a
constituent of the atom. This led to the first atomic model that contained internal
structure. We shall discuss this model in Chapter 42.

Following the discovery of the nucleus in 1911, an atomic model was developed in
which each atom is made up of electrons surrounding a central nucleus. A nucleus
of gold is shown in Figure 1.2. This model leads, however, to a new question: Does
the nucleus have structure? That is, is the nucleus a single particle or a collection of
particles? By the early 1930s, a model evolved that described two basic entities in the
nucleus: protons and neutrons. The proton carries a positive electric charge, and a
specific chemical element is identified by the number of protons in its nucleus. This
number is called the atomic number of the element. For instance, the nucleus of a
hydrogen atom contains one proton (so the atomic number of hydrogen is 1), the
nucleus of a helium atom contains two protons (atomic number 2), and the nucleus
of a uranium atom contains 92 protons (atomic number 92). In addition to atomic
number, a second number—mass number, defined as the number of protons plus
neutrons in a nucleus—characterizes atoms. The atomic number of a specific ele-
ment never varies (i.e., the number of protons does not vary), but the mass number
can vary (i.e., the number of neutrons varies).

Is that, however, where the process of breaking down stops? Protons, neutrons,
and a host of other exotic particles are now known to be composed of six different
varieties of particles called quarks, which have been given the names of up, down,
strange, charmed, bottom, and top. The up, charmed, and top quarks have electric
charges of +3 that of the proton, whereas the down, strange, and bottom quarks
have charges of —% that of the proton. The proton consists of two up quarks and
one down quark as shown at the bottom of Figure 1.2 and labeled u and d. This
structure predicts the correct charge for the proton. Likewise, the neutron consists
of two down quarks and one up quark, giving a net charge of zero.

You should develop a process of building models as you study physics. In this
study, you will be challenged with many mathematical problems to solve. One of
the most important problem-solving techniques is to build a model for the prob-
lem: identify a system of physical components for the problem and make predic-
tions of the behavior of the system based on the interactions among its components
or the interaction between the system and its surrounding environment.

Dimensional Analysis

In physics, the word dimension denotes the physical nature of a quantity. The dis-
tance between two points, for example, can be measured in feet, meters, or fur-
longs, which are all different ways of expressing the dimension of length.

The symbols we use in this book to specify the dimensions of length, mass, and time
are L, M, and T, respectively.> We shall often use brackets [ ] to denote the dimensions
of a physical quantity. For example, the symbol we use for speed in this book is v, and
in our notation, the dimensions of speed are written [v] = L/T. As another example,
the dimensions of area A are [A] = L2. The dimensions and units of area, volume,
speed, and acceleration are listed in Table 1.5. The dimensions of other quantities,
such as force and energy, will be described as they are introduced in the text.

IEL[GSESES Dimensions and Units of Four Derived Quantities

Quantity Area (A) Volume (V) Speed (v) Acceleration (a)
Dimensions L2 L3 L/T L/T?

SI units m? m? m/s m/s?

U.S. customary units ft? ftd ft/s ft/s?

%The dimensions of a quantity will be symbolized by a capitalized, nonitalic letter such as L or T. The algebraic symbol
for the quantity itself will be an italicized letter such as L for the length of an object or ¢ for time.
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Symbols for Quantities Some
quantities have a small number
of symbols that represent them.
For example, the symbol for time
is almost always ¢. Other quanti-
ties might have various symbols
depending on the usage. Length
may be described with symbols
such as x, y, and z (for position);
r (for radius); a, b, and ¢ (for the
legs of a right triangle); £ (for the
length of an object); d (for a dis-
tance); A (for a height); and

so forth.

Example 1.1

Physics and Measurement

In many situations, you may have to check a specific equation to see if it matches
your expectations. A useful procedure for doing that, called dimensional analysis,
can be used because dimensions can be treated as algebraic quantities. For exam-
ple, quantities can be added or subtracted only if they have the same dimensions.
Furthermore, the terms on both sides of an equation must have the same dimen-
sions. By following these simple rules, you can use dimensional analysis to deter-
mine whether an expression has the correct form. Any relationship can be correct
only if the dimensions on both sides of the equation are the same.

To illustrate this procedure, suppose you are interested in an equation for the
position x of a car at a time /if the car starts from rest at x = 0 and moves with con-
stant acceleration a. The correct expression for this situation is x = §at? as we show
in Chapter 2. The quantity x on the left side has the dimension of length. For the
equation to be dimensionally correct, the quantity on the right side must also have
the dimension of length. We can perform a dimensional check by substituting the
dimensions for acceleration, L/T? (Table 1.5), and time, T, into the equation. That
is, the dimensional form of the equation x = §at® is

N
P
The dimensions of time cancel as shown, leaving the dimension of length on the
right-hand side to match that on the left.
A more general procedure using dimensional analysis is to set up an expression
of the form

X oC alllﬂl

where n and m are exponents that must be determined and the symbol =« indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of the
right side must also be length. That is,

[Llnl m:l =1L = LITO

Because the dimensions of acceleration are L/T? and the dimension of time is T,
we have

(L/TQ)nTm = LITO —% (LnTm*QH) = LITO

The exponents of L and T must be the same on both sides of the equation. From
the exponents of L, we see immediately that » = 1. From the exponents of T, we see
that m — 2n = 0, which, once we substitute for »n, gives us m = 2. Returning to our
original expression x « a"t™, we conclude that x = af? .

D uick Quiz 1.2 True or False: Dimensional analysis can give you the numerical
o value of constants of proportionality that may appear in an algebraic expression.

Analysis of an Equation

Show that the expression v = at, where vrepresents speed, aacceleration, and ¢ an instant of time, is dimensionally correct.

SOLUTION

Identify the dimensions of v from Table 1.5: [v] =
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b 1.1

L, L

Identify the dimensions of @ from Table 1.5 and multiply latl] =5 T ==

b . . ] T T
y the dimensions of #:

Therefore, v = atis dimensionally correct because we have the same dimensions on both sides. (If the expression were
given as v = af?, it would be dimensionally incorrect. Try it and see!)

]
Analysis of a Power Law

Suppose we are told that the acceleration « of a particle moving with uniform speed v in a circle of radius ris propor-
tional to some power of 7 say 7", and some power of v, say v”. Determine the values of » and m and write the simplest
form of an equation for the acceleration.

SOLUTION

Write an expression for ¢ with a dimensionless constant a= krto™
of proportionality k:

. . . L L " Ln+m
Substitute the dimensions of «, r, and v: s = L' =~ =
T T ™
Equate the exponents of L and T so that the dimen- n+ m=1and m=2

sional equation is balanced:

Solve the two equations for n: n= -1

2

. : . . v
Write the acceleration expression: a=hki'v? =k —
,

In Section 4.4 on uniform circular motion, we show that k£ = 1 if a consistent set of units is used. The constant k would
not equal 1 if, for example, v were in km/h and you wanted ain m/s? .

i i Pitfall Prevention 1.3
Conversion of Units R

Always Include Units When per-

. .. . forming calculations with numeri-
Sometimes it is necessary to convert units from one measurement system to another callvalies, inelude the tits for

or convert within a system (for example, from kilometers to meters). Conversion every quantity and carry the units

factors between SI and U.S. customary units of length are as follows: through the entire calculation.
Avoid the temptation to drop the
1 mile = 1609 m =1.609 km 1ft = 0.3048m = 3048 cm units early and then attach the
1m = 39.37in. = 3.281 ft lin. = 0.0254m = 2.54 cm (exactly) expected units once you have an
answer. By including the units in
A more complete list of conversion factors can be found in Appendix A. every step, you can detect errors if
Like dimensions, units can be treated as algebraic quantities that can can-  the units for the answer turn out
cel each other. For example, suppose we wish to convert 15.0 in. to centimeters, ~ t© beincorrect.
Because 1 in. is defined as exactly 2.54 cm, we find that
. . 2.54 cm
15.0in. = (15.0 in7 )| ———— ) = 38.1 cm

where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather
than 1in./2.54 cm) so that the unit “inch” in the denominator cancels with the unit
in the original quantity. The remaining unit is the centimeter, our desired result.
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(D uick Quiz 1.3 The distance between two cities is 100 mi. What is the number
- of kilometers between the two cities? (a) smaller than 100 (b) larger than 100
e (c) equal to 100

Is He Speeding?

On an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding
the speed limit of 75.0 mi/h?

SOLUTION

1 mi ’
G t meters in th d to miles: 38.0mi/s) | ——— | = 2.36 X 10> mi/s
onvert meters in the speed to miles ( /s) (1 509 m) 2.3 mi/s
60 5 60 i
Convert seconds to hours: (2.86 X 1072 mi/s ) ( : ) (—) = 85.0 mi/h
1 pimt 1h

The driver is indeed exceeding the speed limit and should slow down.

WP What if the driver were from outside the United States and is

familiar with speeds measured in kilometers per hour? What is the speed of
the car in km/h?

Answer We can convert our final answer to the appropriate units:

1.609 km

(85.0 mi/h) ( ”

> =137 km/h

Figure 1.3 shows an automobile speedometer displaying speeds in both
mi/h and km/h. Can you check the conversion we just performed using this
photograph?
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Figure 1.3 The speedometer of a vehicle
that shows speeds in both miles per hour
and kilometers per hour.

Estimates and Order-of-Magnitude Calculations

Suppose someone asks you the number of bits of data on a typical musical com-
pact disc. In response, it is not generally expected that you would provide the exact
number but rather an estimate, which may be expressed in scientific notation. The
estimate may be made even more approximate by expressing it as an order of magni-
tude, which is a power of ten determined as follows:

1. Express the number in scientific notation, with the multiplier of the power
of ten between 1 and 10 and a unit.

2. If the multiplier is less than 3.162 (the square root of 10), the order of mag-
nitude of the number is the power of 10 in the scientific notation. If the
multiplier is greater than 3.162, the order of magnitude is one larger than
the power of 10 in the scientific notation.

We use the symbol ~ for “is on the order of.” Use the procedure above to verify
the orders of magnitude for the following lengths:

0.0086m ~ 102 m 0.0021m ~ 10%m 720 m ~ 103 m
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Usually, when an order-of-magnitude estimate is made, the results are reliable to
within about a factor of 10. If a quantity increases in value by three orders of magni-
tude, its value increases by a factor of about 10® = 1 000.

Inaccuracies caused by guessing too low for one number are often canceled
by other guesses that are too high. You will find that with practice your guessti-
mates become better and better. Estimation problems can be fun to work because
you freely drop digits, venture reasonable approximations for unknown numbers,
make simplifying assumptions, and turn the question around into something you
can answer in your head or with minimal mathematical manipulation on paper.
Because of the simplicity of these types of calculations, they can be performed on a
smallscrap of paper and are often called “back-of-the-envelope calculations.”

Breaths in a Lifetime

Estimate the number of breaths taken during an average human lifetime.

SOLUTION

11

We start by guessing that the typical human lifetime is about 70 years. Think about the average number of breaths that
a person takes in 1 min. This number varies depending on whether the person is exercising, sleeping, angry, serene,
and so forth. To the nearest order of magnitude, we shall choose 10 breaths per minute as our estimate. (This estimate

is certainly closer to the true average value than an estimate of 1 breath per minute or 100 breaths per minute.)

Find the approximate number of minutes in a year:

o () (T

1yr 1 day
Find the approximate number of minutes in a 70-year number of minutes = (70 yr)(6 X 10° min/yr)
lifetime: =4 X 107 min
Find the approximate number of breaths in a lifetime: number of breaths = (10 breaths/min)4 X 107 min)

= 4 X 108 breaths

)=6><105min

Therefore, a person takes on the order of 10° breaths in a lifetime. Notice how much simpler it is in the first calculation

above to multiply 400 X 25 than it is to work with the more accurate 365 X 24.

EENEIIES What if the average lifetime were estimated as 80 years instead of 70? Would that change our final estimate?

Answer We could claim that (80 yr)(6 X 10° min/yr) = 5 X 107 min, so our final estimate should be 5 X 10®% breaths.

This answer is still on the order of 10? breaths, so an order-of-magnitude estimate would be unchanged.

Significant Figures

When certain quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty
can depend on various factors, such as the quality of the apparatus, the skill of
the experimenter, and the number of measurements performed. The number of
significant figures in a measurement can be used to express something about the
uncertainty. The number of significant figures is related to the number of numeri-
cal digits used to express the measurement, as we discuss below.

As an example of significant figures, suppose we are asked to measure the radius
of a compact disc using a meterstick as a measuring instrument. Let us assume the
accuracy to which we can measure the radius of the disc is £0.1 cm. Because of
the uncertainty of £0.1 cm, if the radius is measured to be 6.0 cm, we can claim
only that its radius lies somewhere between 5.9 ¢cm and 6.1 cm. In this case, we
say that the measured value of 6.0 cm has two significant figures. Note that the
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Pitfall Prevention 1.4

Read Carefully Notice that the
rule for addition and subtraction
is different from that for multipli-
cation and division. For addition
and subtraction, the important
consideration is the number of
decimal places, not the number of
significant figures.

significant figures include the first estimated digit. Therefore, we could write the radius as
(6.0 £0.1) cm.

Zeros may or may not be significant figures. Those used to position the decimal
point in such numbers as 0.03 and 0.007 5 are not significant. Therefore, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate the
decimal point or whether they represent significant figures in the measurement. To
remove this ambiguity, it is common to use scientific notation to indicate the number
of significant figures. In this case, we would express the mass as 1.5 X 10° g if there
are two significant figures in the measured value, 1.50 X 10° g if there are three sig-
nificant figures, and 1.500 X 10% g if there are four. The same rule holds for numbers
less than 1, s0 2.3 X 10~ has two significant figures (and therefore could be written
0.000 23) and 2.30 X 10~* has three significant figures (also written as 0.000 230).

In problem solving, we often combine quantities mathematically through mul-
tiplication, division, addition, subtraction, and so forth. When doing so, you must
make sure that the result has the appropriate number of significant figures. A good
rule of thumb to use in determining the number of significant figures that can be
claimed in a multiplication or a division is as follows:

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the quantity hav-
ing the smallest number of significant figures. The same rule applies to division.

Let’s apply this rule to find the area of the compact disc whose radius we mea-
sured above. Using the equation for the area of a circle,

A=ar?>=7(6.0cm)? = 1.1 X 10 cm?

If you perform this calculation on your calculator, you will likely see
113.097 335 5. It should be clear that you don’t want to keep all of these digits, but
you might be tempted to report the result as 113 cm?. This result is not justified
because it has three significant figures, whereas the radius only has two. Therefore,
we must report the result with only two significant figures as shown above.

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report:

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum or difference.

As an example of this rule, consider the sum
232 +5.174 =284

Notice that we do not report the answer as 28.374 because the lowest number of
decimal places is one, for 23.2. Therefore, our answer must have only one decimal
place.

The rule for addition and subtraction can often result in answers that have a dif-
ferent number of significant figures than the quantities with which you start. For
example, consider these operations that satisfy the rule:

1.000 1 + 0.000 3 = 1.000 4
1.002 — 0.998 = 0.004
In the first example, the result has five significant figures even though one of
the terms, 0.000 3, has only one significant figure. Similarly, in the second calcu-

lation, the result has only one significant figure even though the numbers being
subtracted have four and three, respectively.
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In this book, most of the numerical examples and end-of-chapter problems « Significant figure guidelines
will yield answers having three significant figures. When carrying out estima- used in this book
tion calculations, we shall typically work with a single significant figure.

If the number of significant figures in the result of a calculation must be reduced,
there is a general rule for rounding numbers: the last digit retained is increased by
1 if the last digit dropped is greater than 5. (For example, 1.346 becomes 1.35.) problems, it is very useful to per-
If the last digit dropped is less than 5, the last digit retained remains as it is. (For ¢ "0 500 L e Ty
example, 1.343 becomes 1.34.) If the last digit dropped is equal to 5, the remaining algebraic form and wait until the
digit should be rounded to the nearest even number. (This rule helps avoid accu-  very end to enter numerical values
mulation of errors in long arithmetic processes.) into the final symbolic expres-

A technique for avoiding error accumulation is to delay the rounding of num- i;olrcl;,;l;?;srT:tgfgkzsl“:sav;?;inyif
bers in a long calculation until you have the final result. Wait until you are ready to quamiges cancel sf)) e yyou
copy the final answer from your calculator before rounding to the correct number  pever have to enter their values
of significant figures. In this book, we display numerical values rounded off to two  into your calculator! In addition,
or three significant figures. This occasionally makes some mathematical manipula- ~ you will only need to round once,
tions look odd or incorrect. For instance, looking ahead to Example 3.5 on page 69, ~ °% the final result
you will see the operation —17.7 km + 34.6 km = 17.0 km. This looks like an incor-
rect subtraction, but that is only because we have rounded the numbers 17.7 km and
34.6 km for display. If all digits in these two intermediate numbers are retained and
the rounding is only performed on the final number, the correct three-digit result
of 17.0 km is obtained.

Installing a Carpet

A carpetis to be installed in a rectangular room whose length is measured to be 12.71 m and whose width is measured
to be 3.46 m. Find the area of the room.

SOLUTION

If you multiply 12.71 m by 3.46 m on your calculator, you will see an answer of 43.976 6 m®. How many of these num-
bers should you claim? Our rule of thumb for multiplication tells us that you can claim only the number of significant
figures in your answer as are present in the measured quantity having the lowest number of significant figures. In this
example, the lowest number of significant figures is three in 3.46 m, so we should express our final answer as 44.0 m?.

Pitfall Prevention 1.5
Symbolic Solutions When solving

Summary

The three fundamental physical quantities of The density of a substance is defined as its mass per
mechanics are length, mass, and time, which in the SI unit volume:
system have the units meter (m), kilogram (kg), and
second (s), respectively. These fundamental quantities
cannot be defined in terms of more basic quantities.

(1.1)

i)
]
<3

conlinued
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Concepts and Principles

The method of dimensional analysis is very power-
ful in solving physics problems. Dimensions can be
treated as algebraic quantities. By making estimates
and performing order-of-magnitude calculations, you
should be able to approximate the answer to a prob-
lem when there is not enough information available to
specify an exact solution completely.

Physics and Measurement

Objective Questions

When you compute a result from several measured
numbers, each of which has a certain accuracy, you
should give the result with the correct number of sig-
nificant figures.

When multiplying several quantities, the number of
significant figures in the final answer is the same as the
number of significant figures in the quantity having
the smallest number of significant figures. The same
rule applies to division.

When numbers are added or subtracted, the number
of decimal places in the result should equal the small-
est number of decimal places of any term in the sum or
difference.

denotes answer available in Student Solutions Manual/Study Guide

1. One student uses a meterstick to measure the thick-
ness of a textbook and obtains 4.3 cm * 0.1 cm. Other
students measure the thickness with vernier calipers
and obtain four different measurements: (a) 4.32 cm
+0.01 cm, (b) 4.31 cm = 0.01 cm, (c) 4.24 cm *+ 0.01 cm,
and (d) 4.43 cm £ 0.01 cm. Which of these four mea-
surements, if any, agree with that obtained by the first
student?

. A house is advertised as having 1 420 square feet under
its roof. What is its area in square meters? (a) 4 660 m?
(b) 432 m? (c) 158 m? (d) 132 m? (e) 40.2 m?

Answer each question yes or no. Must two quantities

have the same dimensions (a) if you are adding them?
(b) If you are multiplying them? (c) If you are subtract-
ing them? (d) If you are dividing them? (e) If you are
equating them?

. The price of gasoline at a particular station is 1.5 euros
per liter. An American student can use 33 euros to buy
gasoline. Knowing that 4 quarts make a gallon and that
1 liter is close to 1 quart, she quickly reasons that she
can buy how many gallons of gasoline? (a) less than
1 gallon (b) about 5 gallons (c) about 8 gallons (d) more
than 10 gallons

. Rank the following five quantities in order from the
largest to the smallest. If two of the quantities are equal,

10.

give them equal rank in your list. (a) 0.032 kg (b) 15 g
(c) 2.7 X 10°mg (d) 4.1 X 1078Gg (e) 2.7 X 10% ug

. What is the sum of the measured values 21.4s + 15 s +

1717 s + 4.00 3 s? (a) 57.573 s (b) 57.57 s (c) 57.6 s
(d) 585 (e) 60 s

. Which of the following is the best estimate for the mass

of all the people living on the Earth? (a) 2 X 10% kg
(b) 1 X 10° kg (c) 2 X 10 kg (d) 3 X 10" kg
(e) 4 X 102 kg

. (a) If an equation is dimensionally correct, does that

mean that the equation must be true? (b) If an equa-
tion is not dimensionally correct, does that mean that
the equation cannot be true?

. Newton’s second law of motion (Chapter 5) says that the

mass of an object times its acceleration is equal to the
net force on the object. Which of the following gives
the correct units for force? (a) kg - m/s? (b) kg - m?/s?
(c) kg/m - s? (d) kg - m?/s (€) none of those answers

A calculator displays a result as 1.365 248 0 X 107 kg.
The estimated uncertainty in the result is =2%. How
many digits should be included as significant when the
result is written down? (a) zero (b) one (c) two (d) three
(e) four

Conceptual Questions denotes answer available in Student Solutions Manual/Study Guide

Suppose the three fundamental standards of the met-

ric system were length, density, and time rather than
length, mass, and time. The standard of density in this
system is to be defined as that of water. What consid-
erations about water would you need to address to
make sure that the standard of density is as accurate as
possible?

2.

3.

4.

Why is the metric system of units considered superior
to most other systems of units?

What natural phenomena could serve as alternative
time standards?

Express the following quantities using the prefixes given
in Table 1.4. (@) 3 X 107*m (b) 5 X 10735 (c) 72 X 102 g



Problems
The problems found in this

mE )
WebAssign chapter may be assigned
online in Enhanced WebAssign [T Guided Problem

1. straightforward; 2. intermediate;
3. challenging

full solution available in the Student
Solutions Manual/Study Guide

WebAssign

Section 1.1 Standards of Length, Mass, and Time

Note: Consult the endpapers, appendices, and tables in
the text whenever necessary in solving problems. For
this chapter, Table 14.1 and Appendix B.3 may be par-
ticularly useful. Answers to odd-numbered problems
appear in the back of the book.

1. (a) Use information on the endpapers of this book to
calculate the average density of the Earth. (b) Where
does the value fit among those listed in Table 14.1 in
Chapter 14? Look up the density of a typical surface
rock like granite in another source and compare it
with the density of the Earth.

2. The standard kilogram (Fig. 1.1a) is a platinum—iridium
cylinder 39.0 mm in height and 39.0 mm in diameter.
What is the density of the material?

3. An automobile company displays a die-cast model of
its first car, made from 9.35 kg of iron. To celebrate
its hundredth year in business, a worker will recast the
model in solid gold from the original dies. What mass
of gold is needed to make the new model?

4. A proton, which is the nucleus of a hydrogen atom, can
be modeled as a sphere with a diameter of 2.4 fm and
a mass of 1.67 X 107*7 kg. (a) Determine the density of
the proton. (b) State how your answer to part (a) com-
pares with the density of osmium, given in Table 14.1
in Chapter 14.

5. Two spheres are cut from a certain uniform rock. One
has radius 4.50 cm. The mass of the other is five times
greater. Find its radius.

6. What mass of a material with density p is required to
make a hollow spherical shell having inner radius r
and outer radius 7,?

Section 1.2 Matter and Model Building

7. A crystalline solid consists of atoms stacked up in a
repeating lattice structure. Consider a crystal as shown
in Figure P1.7a. The atoms reside at the corners of
cubes of side L. = 0.200 nm. One piece of evidence for
the regular arrangement of atoms comes from the flat
surfaces along which a crystal separates, or cleaves,
when it is broken. Suppose this crystal cleaves along a
face diagonal as shown in Figure P1.7b. Calculate the
spacing d between two adjacent atomic planes that sep-
arate when the crystal cleaves.

Problems 15

Analysis Model tutorial available in
Enhanced WebAssign

Y1 Master It tutorial available in Enhanced

Watch It video solution available in
Enhanced WebAssign

Figure P1.7

8. The mass of a copper atom is 1.06 X 1072 kg, and the
density of copper is 8 920 kg/m® . (a) Determine the
number of atoms in 1 cm® of copper. (b) Visualize the
one cubic centimeter as formed by stacking up identi-
cal cubes, with one copper atom at the center of each.
Determine the volume of each cube. (c) Find the edge
dimension of each cube, which represents an estimate
for the spacing between atoms.

Section 1.3 Dimensional Analysis

Which of the following equations are dimensionally
correct? (a) U=+ ax (b) y = (2 m) cos (kx), where
k=2m™!

10. Figure P1.10 shows a frustum

of a cone. Match each of the

expressions

@) 7(ry + r)[h2 + (ry — 1)2]V2, "
(b) 27 (r, + 1y), and

(©) wh(r? + rry + 1,2)/3

with the quantity it describes:
(d) the total circumference of
the flat circular faces, (e) the
volume, or (f) the area of the
curved surface.

Figure P1.10

11. Kinetic energy K (Chapter 7) has dimensions kg - m?2/s?.
It can be written in terms of the momentum p (Chap-
ter 9) and mass m as

9
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(a) Determine the proper units for momentum using
dimensional analysis. (b) The unit of force is the new-
ton N, where 1 N = 1 kg - m/s*> . What are the units of
momentum p in terms of a newton and another funda-
mental ST unit?

12. Newton’s law of universal gravitation is represented by
GMm
F=—
r
where I"is the magnitude of the gravitational force
exerted by one small object on another, M and m are
the masses of the objects, and ris a distance. Force has
the SI units kg - m/s?. What are the SI units of the pro-
portionality constant G?

13. The position of a particle moving under uniform accel-
eration is some function of time and the acceleration.
Suppose we write this position as x = ka"t", where kisa
dimensionless constant. Show by dimensional analysis
that this expression is satisfied if m = 1 and » = 2. Can
this analysis give the value of k?

14. (a) Assume the equation x = A#* + Bt describes the
motion of a particular object, with x having the dimen-
sion of length and ¢ having the dimension of time.
Determine the dimensions of the constants A and B.
(b) Determine the dimensions of the derivative dx/dt =
3A2 + B.

Section 1.4 Conversion of Units

A solid piece of lead has a mass of 23.94 g and a volume
of 2.10 cm?. From these data, calculate the density of
lead in SI units (kilograms per cubic meter).

16. An ore loader moves 1 200 tons/h from a mine to the
surface. Convert this rate to pounds per second, using
1 ton =2 000 Ib.

A rectangular building lot has a width of 75.0 ft and
a length of 125 ft. Determine the area of this lot in
square meters.

18. Suppose your hair grows at the rate 1/32 in. per day.

Find the rate at which it grows in nanometers per sec-
ond. Because the distance between atoms in a mole-
cule is on the order of 0.1 nm, your answer suggests
how rapidly layers of atoms are assembled in this pro-
tein synthesis.

19. Why is the following situation impossible? A student’s dor-
mitory room measures 3.8 m by 3.6 m, and its ceiling
is 2.5 m high. After the student completes his physics
course, he displays his dedication by completely wall-
papering the walls of the room with the pages from his
copy of volume 1 (Chapters 1-22) of this textbook. He
even covers the door and window.

20. A pyramid has a height of 481 ft, and its base covers an

area of 13.0 acres (Fig. P1.20). The volume of a pyra-
mid is given by the expression V = §Bh, where B is the
area of the base and 7 is the height. Find the volume of
this pyramid in cubic meters. (1 acre = 43 560 ft?)

21. The pyramid described in Problem 20 contains
approximately 2 million stone blocks that average 2.50
tons each. Find the weight of this pyramid in pounds.

Adam Sylvester/Photo Researchers, Inc.

Figure P1.20 Problems 20 and 21.

22. Assume it takes 7.00 min to fill a 30.0-gal gasoline tank.

(a) Calculate the rate at which the tank is filled in gal-
lons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time interval, in hours, required to fill a 1.00-m?
volume at the same rate. (1 U.S. gal = 231 in.%)

23. A section of land has an area of 1 square mile and
contains 640 acres. Determine the number of square
meters in 1 acre.

24. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-
I high ceilings. What is the volume of the interior of the
house in cubic meters and in cubic centimeters?

One cubic meter (1.00 m3) of aluminum has a mass of

M 2.70 X 103 kg, and the same volume of iron has a mass
of 7.86 X 10% kg. Find the radius of a solid aluminum
sphere that will balance a solid iron sphere of radius
2.00 cm on an equal-arm balance.

26. Let p,, represent the density of aluminum and pg, that
of iron. Find the radius of a solid aluminum sphere
that balances a solid iron sphere of radius 1, on an
equal-arm balance.

27.| One gallon of paint (volume = 3.78 X 1073 m®) covers
g P

[ an area of 25.0 m?. What is the thickness of the fresh
paint on the wall?

28. An auditorium measures 40.0 m X 20.0 m X 12.0 m.

The density of air is 1.20 kg/m?® What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air
in the room in pounds?

(@) At the time of this book’s printing, the U.S.

7] national debt is about $16 trillion. If payments were
made at the rate of $1 000 per second, how many years
would it take to pay off the debt, assuming no interest
were charged? (b) A dollar bill is about 15.5 cm long.
How many dollar bills attached end to end would it
take to reach the Moon? The front endpapers give the
Earth-Moon distance. Note: Before doing these calcu-
lations, try to guess at the answers. You may be very
surprised.

30. A hydrogen atom has a diameter of 1.06 X 1071 m.
The nucleus of the hydrogen atom has a diameter of
approximately 2.40 X 107" m. (a) For a scale model,
represent the diameter of the hydrogen atom by
the playing length of an American football field
(100 yards = 300 ft) and determine the diameter of
the nucleus in millimeters. (b) Find the ratio of the vol-
ume of the hydrogen atom to the volume of its nucleus.



Section 1.5 Estimates and Order-of-Magnitude Calculations

Note: In your solutions to Problems 31 through 34, state
the quantities you measure or estimate and the values
you take for them.

Find the order of magnitude of the number of table-
tennis balls that would fit into a typical-size room
(without being crushed).

32. (@) Compute the order of magnitude of the mass of a
bathtub half full of water. (b) Compute the order of
magnitude of the mass of a bathtub half full of copper
coins.

To an order of magnitude, how many piano tuners
reside in New York City? The physicist Enrico Fermi
was famous for asking questions like this one on oral
Ph.D. qualifying examinations.

34. An automobile tire is rated to last for 50 000 miles. To
an order of magnitude, through how many revolutions
will it turn over its lifetime?

Section 1.6 Significant Figures

Note: Appendix B.8 on propagation of uncertainty may
be useful in solving some problems in this section.

35. A rectangular plate has a length of (21.3 * 0.2) cm
and a width of (9.8 = 0.1) cm. Calculate the area of the
plate, including its uncertainty.

36.|How many significant figures are in the following num-
[ bers? (2) 78.9 = 0.2 (b) 3.788 X 10° (c) 2.46 X 10°°
(d) 0.005 3

37. The wropical year, the time interval from one vernal
equinox to the next vernal equinox, is the basis for our
calendar. It contains 365.242 199 days. Find the num-
ber of seconds in a tropical year.

38. Carry out the arithmetic operations (a) the sum of the
measured values 756, 37.2, 0.83, and 2; (b) the product
0.003 2 X 356.3; and (c) the product 5.620 X 7.

Note: The next 13 problems call on mathematical skills
from your prior education that will be useful through-
out this course.

39. Review. In a community college parking lot, the num-
ber of ordinary cars is larger than the number of sport
utility vehicles by 94.7%. The difference between the
number of cars and the number of SUVs is 18. Find the
number of SUVs in the lot.

40. Review. While you are on a trip to Europe, you must
purchase hazelnut chocolate bars for your grand-
mother. Eating just one square each day, she makes
each large bar last for one and one-third months. How
many bars will constitute a year’s supply for her?

41. Review. A child is surprised that because of sales tax
she must pay $1.36 for a toy marked $1.25. What is
the effective tax rate on this purchase, expressed as a
percentage?

42. Review. The average density of the planet Uranus is
1.27 X 10% kg/m?. The ratio of the mass of Neptune to

Problems 17

that of Uranus is 1.19. The ratio of the radius of Nep-
tune to that of Uranus is 0.969. Find the average den-
sity of Neptune.

43. Review. The ratio of the number of sparrows visiting a
bird feeder to the number of more interesting birds is
2.25. On a morning when altogether 91 birds visit the
feeder, what is the number of sparrows?

44. Review. Find every angle 6 between 0 and 360° for
which the ratio of sin 6 to cos 6 is —3.00.

45. Review. For the right tri-
[/ angle shown in Figure
P1.45, what are (a) the
length of the unknown 9.00 m
side, (b) the tangent of 0, ¢
and (c) the sine of ¢?

46. Review. Prove that one
solution of the equation
2.00x* — 3.00x° + 5.00x = 70.0
is x = —2.22.
Review. A pet lamb grows rapidly, with its mass pro-
[l portional to the cube of its length. When the lamb’s

length changes by 15.8%, its mass increases by 17.3 kg.
Find the lamb’s mass at the end of this process.

6

6.00 m

Figure P1.45

48. Review. A highway curve forms a section of a circle. A
car goes around the curve as shown in the helicopter
view of Figure P1.48. Its dashboard compass shows that
the car is initially heading due east. After it travels d =
840 m, it is heading 6 = 35.0° south of east. Find the
radius of curvature of its path. Suggestion: You may find
it useful to learn a geometric theorem stated in Appen-
dix B.3.

T
=3

Figure P1.48

49. Review. From the set of equations
p=3q
pr=gs

2 —

pr® + g5 = gqt*

involving the unknowns p, ¢, % s, and ¢, find the value
of the ratio of ¢ to r.

50. Review. Figure P1.50 on page 18 shows students study-
ing the thermal conduction of energy into cylindrical
blocks of ice. As we will see in Chapter 20, this process
is described by the equation

Q  kmd T, - T)

At 4L
For experimental control, in one set of trials all quanti-
ties except d and A¢are constant. (a) If d is made three
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times larger, does the equation predict that Az will get
larger or get smaller? By what factor? (b) What pattern
of proportionality of A/ to d does the equation predict?
(c) To display this proportionality as a straight line on
a graph, what quantities should you plot on the hori-
zontal and vertical axes? (d) What expression repre-
sents the theoretical slope of this graph?

Alexandra Héder

Figure P1.50

Review. A student is supplied with a stack of copy
paper, ruler, compass, scissors, and a sensitive bal-
ance. He cuts out various shapes in various sizes,
calculates their areas, measures their masses, and
prepares the graph of Figure P1.51. (a) Consider the
fourth experimental point from the top. How far is
it from the best-fit straight line? Express your answer
as a difference in vertical-axis coordinate. (b) Express
your answer as a percentage. (c¢) Calculate the slope of
the line. (d) State what the graph demonstrates, refer-
ring to the shape of the graph and the results of parts
(b) and (c). (e) Describe whether this result should
be expected theoretically. (f) Describe the physical
meaning of the slope.

Dependence of mass on
area for paper shapes

0 200 400 600
Area (cm?2)

@ Rectangles B Squares A Triangles
® Circles == Best fit

Figure P1.51

52. The radius of a uniform solid sphere is measured to

be (6.50 = 0.20) cm, and its mass is measured to be
(1.85 = 0.02) kg. Determine the density of the sphere
in kilograms per cubic meter and the uncertainty in
the density.

53. A sidewalk is to be constructed around a swimming

pool that measures (10.0 = 0.1) m by (17.0 = 0.1) m.

If the sidewalk is to measure (1.00 = 0.01) m wide by
(9.0 = 0.1) cm thick, what volume of concrete is needed
and what is the approximate uncertainty of this volume?

Additional Problems

54. Collectible coins are sometimes plated with gold to
enhance their beauty and value. Consider a commemo-
rative quarter-dollar advertised for sale at $4.98. It has
a diameter of 24.1 mm and a thickness of 1.78 mm,
and it is completely covered with a layer of pure gold
0.180 um thick. The volume of the plating is equal
to the thickness of the layer multiplied by the area to
which it is applied. The patterns on the faces of the
coin and the grooves on its edge have a negligible effect
on its area. Assume the price of gold is $25.0 per gram.
(a) Find the cost of the gold added to the coin. (b) Does
the cost of the gold significantly enhance the value of
the coin? Explain your answer.

55. In a situation in which data are known to three signifi-
cant digits, we write 6.379 m = 6.38 m and 6.374 m =
6.37 m. When a number ends in 5, we arbitrarily choose
to write 6.375 m = 6.38 m. We could equally well write
6.375 m = 6.37 m, “rounding down” instead of “round-
ing up,” because we would change the number 6.375 by
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which factors of change
rather than increments are important. We write 500 m
~ 10% m because 500 differs from 100 by a factor of 5
while it differs from 1 000 by only a factor of 2. We write
437 m ~ 10° m and 305 m ~ 10% m. What distance dif-
fers from 100 m and from 1 000 m by equal factors so
that we could equally well choose to represent its order
of magnitude as ~ 10°m or as ~ 10% m?

56. (a) What is the order of magnitude of the number of
microorganisms in the human intestinal tract? A typi-
cal bacterial length scale is 107° m. Estimate the intes-
tinal volume and assume 1% of it is occupied by bacte-
ria. (b) Does the number of bacteria suggest whether
the bacteria are beneficial, dangerous, or neutral for
the human body? What functions could they serve?

The diameter of our disk-shaped galaxy, the Milky Way,
is about 1.0 X 10° light-years (ly). The distance to the
Andromeda galaxy (Fig. P1.57), which is the spiral gal-
axy nearest to the Milky Way, is about 2.0 million ly. Ifa
scale model represents the Milky Way and Andromeda
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Figure P1.57 The Andromeda galaxy.



58.

A high fountain of water
is located at the center R
'} of a circular pool as

60.

61.

62.

galaxies as dinner plates 25 cm in diameter, determine
the distance between the centers of the two plates.

Why is the following situation impossible? In an effort to
boost interest in a television game show, each weekly
winner is offered an additional $1 million bonus prize
if he or she can personally count out that exact amount
from a supply of one-dollar bills. The winner must do
this task under supervision by television show execu-
tives and within one 40-hour work week. To the dismay
of the show’s producers, most contestants succeed at
the challenge.

shown in Figure P1.59. AN
A student walks around b
the pool and measures = = “umle )
its circumference to be
15.0 m. Next, the stu-
dent stands at the edge
of the pool and uses a
protractor to gauge the
angle of elevation of the top of the fountain to be ¢ =
55.0°. How high is the fountain?

A water fountain is at the center of a circular pool
as shown in Figure P1.59. A student walks around
the pool and measures its circumference C. Next, he
stands at the edge of the pool and uses a protractor to
measure the angle of elevation ¢ of his sightline to the
top of the water jet. How high is the fountain?

Figure P1.59
Problems 59 and 60.

The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-
minum, copper, brass, tin, and iron. (a) Use these data
to calculate the densities of these substances. (b) State
how your results compare with those given in Table 14.1.

Mass Diameter Length
Substance (g) (cm) (cm)
Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94 .4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77

The distance from the Sun to the nearest star is about
4 X 10'® m. The Milky Way galaxy (Fig. P1.62) is roughly

Richard Payne/NASA

Figure P1.62 The Milky Way galaxy.
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Problems

a disk of diameter ~ 102! m and thickness ~ 10'° m.
Find the order of magnitude of the number of stars in
the Milky Way. Assume the distance between the Sun
and our nearest neighbor is typical.

Assume there are 100 million passenger cars in the
AN United Statesand the average fuel efficiencyis20mi/ga

United S dth ge fuel efficiency is 20 mi/gal
"] of gasoline. If the average distance traveled by each car

64.

65.

66.

67.

68.

is 10 000 mi/yr, how much gasoline would be saved per
year if the average fuel efficiency could be increased to
25 mi/gal?

A spherical shell has an outside radius of 2.60 cm and
an inside radius of a. The shell wall has uniform thick-
ness and is made of a material with density 4.70 g/cmg.
The space inside the shell is filled with a liquid having a
density of 1.23 g/cm?. (a) Find the mass m of the sphere,
including its contents, as a function of a. (b) For what
value of the variable a does m have its maximum possi-
ble value? (c) What is this maximum mass? (d) Explain
whether the value from part (c) agrees with the result
of a direct calculation of the mass of a solid sphere of
uniform density made of the same material as the shell.
(e) What If? Would the answer to part (a) change if the
inner wall were not concentric with the outer wall?

Bacteria and other prokaryotes are found deep under-
ground, in water, and in the air. One micron (107% m)
is a typical length scale associated with these microbes.
(a) Estimate the total number of bacteria and other
prokaryotes on the Earth. (b) Estimate the total mass
of all such microbes.

Air is blown into a spherical balloon so that, when its
radius is 6.50 cm, its radius is increasing at the rate
0.900 cm/s. (a) Find the rate at which the volume of
the balloon is increasing. (b) If this volume flow rate
of air entering the balloon is constant, at what rate will
the radius be increasing when the radius is 13.0 cm?
(c) Explain physically why the answer to part (b) is
larger or smaller than 0.9 cm/s, if it is different.

A rod extending between x = 0 and x = 14.0 cm has
uniform cross-sectional area A = 9.00 cm?. Its density
increases steadily between its ends from 2.70 g/cm?® to
19.3 g/cm?®. (a) Identify the constants Band Crequired
in the expression p = B + Cx to describe the variable
density. (b) The mass of the rod is given by

14.0 cm
f (B + Cx)(9.00 cm?)dx

0

m = deV= JpAdx=

all material all x

Carry out the integration to find the mass of the rod.
In physics, it is important to use mathematical approxi-
mations. (a) Demonstrate that for small angles (< 20°)

ma’

180°

tana = sina = a =

where a is in radians and «a’ is in degrees. (b) Use a
calculator to find the largest angle for which tan o may
be approximated by a with an error less than 10.0%.

The consumption of natural gas by a company satisfies
I the empirical equation V= 1.50¢ + 0.008 002, where V
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is the volume of gas in millions of cubic feet and ¢is the
time in months. Express this equation in units of cubic

Challenge Problems

72. A woman stands at a horizontal distance x from a

feet and seconds. Assume a month is 30.0 days.

A woman wishing to know the height of a mountain
measures the angle of elevation of the mountaintop as
12.0°. After walking 1.00 km closer to the mountain on
level ground, she finds the angle to be 14.0°. (a) Draw
a picture of the problem, neglecting the height of the
woman’s eyes above the ground. Hint: Use two tri-
angles. (b) Using the symbol y to represent the moun-
tain height and the symbol x to represent the woman’s
original distance from the mountain, label the picture.
(c) Using the labeled picture, write two trigonometric
equations relating the two selected variables. (d) Find
the height y.

section of the bottle is circular, but the diameters of
the circles have different values. You pour the brightly
colored shampoo into the bottle at a constant rate of
16.5 cm3/s. At what rate is its level in the bottle rising
(a) ata point where the diameter of the bottle is 6.30 cm
and (b) at a point where the diameter is 1.35 cm?

< 6.30 cm,

1.35 cm —> =

% ol

Figure P1.71

mountain and measures the angle of elevation of the
mountaintop above the horizontal as 6. After walking
a distance d closer to the mountain on level ground,
she finds the angle to be ¢. Find a general equation
for the height y of the mountain in terms of d, ¢, and 0,
neglecting the height of her eyes above the ground.

73. You stand in a flat meadow and observe two cows

(Fig. P1.73). Cow A is due north of you and 15.0 m from
your position. Gow B is 25.0 m from your position. From
your point of view, the angle between cow A and cow
B is 20.0°, with cow B appearing to the right of cow A.
(a) How far apart are cow A and cow B? (b) Consider
the view seen by cow A. According to this cow, what

71. A child loves to watch as you fill a transparent plastic is the angle between you and cow B? (¢) Consider
bottle with shampoo (Fig P1.71). Every horizontal cross the view seen by cow B. According to this cow, what

is the angle between you and cow A? Hint: What does
the situation look like to a hummingbird hovering
above the meadow? (d) Two stars in the sky appear to
be 20.0° apart. Star A is 15.0 ly from the Earth, and
star B, appearing to the right of star A, is 25.0 ly from
the Earth. To an inhabitant of a planet orbiting star
A, what is the angle in the sky between star B and our
Sun?

Cow A

Cow B

i

Figure P1.73 Your view of two cows in

a meadow. Cow A is due north of you. You
must rotate your eyes through an angle of
20.0° to look from cow A to cow B.




